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Abstract

Existing research on temporal knowledge graph
completion treats temporal information as sup-
plementary, without simulating various features
of facts from a temporal perspective. This work
summarizes features of temporalized facts from
both diachronic and synchronic perspectives: (1)
Diachronicity. Facts often exhibit varying char-
acteristics and trends across different temporal
domains; (2) Synchronicity. In specific tempo-
ral contexts, various relations between entities
influence each other, generating latent semantics.
To track above issues, we design a quaternion-
based model, TeDS, which divides timestamps
into diachronic and synchronic timestamps to sup-
port dual temporal perception: (a) Two composite
quaternions fusing time and relation information
are generated by reorganizing synchronic times-
tamp and relation quaternions, and Hamilton op-
erator achieves their interaction. (b) Each time
point is sequentially mapped to an angle and con-
verted to scalar component of a quaternion using
trigonometric functions to build diachronic times-
tamps. We then rotate relation by using Hamilton
operator between it and diachronic timestamp. In
this way, TeDS achieves deep integration of re-
lations and time while accommodating different
perspectives. Empirically, TeDS significantly out-
performs SOTA models on six benchmarks.
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1. Introduction
Knowledge graphs (KGs) are a technology that expresses
knowledge in a structured form, which is generally clas-
sified into static knowledge graphs (SKGs) and temporal
knowledge graphs (TKGs). SKGs and TKGs store facts as
triples and quadruples. Existing KGs (e.g., ICEWS (Laut-
enschlager et al., 2015), NELL, and OpenIE) contain a vast
amount of information, and many have been successfully
applied in various domains, including community detection
(Li et al., 2024), failure KGs for offshore wind power (Ding
et al., 2025), and industry-oriented KGs.

With exponential growth of data, KGs consistently en-
counter issues such as incompleteness, sparsity, and im-
balance. To provide sustainable solutions, researchers focus
extensively on knowledge graph completion (KGC), devel-
oping a variety of robust models. However, most models
focus on SKGs, with less attention to TKGs with temporal
information (Guo et al., 2024). Unlike SKGs, TKGs align
more closely with real-world scenarios due to inclusion of
time dimension, making completion process significantly
more challenging. Existing temporal knowledge graph com-
pletion (TKGC) research regards temporal information as
supplementary, failing to observe various features and tra-
jectories that facts can present from a temporal perspective.
To uncover characteristics of facts from temporal perspec-
tive, we summarize features of temporalized facts from both
diachronic and synchronic perspectives: (a) Diachronicity.
Facts often exhibit varying characteristics and developmen-
tal trends across different temporal domains. For example,
as shown in Figure 1, in March, James is friends with Emma
and Sophia. By May and June, James starts dating Emma,
and their relation progresses smoothly into a romantic one
by July. Meanwhile, James remains ordinary friends with
Sophia. (b) Synchronicity. In specific temporal contexts,
various relations between entities often influence each other,
thereby generating latent semantics. For example, as shown
in Figure 1, in May and June, relation between Emma and
James noticeably becomes closer, showing signs of ambigu-
ity. Meanwhile, during this period, James and Sophia only
have one call, remaining ordinary friends. The above per-
spectives are not entirely independent, they often mutually
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depend on and serve as foundations for each other. Thus,
designing a unified framework to simultaneously consider
both diachronicity and synchronicity is an interesting work.
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Figure 1. A brief illustration reflecting diachronic and synchronic
facts.

The primary purpose of our work is to introduce a novel
quaternion-based model TeDS. Specifically, TeDS divides
timestamp into diachronic timestamp and synchronic times-
tamp to design dual temporal perception channels for track-
ing synchronicity and diachronicity, as follows: (a) Syn-
chronic perception. We reorganize synchronic timestamp
and relation quaternions to construct two composite quater-
nions that effectively blend time and relation information.
We then use Hamilton operator to achieve their interaction,
further achieving interaction between relations and time. (b)
Diachronic perception. We iterate through all timestamps,
sequentially mapping each time point to an angle and con-
verting it to the scalar component of a quaternion using
trigonometric functions, thereby constructing diachronic
timestamps to interpret timestamps continuously. We then
rotate the relation using Hamilton operator between it and
the diachronic timestamp, enabling the relation to carry di-
achronic information. In this way, TeDS can achieve deep
integration of relations and time while accommodating dif-
ferent temporal perspectives.

• We observe the regularities of facts within a tempo-
ral context and summarizes two important temporal
perspectives: synchronicity and diachronicity.

• We utilize the representation capability of quaternions
to design dual perception channels and integrate them
into a unified framework to address the different per-
spective features of various temporalized facts.

• We empirically demonstrate that TeDS achieves signifi-
cant improvements over the existing SOTA on different
datasets. Furthermore, TeDS underwent detailed strict
constraint experiments and withstood the tests.

2. Related Work
2.1. SKGC models

We categorize SKGC models into five families. Transla-
tion Family. TransE interprets relations as a translation
between head and tail entity to achieve its modeling objec-
tives. Subsequent works in this line, such as TransD (Ji
et al., 2015) and TransR. Complex Family. Learning KGs
in complex space has gained attention. ComplEx (Trouillon
et al., 2016) and RotatE (Sun et al., 2019) extend Euclidean
space into complex space. Besides, QuatE (Zhang et al.,
2019) and DualE (Cao et al., 2021) treat relation as a rota-
tion in quaternion space and dual quaternion space. Tensor
Family. Tensor decomposition and its properties are effec-
tive at deconstructing and capturing logical rules and latent
semantics. RESCAL (Nickel et al., 2011) incorporates a
bilinear multiplication between embeddings for both head
and tail entity, along with a full-rank matrix unique to each
relation. TuckER (Balazevic et al., 2019), based on Tucker
decomposition, factorizes fact into a core tensor and three
member matrices in which each row is embedding of cor-
responding entity or relation. Recently, BDRI (Yu et al.,
2023a) leverages BTD structure and inverse patterns to en-
hance forward-inverse relation interactions. Compound
Family. Current research integrates advantages of different
geometric spaces into a unified framework to get synergistic
gains. CompoundE (Ge et al., 2023) combines compound
transformations to align design variants with rich relation
patterns. Deep learning Family. Some models using neural
networks to accomplish SKGC task gets remarkable results.
For example, EIGAT (Zhao et al., 2022), HyperGatE (Fang
et al., 2025), and RGAI (Shang et al., 2024a). Recently,
integrating logical rules and geometric information to im-
prove deep learning model interpretability has become a
research focus. MGTCA (Shang et al., 2024b) integrates
mixed geometry information into a trainable convolutional
attention network to enhance KGC.

