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ABSTRACT

Communication is a significant method to relieve partial observable and non-
stationary problems in Multi-Agent System. However, most of existing work
needs to persistently communicate by exchanging partial observation or latent
embeddings (intention) which is unrealistic in real-world settings. To overcome
this problem, we propose learning hierarchical multi-agent cooperation with long
short-term intention (HLSI), a hierarchical multi-agent cooperation framework.
In our work, each agent communicates by sharing high-level policy’s latent em-
beddings (long-term intention) which keeps contant until macro action change.
To make the communication messages contain more useful content, we maximize
mutual information between agent’s macro action and agent’s future trajectory
conditioned on historical trajectory. Agent integrates these messages through the
attention mechanism. Then, long short-term intention fusion module will fuse the
long-term intention received from other agents and short-term intention inferred
by a behaivor inference network to approximate other agents’ real short-term in-
tention, which helps agent better understand others’ next behavior. We provide
comprehensive evaluation and ablations studies in multi-agent cooperative set-
tings. The results show that our method achieves better performance than other
multi-agent communication and hierarchical multi-agent reinforcement learning
baselines.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) receives more and more attention in many real-world
scenes (game playing(P. Peng & Wang (2017));traffic light control (Wiering (2000));auto driving
(Shalev-Shwartz S (2016)). Differing from single agent control problems, Multi-agent control tasks
suffer from partially observable and non-stationary problems which make it harder than single agent
reinforcement learning. To overcome these problems, centralized training and decentralized exe-
cution (CTDE) paradigm is proposed to solve these problems. Nevertheless, many baselines such
as MADDPG (Lowe et al. (2017)), COMA (Foerster et al. (2018)), VDN (Sunehag et al. (2017))
based on CTDE paradigm are still struggled in coping with these problems due to the partially ob-
servable environments during execution stage. Communication is one of the significant methods to
really overcome these problems. Through persistently sharing information with other agents help
agents achieve better coordination. Most of work on communication for MARL persistently broad-
cast own information such as current observation or agent’s current intention(short-term intention)
which is latent embeddings of policy function. Agent’s current intention often contains more valid
information than partial observation. (Sukhbaatar et al. (2016)) achieves superior performance by
broadcasting own intention. However, the intention is large, and continual broadcasting its own
intention could cause large communication overhead which makes it is difficult to be applied for
real-world problems.

Recently, some work focuses on reducing communication overhead such as TMC (Zhang et al.
(2020)). However, TMC just simply reducing the communication frequency could impair agent’s
cooperation. H-comm (Tang et al. (2018)) proposes communicating with high-level policy’s inten-
tion. This intention is a long-term intention which keep constant for a while. Thus it achieves more
sparse communication. But directly communicating with this intention could be lack of agent’s
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current information and enough future information which could hinder agent’s cooperation. Con-
sidering a real-world task playing football. In this sport, athletes don’t directly communicate with
other team member rather cooperating with each other through previous tacit understanding. There
are two key factors in their cooperation. First of all, everyone in the team are with own roles and
different roles undertake different subtasks which is analogue to long-term intention in MARL com-
munication. If there is no clear division of labor, team members’coordination is harder coming true.
Then their accumulated tacit understanding during daily training are equally important in coopera-
tion. Tacit understanding is similar to inferred intention. According to these information, athletes
can make correct choices. These two important factors help the team to continuously win the games.
Therefore, we argue that clear role allocation and inferring their behavior based on historical expe-
rience are useful ways to finish teamwork.