2.2. TKGC models

We divide TKGC models into five families. Translation
Family. TTransE (Jiang et al., 2016) extends TransE by
incorporating timestamp, where timestamp is represented
as translation operation. Several works have been pro-
posed along this line. For instance, HYTE (Dasgupta et al.,
2018) extends TransH by representing timestamps as a
learned hyperplane. Complex Family. TComplEx (Lacroix
et al., 2020), TPComplEx (Yang et al., 2024), and Joint-
MTComplEx (Zhang et al., 2024b) model facts in complex

2



Joint Learning of Diachronic and Synchronic Perspectives in Quaternion Space for Temporal Knowledge Graph Completion

space. Next, RotateQVS (Chen et al., 2022) and MTE (Yu
et al., 2025) respectively represent temporal fact information
as quaternion. Tensor Family. TASTER (Wang et al., 2023)
learns global and local information through sparse transfer
matrices to adapt to TKGs of different scales. TeLM (Xu
et al., 2021) uses multivectors to perform 4th-order tensor
factorization in TKGs. TBDRI (Yu et al., 2023b), BTDG
(Lai et al., 2022), and CEC-BD (Yue et al., 2024), based on
BTD, utilize different ways to represent facts, respectively.
Recently, MvTuckER (Wang et al., 2024) learns multi-view
representations using Tucker decomposition, transforming
them into an nth-order binary tensor. Mathematical rules
Family. CDRGN-SDE (Zhang et al., 2024a) leverages the
characteristics of stochastic differential equation, integrating
time and dimensional data segment by segment. Deep learn-
ing Family. Some works introduce neural networks into
TKGC. For example, TeMP-SA (Wu et al., 2020), xERTE
(Han et al., 2021), ODETKGE (Huang et al., 2024), DLGR
(Xiao et al., 2024), SANe (Li et al., 2024), MDRQS (Zhu
et al., 2025), Neo-TKGC (Qiu et al., 2025), and GLARGCN
(Wang et al., 2025). A drawback of above models is that
their geometric meaning is unclear.

3. Preliminaries
This section formally describes TKGC problem and the
relevant theoretical concepts employed in our work.

3.1. Problem Definition

Temporal knowledge graph G is composed of quadruples
consisting of entities, relations, and timestamps. We formu-
late denote E as the set of all entities, R as set of all relations,
and T as set of all timestamps. A quadruple is represented
as (s, r, o, τ) ⊂ E × R × E × T , where s ∈ E and o ∈ E
denote head and tail entity respectively, r ∈ R denotes the
relation between them, and τ ∈ T denotes timestamp. We
use Π and Π− = E × R × E × T − Π to represent the set
of observed quadruples and the set of unobserved quadru-
ples, respectively. Timestamp τ has multiple cases, such as
time period [τb, τe], missing beginning time period [−, τe],
missing ending time period [τb,−] and time point τ .

3.2. Quaternion Background

Quaternion (Hamilton, 1844) typically expressed as Q =
a+ ei+ f j+ gk, where a, e, f, g are real numbers, i, j,k
are imaginary units that satisfy Hamilton rule.
Conjugate: The conjugate of Q is Q = a− ei− f j− gk.
Norm: The norm of Q is |Q| =

√
a2 + e2 + f2 + g2.

Inner product: The inner product of Q1 = a1+e1i+f1j+
g1k and Q2 = a2 + e2i+ f2j+ g2k is obtained by adding
the inner product of the corresponding vector component:

Q1 ·Q2 = ⟨a1, a2⟩+ ⟨e1, e2⟩+ ⟨f1, f2⟩+ ⟨g1, g2⟩ . (1)

Hamilton operator does not satisfy the commutative rule,
which means that Q1 ⊗ Q2 ̸= Q2 ⊗ Q1. In addition to
commutative rule, the associative and distributive rules hold
within quaternions. The product of Q1 = a1 + e1i+ f1j+
g1k and Q2 = a2 + e2i+ f2j+ g2k is as follows:

Q1 ⊗Q2 = (a1a2 − e1e2 − f1f2 − g1g2)

+ (a1e2 + e1a2 + f1g2 − g1f2) i

+ (a1f2 − e1g2 + f1a2 + g1e2) j

+ (a1g2 + e1f2 − f1e2 + g1a2)k.

(2)

4. TeDS for TKGC
Here, we formally introduce TeDS, which embeds TKGs in
quaternion space and scores a quadruple using the Hamil-
ton operator to enhance knowledge representation. Specif-
ically, TeDS utilizes dual temporal perception channels as
follows: (a) Synchronic perception. We reorganize syn-
chronic timestamp and relation quaternions to construct two
composite quaternions. We then use Hamilton operator to
achieve their deep interaction. (b) Diachronic perception.
We iterate through all timestamps, sequentially mapping
each time point to an angle and converting it to the scalar
component of a quaternion using trigonometric functions,
thus constructing diachronic timestamps for continuous in-
terpretation. We then rotate the relation using Hamilton
operator between it and diachronic timestamp.
Symbol description. Suppose that G consists of N entities,
M relations, and T timestamps. We use the quaternion ma-
trix Q ∈ HN×k to denote all entity embeddings, R ∈ HM×k

to denote all relation embeddings, W ∈ HT×k to denote
all timestamp embeddings, where each row is an embed-
ding vector for a specific entity of dimensionality k. Given
a quadruple (s, r, o, τ), head entity s, relation r, and tail
entity o correspond to Qs = { as + esi + fsj + gsk :
as, es, fs, gs ∈ Rk }, Rr = { ar + eri + frj + grk :
ar, er, fr, gr ∈ Rk }, and Qo = { ao + eoi + foj + gok :
ao, eo, fo, go ∈ Rk }, respectively. Timestamp τ is divided
into diachronic timestamp dτ and synchronic timestamp sτ ,
corresponding to Wdτ and Wsτ , respectively.
Implementation details. TeDS mainly consists of two mod-
ules, the overall architecture is as depicted in Figure 2.
Synchronic perception (SP). Firstly, to achieve a thorough
integration of temporal and relational information, SP per-
forms a composite reorganization of synchronic timestamp
quaternion Wsτ = asτ + esτ i + fsτ j + gsτk and rela-
tion quaternion Rr. This results in the creation of two
quaternions: Qrτsp = ar + eri+ frj+ gsτk and Qτspr =
asτ + esτ i + fsτ j + grk, where asτ , esτ , fsτ , gsτ ∈ Rk.
This process is visualized in Figure 2(a) and (b). Secondly,
we normalize Qτspr to the unit quaternion Q∆

τspr by dividing
Qτspr by its norm to eliminate scaling effects:

Q∆
τspr =

Qτspr∣∣Qτspr

∣∣ = asτ + esτ i+ fsτ j+ grk√
a2sτ + e2sτ + f2

sτ + g2r
. (3)
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Figure 2. Illustrations of TeDS. The blue dashed arrows indicate
the process flow of synchronic perceptron; The green dashed ar-
rows indicate the process flow of diachronic perceptron.

Thirdly, as shown in Figure 2(c), TeDS utilizes Hamilton
operator to perform rotation operations on Qrτsp via Q∆

τspr,
obtaining the representation of synchronic relations:

M = Qrτsp ⊗Q∆
τspr, (4)

where ⊗ is Hamilton operator. Meanwhile, we normalize
M to the unit quaternion M∆. Then, as shown in Fig-
ure 2(f), we rotate the head entity Qs by doing Hamilton
operator between it and M∆:

Qsp = Qs ⊗ M∆. (5)

Diachronic perception (DP). Firstly, as shown in Figure
2(d), we iterate through all timestamps, sequentially map-
ping each time point to an angle and converting it to scalar
component of a quaternion using continuous trigonometric
functions, thereby constructing diachronic timestamps:

Wdτn = cos(
πTn

2T
) + sin(

πTn

2T
)e′i

+ sin(
πTn

2T
)f ′j+ sin(

πTn

2T
)g′k,

(6)

where (e′, f ′, g′) represents the unit vector of the rotation
axis, e′, f ′, g′ ∈ Rk; Tn ∈ {1, ...,T} denotes time point.
The benefits of above operation are twofold: 1) TeDS can
interpret timestamps continuously, ”smoothly” capturing
time shifts rather than treating each timestamp as discrete. 2)
Trigonometric functions provide smooth encoding, enabling
TeDS to effectively generalize between frequent and sparse
events. Secondly, as shown in Figure 2(e), we use Hamilton
operator with the diachronic timestamp Wdτn to rotate the
relation quaternion Rr into the diachronic relation Rrτn :

Rrτn = Wdτn ⊗Rr. (7)

Thirdly, we normalize Rrτn to the unit quaternion R∆
rτn .

Then, as shown in Figure 2(f), we rotate the head entity Qs

by doing Hamilton operator between it and R∆
rτn :

Qdp = Qs ⊗R∆
rτn . (8)

4.1. Scoring function and Loss function

Scoring function. As shown in Figure 2(f), we summarize
the scoring function of TeDS as follows:

φ(s, r, o, τ) = (Qsp +Qdp) ·Qo, (9)

where · is inner product. For the various forms of times-
tamps, TeDS handles the details as follows: For facts with
complete timestamp information (s, r, o, [τb, τe]), TeDS
splits quadruple into two instances: (s, r, o, τb) and (s, r, o,
τe). The score is computed as the average of the two:

φ(s, r, o, [τb, τe]) = φ(s, r, o, τb) + φ(s, r, o, τe). (10)

For facts with missing timestamp information, i.e., either (s,
r, o, [τb,−]) or (s, r, o, [−, τe]), the score is taken directly
from known timestamp:

φ(s, r, o, [τb,−]) = φ(s, r, o, τb),

φ(s, r, o, [−, τe]) = φ(s, r, o, τe).
(11)

Optimization. TKGs can be regarded as fourth-order ten-
sors, so we can use tensor kernel norm regularization to
enhance TeDS. Thus, we propose following regularization:

La = ∥Qs∥44 + ∥Rr∥44 + ∥Wτ∥44 + ∥Qo∥44, (12)

where ∥ · ∥44 denotes nuclear 4-norm. Furthermore, for
time constraints, temporal regularizer are commonly used
to smooth the representation of adjacent timestamps. Thus,
we use the following linear temporal regularizer:

Lb =

N∑
i=1

∥Wτi+1−Wτi
−Wb

∥44, (13)

where Wb is a linear time-constrained bias, initialized ran-
domly and can be learned during training. The linear time
constraint can ensure that timestamps of adjacent times are
close to each other, and timestamps of distant times are sig-
nificantly different, ensuring the smoothness of time. And
deviation term denotes sudden change of adjacent times.
Loss function. Following (Trouillon et al., 2016), we regard
TKGC as a multi-classification task, use the cross-entropy
loss function:

L =
∑

(s,r,o,τ)∈Π∪Π′

(−log
exp (φ(s, r, o, τ))∑

s′∈Π′ exp (φ(s′, r, o, τ))

− log
exp (φ(s, r, o, τ))∑

o′∈Π′ exp (φ(s, r, o′, τ))
)

+ λaLa + λbLb,
(14)

where Π
′

is sampled from the set of unobserved quadruples
Π−. λa is the regularization weight and λb is the temporal
regularization weight.
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5. Experiments and Results
5.1. Datasets

We select six common TKGC benchmarks, detailed in Ta-
ble 1. ICEWS14, ICEWS05-15 and ICEWS18 are sub-
sets of Integrated Crisis Early Warning System (ICEWS).
ICEWS acquires and processes millions of data from vari-
ous sources to aid in monitoring and responding to global
events (e.g., (Japan, Accuse, Korea, 2014-3-3)). ICEWS14,
ICEWS05-15 and ICEWS18 separately collect events from
2014-1-1 to 2014-12-31, 2005-1-1 to 2015-12-31, and 2018-
1-1 to 2018-12-31. YAGO11k and Wikidata12k (Dasgupta
et al., 2018) are subsets of YAGO3 and Wikidata, respec-
tively. YAGO3 (Mahdisoltani et al., 2015) and Wikidata
(Erxleben et al., 2014) are two TKGs where time anno-
tations are represented in various forms, i.e., time points
like (Allan, BornIn, Launceston, [2005-1-3, 2005-1-3]), be-
ginning or end time like (Biden, Presidency, POTUS,
[2021-1-2,####-##-##]), and time intervals like (Var-
ick, Mayor, New York, [789-3-2, 801-3-2]). GDELT (Global
Database of Events, Language, and Tone) (Trivedi et al.,
2017) is a global event database that offers a substantial col-
lection of worldwide facts from 2015-4-1 to 2016-3-31. It
encompasses various events, primarily focusing on political,
social, economic, and environmental occurrences.

5.2. Experimental Setup

We implement TeDS by running PyTorch. We adopt the
Adagrad optimizer to train TeDS. The batch size is fixed
as 1000. The regularization weights λa and λb are tuned in
a range of {0, ..., 0.0025, 0.005, 0.0075, 0.01, ..., 0.1}. We
find the following combinations of regularization weights λa

and λb to give the best results: (0.0075, 0.01) for ICEWS14;
(0.0025, 0.1) for ICEWS05-15; (0.1, 0.01) for ICEWS18;
(0.025, 0.001) for YAGO11k; (0.025, 0.0025) for Wiki-
data12k; (0.00001, 0.01) for GDELT. The optimal embed-
ding dimension is k = 100 in all benchmarks.

Table 1. Statistics for the various experimental datasets.

ICEWS14 ICEWS05-15 ICEWS18

Entities 6,869 10,488 23,033
Relations 230 251 256
Facts 90,730 461,329 468,558
Period(year) 2014 2005-2015 2018

YAGO11k Wikidata12k GDELT

Entities 10,623 12,544 500
Relations 10 24 20
Facts 20,507 40,621 3,419,607
Period(year) 1513-2017 1526-2020 2015-2016

5.3. Evaluation Protocol and Baselines

We made the following preparations to evaluate TeDS: 1)
Adopting commonly metrics to evaluate models more
accurately. Mean reciprocal rank (MRR) calculates the
average score of the reciprocal ranks of the relevant KGs
for a given query, where a higher MRR means better per-
formance. Hit@n represents the percentage of the top n,
where n ∈ {1, 3, 10}, where a higher Hit@n indicates bet-
ter performance. 2) Selecting a series of state-of-the-art
(SOTA) baeslines. We adopt TTransE (2016), TA-DistMult
(2018), TeMP-SA (2020), CyGNet (2021), RE-GCN (2019),
TNTComplEx (2020), ChronoR (2021), TeLM (2021), Ro-
tateQVS (2022), BTDG (2022), TBDRI (2023), CEC-BD
(2024), TPComplEx (2024), Joint-MTComplEx (2024),
CDRGN-SDE (2024), MvTuckER (2024), DLGR (2024),
ODETKGE (2024), SANe (2024), MTE (2025), MDRQS
(2025), Neo-TKGC (2025), and GLARGCN (2025).