In this paper, we propose learning hierarchical multi-agent ooperation with long-short term intention
(HLSI), a succinct but efficient method which enables agent to achieve better coordination . Firstly,
each agent maximizes mutual information between agent’s macro action and agent’s future trajec-
tory condition on historical trajectory to make long-term intentions contain more useful long-term
information. Each agent exchanges their long-term intention which is similar to the roles in playing
football just once until the long-term intention changes and realizes by sharing high-level policy’s
latent embeddings of hierarchical multi-agent reinforcement learning. Then, after recieving these
messages, unlike existing work h-comm that only shares long-term intention and averages them
to represent other’s intention, our agents integrate these long-term intention through the attention
mechanism to greater leverage these messages. To compensate the missing current information. We
learn a behavior inference network which can roughly infer other’s short-term intentions. Agent
infers other agent current intention (short intention) via historical trajectory. Behavior inference
network is learned according to other agents’ real actions during training stage. Then long-short
term intention fushion module fuses real other’s long-term intentions and inferrd other’s short-term
intentions to help agent more precisely understand others’ next intentions.

HLSI communicates based on extremely sparse hierarchical communication pattern and it can
achieve same performance compared with sharing low-level policy’s latent embeddings, which
needs to real-time communicate. We evaluate HLSI in three different multi-agnet cooperative
environment:level-baed foraging (LBF) (Papoudakis et al. (2020)), and a modified version of co-
operative navigation (CN) and predator-prey proposed by (Ding et al. (2020)). Our results indicate
that fusing long-term and short-term intention is useful in team cooperation. Based on these infor-
mation, agent can make better decisions under partially observable environment and achieve better
performance than other baselines. We also provide complete evaluations and ablations studies to
verify the effect of each module.

2 RELATED WORK

Hierarchical Reinforcement Learning is a framework which decomposes long-horizon task into mul-
tiple simple subtasks. Most of existing work is based on two level policy. The high-level policy
outputs an abstract action which is represented as a macro action or a subtask which would last
for multiple timesteps. The low-level policy makes decisions according to high-level’s abstract ac-
tion. Recently hierarchical reinforcement learning is gradually applied to multi-agent reinforcement
learning. FMH (Ahilan & Dayan (2019)) proposes a manager-work structure, manager set subgoals
for works and workers complete own tasks to together obtain maximun team reward. HSD (Yang
et al. (2019)) introduces a skill decoder as an extra intrinsic reward to make low-level policy learn
useful and distinct skills. HAVEN (Xu et al. (2021)) introduces a dual coordination mechanism to
address instabilities when concurrently optimizing high-level and low-level policies.

Multi-Agent Reinforcement Learning often suffers non-stationary and partially observable prob-
lems. Communication is one of effective methods to solve these problems. RIAL (Foerster et al.
(2016)) and DIAL (Foerster et al. (2016)) are first proposed to communicate with others by dis-
crete messages. To overcome the limitation of discrete messages channel. CommNet (Sukhbaatar
et al. (2016)) averages the received hidden layer to achieve more effective collaboration. The hidden
layers are the output of recurrent neural network which encodes the past and current information.
Differing from above work which only considers current information, IS(Kim et al. (2020)) encodes
imagined trajectory to capture agent’s intention and combines the current information and future
information based on attention mechanism. However, the aforementioned methods communicate
through broadcast mechanism which could lead to information redundancy. Based on CommNet,
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IC3Net (Singh et al. (2018)) also shares hidden layer with remaining agents but it proposes to add a
gate mechanism to make agents choose if communicating with other agents to reduce unnecessary
information. ATOC (Jiang & Lu (2018)) communicates with agnet’s intention which is latent embed-
dings of policy function and uses attention module to implement a more complex gate mechanism
to decide whether communicating with adjacent agents. To really abandon broadcast mechanism
which spread large redundant information. I2C (Ding et al. (2020)) trains a prior network according
to the causal effect between agents and communicate with those who could bring large influence to it
based on this prior network . And they design correlation regularization to help the agent correlates
other agent’s observation. TMC (Zhang et al. (2020)) designs a new communication protocol that
avoids real-time communication via retransmission timeout (RTO) to achieve succinct and robust
communication. H-comm (Tang et al. (2018)) proposes communicating with long-term intention
which is latent embeddings of high-level policy which keeps constant until choosing new high-level
action and averages the received messages. It can achieve more sparse communication but doesn’t
achieve effective cooperation.