5.4. Main Results

Table 2 and 3 list results of TeDS and all baseline models on
all datasets, where the optimal performance is bolded. Over-
all, TeDS outperforms all baseline models across datasets.
Compared with CEC-BD (tensor family), TeDS increases
by 27.4 MRR points on ICEWS14, 19.0 MRR points on
ICEWS05-15, 17.3 MRR points on ICEWS18, 56.1 MRR
points on YAGO11k, 52.2 MRR points on Wikidata12k, and
41.9 MRR points on GDELT. Compared with TPComplEx
(complex family), TeDS increases by 0.9 MRR points on
ICEWS14; 2.8 MRR points on ICEWS05-15; 30.8 MRR
points on GDELT. Compared with SANe (deep learning
family), TeDS increases by 26.9 MRR points on ICEWS14,
19.0 MRR points on ICEWS05-15, 52.3 MRR points on
YAGO11k, 52.2 MRR points on Wikidata12k.

ICEWS14, ICEWS18 and ICEWS05-15 all belong to
ICEWS and thus share similar data types. Compared to
its performance on ICEWS14, TeDS shows stronger per-
formance on ICEWS05-15 and ICEWS18. Compared to
ICEWS14, ICEWS05-15 covers over 10 times the time
span, making its data more reliant on temporal information.
This supports TeDS’s capability to manage long time series.
Given the significant improvement of TeDS on ICEWS18
compared to ICEWS14 and ICEWS05-15, we visualize dis-
tribution of facts over time in ICEWS18 and ICEWS, as
shown in Figure 3. We find that, at same temporal density,
the number of facts in ICEWS18 is approximately 10 times
that of ICEWS05-15. This significantly increases the infor-
mation within the same temporal context, making TKGC
more difficult. TeDS addresses this with SP, achieving top
performance. Besides, compared to ICEWS, we find that
TeDS demonstrates the greatest advantage over SOTA mod-
els on YAGO11k and Wikidata12k. To further explore the
performance advantages of TeDS, we visualize distribution
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Table 2. Experimental results on ICEWS14, ICEWS05-15, and ICEWS18. All results are taken from the original papers. Dashes: results
are not reported in the responding literature. The best results among all models are written bold.

ICEWS14 ICEWS05-15 ICEWS18
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TTransE 25.5 7.4 - 60.1 27.1 8.4 - 61.6 - - - -
TNTComplEx 60.7 51.9 65.9 77.2 66.6 58.3 71.8 81.7 - - - -
TeMP-SA 60.7 48.4 68.4 84.0 68.0 55.3 76.9 91.3 - - - -
TeLM 62.5 54.5 67.3 77.4 67.8 59.9 72.8 82.3 - - - -
RE-NET 35.8 26.0 40.1 54.9 36.9 26.2 41.9 57.6 26.2 16.4 29.9 44.4
RE-GCN 62.5 54.5 67.3 77.4 67.8 59.9 72.8 82.3 27.5 17.8 31.2 46.6
RotateQVS 59.1 50.7 64.2 75.4 63.3 52.9 70.9 81.3 - - - -
TBDRI 65.2 55.2 69.7 78.5 70.9 64.6 75.7 82.1 - - - -
BTDG 60.1 51.6 65.6 75.3 62.7 53.4 68.7 79.8 - - - -
TPComplEx 89.8 86.5 92.5 95.4 84.5 79.4 88.2 93.4 - - - -
ODETKGE 31.1 18.4 30.2 48.2 44.0 35.4 49.4 65.8 31.5 21.0 34.3 49.3
MvTuckER 65.4 57.7 69.9 79.7 69.8 61.8 74.7 84.1 - - - -
DLGR 46.7 36.6 51.6 - - - - - 35.4 25.1 40.0 -
CDRGN-SDE 49.2 36.5 48.4 66.9 52.3 39.8 62.5 75.4 - - - -
Joint-MTComplEx 63.6 55.6 68.1 78.1 68.3 60.1 73.6 83.2 - - - -
CEC-BD 63.3 55.4 68.0 77.7 68.1 60.2 73.0 82.5 28.5 18.8 32.3 47.7
SANe 63.8 55.8 68.8 78.2 68.3 60.5 73.4 82.3 - - - -
MTE 73.8 62.5 77.5 86.8 80.3 71.2 85.4 93.2 - - - -
MDRQS 62.5 54.4 67.3 77.5 67.0 59.1 71.6 81.5 - - - -
Neo-TKGC 64.2 53.7 70.9 83.6 72.2 61.7 79.4 90.8 - - - -
GLARGCN 67.6 62.1 71.0 77.6 77.5 72.7 80.8 85.9 - - - -

TeDS (ours) 90.7 90.6 90.8 91.0 87.3 85.8 88.3 90.4 45.8 45.6 46.9 48.2

Table 3. Experimental results on YAGO11k and Wikidata12k. All results are taken from the original papers. Dashes: results are not
reported in the responding literature. The best results among all models are written bold.

YAGO11k Wikidata12k GDELT
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TTransE 10.8 2.0 15.0 25.1 17.2 9.6 18.4 32.9 11.5 0.0 16.0 31.8
HyTE 13.6 3.3 - 29.8 25.3 14.7 - 48.3 11.8 0.0 16.5 32.6
TA-DistMult 15.5 9.8 - 26.7 23.0 13.0 - 46.1 20.6 12.4 21.9 36.5
TComplEx 18.5 12.7 18.3 30.7 33.1 23.3 35.7 53.9 29.8 21.3 32.3 46.4
TeLM 19.1 12.9 19.4 32.1 33.2 23.1 36.0 54.2 - - - -
RotateQVS 18.9 12.4 19.9 32.3 - - - - 27.0 17.5 29.3 45.8
CEC-BD 21.2 15.4 21.5 33.9 33.9 24.1 36.9 54.3 29.6 20.1 33.4 46.5
TPComplEx - - - - - - - - 40.7 32.9 43.1 55.9
CDRGN-SDE - - - - - - - - 22.0 12.4 20.9 34.5
MvTuckER - - - - - - - - 54.9 47.7 58.5 68.2
Joint-MTComplEx 22.2 15.8 22.9 35.6 36.0 27.0 39.3 54.1 - - - -
SANe 25.0 18.0 26.6 40.1 43.2 33.1 48.3 64.0 30.1 21.2 32.6 47.6
MTE - - - - - - - - 39.1 32.2 40.9 52.2
MDRQS 27.1 19.9 29.6 40.4 - - - - 42.4 35.0 45.1 56.3
Neo-TKGC - - - - - - - - 33.7 27.0 37.0 51.3
GLARGCN - - - - 37.3 33.8 38.5 42.3 57.1 48.4 61.3 73.0

TeDS (ours) 77.3 76.9 78.1 78.4 95.4 95.5 95.7 95.8 71.5 69.9 72.2 74.4

of facts in Wikidata12k over time, as shown in Figure 3. We
find that facts in Wikidata12k span a long temporal range
and exhibit a pronounced long-tail distribution over time,
which limits the performance of existing models. TeDS
leverages the smooth embeddings provided by DP to effec-
tively handle both short and long temporal spans, enabling

it to capture diverse temporal patterns and achieve perfor-
mance improvements. For a detailed analysis, please refer
to ANALYSIS.
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Figure 3. The distribution of facts over time in Wikidata12k,
GDELT and ICEWS.

6. ANALYSIS
We perform ablation experiments on three benchmarks to
understand how each perceptron in TeDS handles different
types of facts and their benefits. Specifically, we remove
the SP in TeDS, reducing it to DP. Next, we remove the DP,
reducing TeDS to SP. Besides, we degrade SP into a regular
quaternion model named HTM, meaning that the mixing of
relations and time is no longer performed.

6.1. Ablation study on SP and DP

Table 4 lists specific results of SP and DP on ICEWS14,
Wikidata12k, and YAGO11k. SP and DP achieve competi-
tive results compared to SOTA models across all datasets.
To further explore mechanisms of different perceptrons, we
first observe the distribution of same relation between enti-
ties over a long time span, which helps to understand DP’s
performance. Thus, we extract relation Consult between
Barack Obama and Benjamin Netanyahu during 2014 (i.e.,
(Barack Obama, Consult, Benjamin Netanyahu, 2014-*-*))
and visualize the parameters of temporal relation, as shown
in Figure 4. Compared to SP and HTM, TeDS enables aggre-
gation of Consult within each specific month while ensuring
that Consult from adjacent months remains close together
rather than being randomly distributed. Compared to SP and
HTM, TeDS is better at aggregating Consult within same
month. Besides, TeDS ensures that Consult from adjacent
months is kept close together rather than being randomly
distributed. More specifically, compared to HTM, SP is
better at aggregating Consult within same month. Unlike
TeDS, SP is unable to tightly group Consult from adjacent
months, although it can distinguish Consult from different
months to some extent. Meanwhile, compared to existing
baseline model TeLM, TeDS is able to aggregate data from
different months as much as possible while retaining the
ability to classify Consult relations across months, thereby
clearly delineating the boundaries between adjacent months.
It is undeniable that, compared to SP and HTM, TeLM

exhibits a slight advantage in classifying Consult across
months, which may be attributed to the assistance of tempo-
ral embedding regularization. The above experiments and
analysis further demonstrate that TeDS is better at modeling
the diachronicity of facts.

（ Barack Obama, Consult,
Benjamin Netanyahu, 2014-**-**）
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Figure 4. Visualizations of temporal relation embeddings learned
from different months on ICEWS14, where different colored dots
represent the Consult in different months.

Next, we observe distribution of various relations between
entities within a specific temporal context to better under-
stand SP’s performance. Thus, we extract various relations
between Barack Obama and Benjamin Netanyahu from
2014-1 to 2014-6 and visualize the parameters of tempo-
ral relation, as shown in Figure 5. Compared to HTM and
TeLM, TeDS and SP are better at distinguishing different
relations. Moreover, we find that TeDS outperforms SP
in distinguishing identical relations, rather than clustering
them entirely together. In fact, even within the same month,
identical relations can exhibit varied trends depending on
the context. Thus, we believe it is crucial to cluster differ-
ent relations while preserving the unique characteristics of
identical relations in specific contexts.

We find that SP outperforms DP across various datasets. To
explain this phenomenon, we visualize relation educated at
among all entities using Wikidata12k. As shown in Figure
6, most facts are concentrated within a specific temporal
context (1850 to 2000). Clearly, this aligns with the argu-
ment that SP is better at capturing the synchronicity of facts.
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Table 4. Experimental results of ablation study. The best results among all models are written bold.

ICEWS14 Wikidata12k YAGO11k
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

HTM 56.4 47.8 58.3 67.5 30.2 21.4 33.0 44.7 28.8 17.8 30.1 44.3
SP 79.6 76.8 80.3 83.7 67.9 59.9 72.6 83.6 48.0 38.8 53.7 64.8
DP 71.1 68.4 72.1 74.6 62.8 55.3 64.6 76.3 40.1 31.5 43.6 53.5

TeDS 90.7 90.6 90.8 91.0 95.4 95.5 95.7 95.8 77.3 76.9 78.1 78.4
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Figure 5. Visualizations of the temporal relation embeddings
learned within specific temporal contexts from ICEWS14, where
different colored dots represent different relations.

6.2. Strong constraints analysis of quadruples

We extract constrained quadruples from ICEWS14 and
ICEWS05-15 to simulate synchronic and diachronic sce-
narios, as shown in Figure 7. Due to strong constraints of
quadruples, we conduct tests using a validation set. For syn-
chronicity testing, we select facts involving Barack Obama,
Angela Merkel, and Russia from ICEWS14 between 2014-
01-01 and 2014-01-15. Empirically, TeDS gets most sig-
nificant results. Moreover, SP consistently outperforms DP
and HTM, further validating that SP excels in handling syn-
chronic scenarios. For diachronicity testing, we select facts
involving Barack Obama, Angela Merkel, Iran, Benjamin,
and Japan from ICEWS14 and ICEWS05-15 across all time
spans. Empirically, TeDS gets most significant performance.
Besides, DP consistently outperforms SP and HTM, further
validating that DP excels in handling diachronic scenarios.
Finally, SP and DP consistently outperform HTM, indicat-
ing that SP and DP have a positive impact on both diachronic
and synchronic scenarios. This aligns with our motivation:
the two perspectives are not entirely independent but often
mutually depend on and serve as foundations for each other.
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Figure 6. The visualization of the relation educated at between
entities comes from Wikidata12k, where vertical axis represents
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rectangles indicates the duration of relation.
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Figure 7. Evaluation results on different quadruples in test set.
Where [2014-1-1, 2014-1-15] represents the years 2014-1-1 to
2014-1-15; [2014-*-*] stands for the entire year of 2014;
[2005-*-*, 2015-*-*] represents the years 2005 to 2015; other *
represents the rest elements of quadruples in test set that satisfy
the current constraints.

6.3. Analysis of the robustness and portability of TeDS

We randomly remove 10% and 20% of training set of
ICEWS14 (named ICEWS14 10%SPARSE and ICEWS14
20%SPARSE) to assess robustness of TeDS under sparse
data conditions, as shown in Figure 8(a) and (b). Empiri-
cally, TeDS remains highly competitive compared to HTM
on ICEWS14 10% SPARSE and ICEWS14 20% SPARSE,
which validates robustness of TeDS. To assess the porta-
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bility of TeDS framework, we apply its overall concept to
complex embeddings and refer to this extension as CDS.
Furthermore, we simplify CDS into a standard complex-
valued model named CTM. Besides, we extend the overall
concept of TeDS to dual quaternion space, resulting in a
variant named DTeDS. The specific results are shown in
Figure 8(c) and (d). Experimental results show that TeDS,
CDS, and DTeDS outperform HTM and CTM in terms of
performance, validating the applicability of our framework.
Meanwhile, quaternion model surpasses complex model
further confirming superiority of Hamilton operator over
Hermitian operator. Finally, DTeDS achieves a slight perfor-
mance improvement, which we attribute to dual quaternion’s
greater sensitivity to multi-relational patterns and its richer
representational capacity. This will also be a key focus of
our future research. The above experiments and analysis
further support the portability of TeDS framework.
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Figure 8. Analysis of the robustness and portability of TeDS

6.4. Influence of embedding dimensionality

Figure 9 illustrates MRR performance of TeLM, EHPR, and
TeDS on the ICEWS14 dataset across different embedding
dimensions k = {20, 50, 75, 100, 200, 500, 1000, 2000}.
Compared to TeLM and EHPR, TeDS consistently achieves
significantly better performance at all embedding dimen-
sions and reaches its optimal performance at k = 100. In
contrast, TeLM and EHPR require higher embedding di-
mensions to attain their best results. This demonstrates that
TeDS not only maintains high accuracy with greater parame-
ter efficiency but also offers more substantial computational
advantages as the scale of KGs increases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 50 75 100 200 500 1000 2000

TeLM EHPR TeDS
RANK

M
R
R

Figure 9. Results of TeDS with different embedding dimensions
on ICEWS14.