Inspired by h-comm (Tang et al. (2018)), we propose a new hierarchical multi-agent reinforcement
Learning cooperation framework that achieves sparse and sufficient coordination. H-comm only
considers a simply average received message. We not only use extra mutual information reward to
make the message contain more useful content, but also leverage the attention module to more ef-
fectively combine received messages which is similar to MAIC(Yuan et al. (2022)). It uses attention
module to combine the representation of tailored incentive messages. In addition, we use inferred
others’ intentions to help agent understand others’ next behavior.
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Figure 1: Overall structure of the HISI. (left) hierarchical attention communication module. (mid-
dle) network of agent i. High-level policy produces a long-term intention lbt/kci which also can be
considered as its role. It is penultimate layer output of high-level policy. zbt/kci is the final output
of high-level policy which is a one-hot variable. (right) long short-term intention fusion module and
behavior inference module.

3 METHOD

In this section, we will describe the detailed design of our HLSI. HLSI can be instantiated by any
hierarchical CTDE framework. As shown in Figure 1, our HLSI consists of a high-level policy,
a low-level policy, an attention communication module, a behavior inference module, and a long
short-term intention fusion module. We consider that agents work together to solve cooperative
tasks under partially observable environment. At every k timesteps, high-level policy leverages
observation obt/kci , last action zbt/kc−1i and hidden state hbt/kc−1i to get new hidden state hbt/kci

encoded by GRU. Then agent obtains macro action zbt/kci ∼ πhighi (z
bt/kc
i |hbt/kc) and this action

will keep k steps constant. Differing from high-level policy, low-level policy real-time interacts
with the environment. At each timestep, agent i receives observation oti. Then agent infers the
other’s next intention It−i depending on the behavior inference module and communicates with
observed agents if agent j doesn’t buffer its’ long-term intention which is the latent embeddings
of high-level policy. Attention Communication network would combine received messages based
on their importance under own historical information and output a variable mt

i. Depending on
the aforementioned messages, long short-term intention fusion module to fuse them to obtain f ti
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to approximate others’ real short-term intentions. Finally, low-level policy selects an action ati ∼
πlowi (ati|τ ti , f ti , z

bt/kc
i ) based on current observation oti, macro action zbt/kci , and fused intention f ti .

3.1 HIERARCHICAL ATTENTION COMMUNICATION(HAC)
Our hierarchical multi-agent reinforcement framework contains two levels. The agent has a high-
level policy and a low-level policy. The high-level policy chooses action zbt/kci every k steps and
lasts for k steps. This action is named macro action zbt/kci . We define our macro action as one-hot
variables. The low-level policy makes decisions based on historical trajectory information τ ti which
is the history trajectory(o1i , a

1
i , . . . , o

t−1
i , at−1i , oti) encoded by GRU and corresponding macro ac-

tion zbt/kci . Like the general reinforcement algorithm, low-level would continuously interact with
the environment and get feedback from it. Similar to h-comm, we also share high-level policy latent
embeddings (long-term intention) with others. To make latent embeddings contain more future in-
formation, we optimize the high-level policy by maximizing expected return and mutual information
(MI) between the next trajectory τt+k and the random variable z conditioned on historical trajectory
τt,

I(τt+k; z|τt) = H(τt+k|τt)−H(τt+k|τt, z). (1)
Maximizing MI represents the uncertainty of τt+k conditioned on τt can be reduced after obtaining
random variable z. Then maximizing Eq.1 can help z contain more own future trajectory information
which can acquire a powerful intention representation. MI can be written in the following form

I(τt+k; z|τt) =
∫
p(z, τt, τt+k)log

p(z|τt+k, τt)
p(z|τt)

dzdτt+kdτt (2)

Inspired by (Sharma et al. (2019)), we use variational inference to solve this problem. Using
qφ(z|τt+k, τt) to approximate distriion p(z|τt+k, τt). And we approximately assume the high-level
policy πhigh(z|τt) is equivalent to p(z|τt). Then we can obtain the lower bound of Eq.2 (a detailed
version in Appendix A).