6.5. Training Time and Standard Deviation

We use NVIDIA GeForce RTX 3090 to reproduce the train-
ing time for the optimal performance of TComplEx, TeLM,
CDS and TeDS on YAGO11k. The specific results are
shown in Figure 10(a). Specifically, compared to the SOTA
deep learning model (SANe, which takes about 16 hours
on YAGO11k), our computation is efficient and control-
lable. Finally, Figure 10(b) shows the standard deviations
for the MRR computed over 5 runs of TeDS on all datasets,
demonstrating the stability of TeDS results.
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Figure 10. Analysis of the robustness and portability of TeDS.

7. Conclusion
This work examines how facts behave over time, highlight-
ing two perspectives: synchronicity and diachronicity. We
then use quaternion representation to design two percep-
tions, integrating them into a unified framework to handle
different temporal perspectives. Visualization techniques
are employed to test and confirm TeDS’s effectiveness in
various temporal scenarios. Overall, the analysis and sum-
marization of complex real-world patterns, including the
periodicity of facts, remain challenging research problems.
In the future, we will continue to focus on various complex
scenarios involving temporal facts, such as periodic patterns
and complex forms of temporal expressions, and aim to
develop more interpretable and context-adaptive models to
achieve higher-quality knowledge representations.
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B. Appendix
B.1. HTM for TKGC

This section primarily introduces the regular quaternion model, HTM, which we proposed in ANALYSIS. For HTM,
the head entity s and the tail entity o correspond to Qs = { as + esi + fsj + gsk : as, es, fs, gs ∈ Rk } and Qo =
{ ao + eoi + foj + gok : ao, eo, fo, go ∈ Rk }, respectively, while the relation r and timestamp τ correspond to Rr =
{ ar + eri+ frj+ grk : ar, er, fr, gr ∈ Rk } and Wτ = { aτ + eτ i + fτ j + gτk : aτ , eτ , fτ , gτ ∈ Rk }, respectively. The
specifics are as follows:
We first normalize timestamp Wτ to the unit quaternion W∆

τ by dividing Wτ by its norm to eliminate scaling effects:

W∆
τ (a′, e′, f ′, g′) =

Wτ

|Wτ |
=

aτ + eτ i+ fτ j+ gτk√
a2τ + e2τ + f2

τ + g2τ
. (15)

Secondly, we rotate relation Rr by doing Hamilton product between it and W∆
τ to get a representation of temporal relation:

Rrτ = Rr ⊗W∆
τ = arτ + erτ i+ frτ j+ grτk, (16)

where ⊗ is Hamilton product. Next, we normalize Rrτ to the unit quaternion R∆
rτ :

R∆
rτ (a

′′, e′′, f ′′, g′′) =
Rrτ

|Rrτ |
=

arτ + erτ i+ frτ j+ grτk√
a2rτ + e2rτ + f2

rτ + g2rτ
. (17)

We then define an intermediate variable Qsrτ as the result of Hamilton product between Qs and R∆
rτ :

Qsrτ = Qs ⊗R∆
rτ = asrτ + esrτ i+ fsrτ j+ gsrτk. (18)

Finally, the scoring function of HTM is defined by the inner product:

φ(s, r, o, τ)HTM = Qsrτ ·Qo. (19)

B.2. CTM for TKGC

This section follows the principles upon which we built CTM, we construct a model named CTM based on complex
embeddings. For CTM, head entity s and tail entity o correspond to Cs = { as + esi : as, es ∈ Rk } and Co = { ao + eoi :
ao, eo ∈ Rk }, respectively, while relation r and timestamp τ correspond to Cr = { ar + eri : ar, er ∈ Rk } and Cτ = { aτ
+ eτ i : aτ , eτ ∈ Rk }, respectively. The specific steps are as follows:
We first normalize timestamp Cτ to C∆

τ to eliminate the scaling effect by dividing Cτ by its norm:

C∆
τ =

Cτ

|Cτ |
=

aτ + eτ i√
a2τ + e2τ

. (20)

Secondly, we get the temporal relation Crτ by rotating Cr through the product with C∆
τ :

Crτ = Cr • C∆
τ = arτ + erτ i, (21)

Next, we define the Csrτ as the result of product between Cs and C∆
rτ :

Csrτ = Cs • C∆
rτ = asrτ + esrτ i, (22)

where • is complex product. Finally, the scoring function of CTM is defined by inner product:

φ(s, r, o, τ)CTM = Csrτ · Co. (23)
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B.3. CDS for TKGC

This section follows the overall concept of TeDS applied to complex embeddings, named CDS. For CDS, head entity
s, relation r, and tail entity o correspond to Cs = { as + esi : as, es ∈ Rk }, Cr = { ar + eri : ar, er ∈ Rk }, and
Co = { ao + eoi : ao, eo ∈ Rk }, respectively. Timestamp τ is divided into diachronic timestamp dτ and synchronic
timestamp sτ , corresponding to Cdτ and Csτ , respectively. The specific steps are as follows:
Synchronic perception (SP). Firstly, to achieve a thorough integration of temporal and relational information, SP performs
a composite reorganization of synchronic timestamp Csτ = asτ + esτ i and relation Cr. This results in the creation of two
complex numbers: Crτsp = ar + esτ i and Cτspr = asτ + eri, where asτ , esτ ∈ Rk. Secondly, we normalize Cτspr to the
unit complex Q∆

τspr by dividing Qτspr by its norm to eliminate scaling effects:

C∆
τspr =

Cτspr∣∣Cτspr

∣∣ = aτ + eτ i√
a2τ + e2τ

. (24)

CDS utilizes complex product to perform rotation operations on Crτsp via C∆
τspr, obtaining representation of synchronic

relations:
Mc = Crτsp • C∆

τspr, (25)

where • is complex product. Meanwhile, we normalize Mc to the unit complex M∆
c . We then rotate head entity Cs by

doing complex product between it and M∆
c :

Csp = Cs • M∆. (26)

Diachronic perception (DP). Firstly, we iterate through all timestamps, sequentially mapping each time point to an angle
and converting it to the scalar component of a complex number using trigonometric functions to construct diachronic
timestamps:

Cdτ = cos(
πTn

2T
) + sin(

πTn

2T
)e′i, (27)

where e′ ∈ Rk; Tn ∈ {1, ...,T} denotes time point. Secondly, we use complex product with the diachronic timestamp Cτn

to rotate relation Cr into diachronic relation Crτn :

Crτn = Cτn • Cr. (28)

Thirdly, we normalize Crτn to unit complex C∆
rτn . We then rotate the head entity Cs by doing complex product between it

and C∆
rτn :

Cdp = Cs • C∆
rτn . (29)

Finally, we summarize the scoring function of CDS as follows:

φ(s, r, o, τ)CDS = (Csp + Cdp) · Co, (30)

where · is inner product.

B.4. Analysis of TeDS under unbalanced time distribution

Figure 11 extracts facts between Barack Obama, Angela Merkel, and Russia under different time spans from ICEWS14.
Intuitively, DP and TeDS exhibit improved performance as the time span increases, while SP and HTM demonstrate a
slight decline in performance with longer time spans. These results further support the notion that DP excels at capturing
diachronic scenarios.

Figure 12 extracts different months from ICEWS14 to test temporal non-stationarity and synchronic scenarios. Intuitively,
TeDS achieves significant and stable performance across all months, while DP consistently delivers the second-best results
in different months. These results demonstrate that TeDS and DP excel at learning synchronic scenarios. Additionally, SP
maintains good overall performance but experiences slight declines as diachronic scenarios are segmented. Overall, both DP
and SP demonstrate stable and robust performance on strongly constrained datasets across different scenarios. This further
supports our motivation: the two scenarios are not entirely independent but demonstrate mutual dependence and serve as
foundations for each other.
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Figure 11. MRR performance comparison under different time spans on ICEWS14. Where [01-01, 01-15] represents the years 2014-1-1
to 2014-1-15; [01-01, 03-31] represents the years 2014-1-1 to 2014-3-31; [01-01, 09-30] represents the years 2014-1-1 to 2014-9-30.

0

10

20

30

40

50

60

70

80

90

100

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dce.

DP SP HTM TeDS

Figure 12. Comparison of MRR Performance Indicators for HTM, SP, DP, and TeDS Based on Different Monthly Data from ICEWS14.

Furthermore, we find that TeDS outperforms TPComplEx on datasets with longer time spans, which we attribute to its
focus on synchronicity and diachronicity. In contrast, TPComplEx is limited to a synchronic perspective, overlooking the
impact of facts over time. To validate our hypothesis, we test TeDS and TPComplEx on a long-time-span constrained dataset
concerning Obama and Japan, as shown in Figure 13. The results consistently show that TeDS outperforms TPComplEx,
further supporting our hypothesis.

B.5. Performance comparison between TPComplEx and TeDS

Compared to TPComplEx, TeDS demonstrates significantly better performance in MRR and Hit@1 but slightly lower
performance in Hit@3 and Hit@10 on ICEWS14. On ICEWS05-15, TeDS shows significantly better performance in
MRR, Hit@1, and Hit@3, while slightly underperforming in Hit@10. Similarly, on ICEWS18, TeDS achieves significantly
better performance in MRR, Hit@1, and Hit@3, but its performance in Hit@10 is slightly lower. Overall, TeDS performs
comparably to TPComplEx on ICEWS series datasets. The key difference lies in the fact that TeDS’s performance primarily
benefits from its exploration of synchronicity and diachronicity in temporal properties, with a focus on selecting the unique
optimal answer. In contrast, TPComplEx’s performance is mainly derived from its study of simultaneity, aggregation, and
associativity in temporal properties, emphasizing the aggregation and simultaneous prediction of multiple facts, thereby
focusing more on correctly predicting all possible correct answers within the ranking range. In fact, balancing the selection
of the optimal answer while accounting for multiple correct answers within the ranking range is an intriguing research topic.

For a comprehensive comparison, we reproduce TPComplEx (selecting best result from rank ∈ {1000, 1500, 2000}) on
Wikidata12k, YAGO11k, and ICEWS18. Table 5 and 6 show that TeDS outperforms TPComplEx across all datasets, with
significant improvements on Wikidata12k and YAGO11k, which we attribute to TeDS’s modeling of temporal scenarios.

Finally, we perform a computational complexity comparison between TPComplEx and TeDS. Table 7 shows TeDS’s superior
training speed: 43% faster per epoch on Wikidata12k (5.63s vs. 9.87s) and 35% faster on YAGO11k (2.82s vs. 4.33s)
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Figure 13. Performance comparison of the strongly constrained test between Obama and Japan on ICEWS05-15.

Table 5. Experimental results on YAGO11k, Wikidata12k, and GDELT. All results are taken from the original papers. Dashes: results are
not reported in the responding literature. The best results among all models are written bold.

YAGO11k Wikidata12k GDELT
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TPComplEx 38.5 29.4 42.6 58.6 42.1 31.5 45.7 66.1 40.7 32.9 43.1 55.9

CDS (ours) 58.1 57.4 58.7 60.8 70.7 70.3 71.9 74.1 58.6 56.1 59.0 61.5
TeDS (ours) 77.3 76.9 78.1 78.4 95.4 95.5 95.7 95.8 71.5 69.9 72.2 74.4
DTeDS (ours) 81.0 80.3 81.1 81.8 95.7 94.6 95.4 96.0 85.6 82.8 86.4 90.0

compared to TPComplEx. Crucially, these speedups are achieved alongside dramatic parameter reductions (e.g., 90% fewer
parameters on YAGO11k). The marginally longer runtime on ICEWS05-15 (30.75s vs. 22.06s) is justified by TeDS using
only 27% of baseline’s parameters—a favorable tradeoff for memory-constrained applications. Table 8 reveals TeDS’s
most striking advantage: achieving superior performance with just 20.64M parameters versus TPComplEx’s 201.2M on
Wikidata12k—a 10× improvement in parameter efficiency.

The above analysis demonstrates that TeDS is particularly well-suited for large-scale TKG applications, maintaining
competitive performance while significantly reducing memory overhead and computational resource requirements

B.6. Hyperparameter analysis

Figure 14 illustrates the complete hyperparameter configuration of TeDS, where λa is the regularization weight and λb is the
temporal regularization weight. Our observations indicate that λa impacts results more than λb.

Moreover, we additionally plot the loss convergence curves of TeDS on ICEWS14 and ICEWS05-15, which demonstrate its
stable and efficient optimization process.

B.7. TeDS can model the symmetry/antisymmetry pattern.

Theorem B.1. Relation r is (anti)symmetric if ∀x, y, τ

(x, r, y, τ) ⇒ (y, r, x, τ), (x, r, y, τ) ⇒ ¬(y, r, x, τ). (31)

A fact with such form is a (anti)symmetric pattern.

The flexibility and representational power of quaternion enable us to model various relation patterns at ease.

Proof. For symmetric pattern, if r(s, o, τ) and r(o, s, τ) hold, we have:

Qs ⊗ (R∆
rτn + M∆) ·Qo = Qo ⊗ (R∆

rτn + M∆) ·Qs. (32)
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Table 6. Experimental results on ICEWS14, ICEWS05-15, and ICEWS18. All results are taken from the original papers. Dashes: results
are not reported in the responding literature. The best results among all models are written bold.

ICEWS14 ICEWS05-15 ICEWS18
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TPComplEx (2024) 89.8 86.5 92.5 95.4 84.5 79.4 88.2 93.4 34.2 23.7 31.6 45.3

CDS (ours) 83.1 82.4 83.7 85.8 75.4 69.5 74.8 78.1 32.5 27.1 35.5 47.1
TeDS (ours) 90.7 90.6 90.8 91.0 87.3 85.8 88.3 90.4 45.8 45.6 46.9 48.2
DTeDS (ours) 92.1 91.4 92.1 92.6 95.4 90.1 91.0 92.9 56.6 55.4 58.8 60.6

Table 7. Training Time Comparison: TeDS vs. TPComplEx (seconds per epoch).

Model ICEWS14 ICEWS05-15 Wikidata12k YAGO11k

TPComplEx 5.56 22.06 9.87 4.33
TeDS(ours) 6.30 30.75 5.63 2.82

Table 8. Parameter Count Comparison: TeDS vs. TPComplEx.

Model ICEWS14 ICEWS05-15 Wikidata12k YAGO11k

TPComplEx 92,362,736 75,228,488 201,260,000 170,140,000
TeDS(ours) 12,065,600 20,396,800 20,643,200 17,340,000

The symmetry of TeDS can be demonstrated by setting the imaginary part of R∆
rτn + M∆ to 0. Since Rrτn = Wdτn ⊗Rr

and M = Qrτsp ⊗Q∆
τspr, according to Hamilton product rule, both Rr = 0 and R∆

rτ = 0 can be achieved by setting the
imaginary parts of Rr and Q∆

τspr to 0.

For antisymmetric pattern, if r(s, o, τ) and ¬r(o, s, τ) hold, we have:

Qs ⊗ (R∆
rτn + M∆) ·Qo ̸= Qo ⊗ (R∆

rτn + M∆) ·Qs. (33)

The antisymmetry of TeDS can be demonstrated by ensuring that the imaginary parts of R∆
rτn + M∆ are nonzero.

B.8. Proof of Lemma 2

Theorem B.2. Relation r is inverse to relation r−1 if ∀x, y, τ

(x, r, y, τ) ⇒ (y, r−1, x, τ). (34)

A fact with such form is a inverse pattern.

Proof. For inverse pattern, if r1(s, o, τ) and r2(o, s, τ) hold, we have:

Qs ⊗ (R∆
r1τn + M∆) ·Qo = Qo ⊗ (R∆

r2τn + M∆) ·Qs. (35)

For inverse property of TeDS, we need to utilize the conjugation of quaternions to prove the case since conjugation of the
quaternion is its own inverse. Thus, formula 35 can be rewritten in the following form:

Qs ⊗ (R∆
rτn + M∆) ·Qo = Qo ⊗ (R∆

rτn + M∆) ·Qs

⇐⇒ Qs ⊗R∆
rτn ·Qo +Qs ⊗ M∆ ·Qo = Qo ⊗R∆

rτn ·Qs +Qo ⊗ M∆ ·Qs

=⇒ Qs ⊗R∆
rτn ·Qo = Qo ⊗R∆

rτn ·Qs;Qs ⊗ M∆ ·Qo = Qo ⊗ M∆ ·Qs

(36)
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Figure 14. Performance of MRR with different λa and λb on ICEWS14.

0
1
2
3
4
5
6
7
8
9
10

0 10 20 30 40 50 60 70 80 90 100

L
os
s

Epoch

ICEWS14

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

L
os
s

Epoch

ICEWS05-15

Figure 15. Convergence curves of TeDS on ICEWS14 and ICEWS05-15.

To prove Qs ⊗ M∆ ·Qo = Qo ⊗ M∆ ·Qs, we first have:

M = Qrτsp ⊗Qτspr =(arasτ − eresτ − frfsτ − gsτgr)+

(aresτ + erasτ + frgsτ − gsτfr)i+

(arfsτ − ergsτ + frasτ + gsτer)j+

(argsτ + erfsτ − fresτ + gsτar)k.

(37)

We let arsτ = arasτ−eresτ−fsfsτ−gsτgr, ersτ = aresτ+erasτ+frgsτ−gsτfr, frsτ = arfsτ−ergsτ+frasτ+gsτer,
grsτ = argsτ + erfsτ − fresτ + gsτar. We normalize M to unit quaternion M∆:

M∆(a′′, e′′, f ′′, g′′) =
M

|M |
=

arsτ + ersτ i+ frsτ j+ grsτk√
a2rsτ + e2rsτ + f2

rsτ + g2rsτ
. (38)

Next, we obtain the conjugate of M∆:

M∆ = a′′ − e′′i− f ′′j− g′′k. (39)
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And then, we expand the left term of formula (35):

Qs ⊗ M∆ ·Qo

=[(asa
′′ − ese

′′ − fsf
′′ − gsg

′′)+

(ase
′′ + esa

′′ + fsg
′′ − gsf

′′)i+

(asf
′′ − esg

′′ + fsa
′′ + gse

′′)j+

(asg
′′ + esf

′′ − fse
′′ + gsa

′′)k]

· (ao + eoi+ foj+ gok).

=(asa
′′ − ese

′′ − fsf
′′ − gsg

′′) · ao+
(ase

′′ + esa
′′ + fsg

′′ − gsf
′′) · eo+

(asf
′′ − esg

′′ + fsa
′′ + gse

′′) · fo+
(asg

′′ + esf
′′ − fse

′′ + gsa
′′) · go

= ⟨as, a′′, ao⟩ − ⟨es, e′′, ao⟩ − ⟨fs, f ′′, ao⟩ − ⟨gs, g′′, ao⟩+
⟨as, e′′, eo⟩+ ⟨es, a′′, eo⟩+ ⟨fs, g′′, eo⟩ − ⟨gs, f ′′, eo⟩+
⟨as, f ′′, fo⟩ − ⟨es, g′′, fo⟩+ ⟨fs, g′′, fo⟩+ ⟨gs, e′′, fo⟩+
⟨as, g′′, go⟩+ ⟨es, f ′′, go⟩ − ⟨fs, e′′, go⟩+ ⟨gs, a′′, go⟩ .

(40)

Finally, we expand the right term of formula (35):

Qo ⊗ M∆ ·Qs

=[(aoa
′′ + eoe

′′ + fof
′′ + gog

′′)+

(−aoe
′′ + eoa

′′ − fog
′′ + gof

′′)i+

(−aof
′′ + eog

′′ + foa
′′ − goe

′′)j+

(−aog
′′ − eof

′′ + foe
′′ + goa

′′)k]

· (as + esi+ fsj+ gsk).

=(aoa
′′ + eoe

′′ + fof
′′ + gog

′′) · as+
(−aoe

′′ + eoa
′′ − fog

′′ + gof
′′) · es+

(−aof
′′ + eog

′′ + foa
′′ − goe

′′) · fs+
(−aog

′′ − eof
′′ + foe

′′ + goa
′′) · gs

= ⟨ao, a′′, as⟩+ ⟨eo, e′′, as⟩+ ⟨fo, f ′′, as⟩+ ⟨go, g′′, as⟩−
⟨ao, e′′, es⟩+ ⟨eo, a′′, es⟩ − ⟨fo, g′′, es⟩+ ⟨go, f ′′, es⟩−
⟨ao, f ′′, fs⟩+ ⟨eo, g′′, fs⟩+ ⟨fo, g′′, fs⟩ − ⟨go, e′′, fs⟩−
⟨ao, g′′, gs⟩ − ⟨eo, f ′′, gs⟩+ ⟨fo, e′′, gs⟩+ ⟨go, a′′, gs⟩ .

(41)

By comparison, we can easily check the equality of left and right term. Similarly, we can derive that Qs ⊗ R∆
rτn ·Qo =

Qo ⊗R∆
rτn ·Qs. Therefore, TeDS has sufficient capability to model inverse patterns.
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