I(τt+k; z|τt) ≥ Ez,τt+k,τt∼p[log
qφ(z|τt+k, τt)
πhigh(z|hbt/kc)

] (3)

To maximize the lower bound, we leverage it as an extra reward. Then the high-level policy’s reward
is r = renvσ + (1− σ)rmi and rmi = log

qφ(z|τt+k,τt)
πhigh(z|hbt/kc)

.
Attention Communication. Others’ intentions can help the agents make better decisions. However,
there is some invalid information in these messages. To effectively utilize received messages from
other agents, we apply the attention mechanism (Bahdanau et al. (2014)) to learn the importance
of other agents’ messages according to own historical trajectory τi. Then the received messages
can be combined based on this weight to get useful information. The query qi is agent historical
information τi and key kij is the long-term intention from seen agents. The value vij is also the
long-term intention lji, which is a feature vector of the output of the agent j’s high-level policy’s
penultimate layer network, from others. In practice, we find that communicating with this feature
vector is more effective than communicating with one-hot variables. Both key and query are a full
connection layer and value is a full connection layer with a relu activation function. The weight is
calculated by the dot product of key and value, then normalized to get the weight to [0,1] by softmax,

αi = softmax[
qTi k1√
dk
,
qTi k2√
dk
, . . . ,

qTi kW√
dk

]. (4)

This weight means which agent’s messages could be helpful to the current agent The final output is

mi =

W∑
n=1

αinvn. (5)

The network of key, query, and value are updated via gradient from minimax temporal difference
error of IQL. W is the number of other agents.

3.2 HIERARCHICAL LONG SHORT-TERM INTENTION FUSION (HLSI)
Behavior Inference Network. Communication with hierarchical reinforcement learning is sparse,
however, it is lack of some agent’s current information which could impair coordination. Even
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though the initial state is the same, the following process still has different possibilities. It is im-
portant to obtain others’ current intentions. However, it is difficult to predict other’s next action
under an unconstrained partially observable environment. Thus we merely hope to learn a feature
to represent others’ current intentions to some extent, but accurately predict other action. In some
computer vision areas such as object detection and object segmentation, to obtain a backbone work
that can effectively extract image features, researchers often train it in the imageNet dataset. Thus
to get such a feature, we design a behavior inference network that enables the agent to infer others’
current intentions according to historical information τ it . τ it mean the encoded trajectory oit, a

i
t of

agent i. The τt is the output of anget’s GRU layer. It is represented as fi(τ it ) = a−1t which hopes
to predict others actions based historical information. After training this network, the embeddings
It−i of this network will contain enough information about others’ current intentions which can be
represented as others’ short intentions.

Long Short-Term Intention Fusion. Sharing high-level intention help agent understands others’
long-term intentions. The behavior inference network infers the rough current intention. Only one of
these two elements is not enough to understand the others’ next behavior. The long-term intention
lacks enough current information and the short-term intention is not accurate. Thus we hope to
combine the accurate long-term intention and coarse short-term intention to approximate the real
others’ next intentions to choose a better action. To fuse long-term and short-term intetntions of
other agents, we design a Long short-term intention fusion module which is inspired by LSTM
(Graves (2012)) and GRU (Chung et al. (2014)). This module only includes a fushion gate

pi = sigmoid(W 1mi +W 2τi +W 3I−i) (6)

which balances the importance between long-term and short-term intention in the current time and
the final output gate is computed by

fi = (1− pi) ·mi + pi · I−i. (7)

which output a feature to approximate others’ real short-term intentions.

3.3 TRAINING

To implement our HLSI, we use MADDPG (Papoudakis et al. (2020)) which contains a critic and an
actor as high-level policy. It needs to train centralized critic Q-function Qπh(o, z) which uses global
observation and macro action as input. It can help agent optimize individual policy actor π(zi|hi).
They respectively parameter by θiQh and θiπhThus the high-level critic and actor are updated as

L(θiQh) = Eo,a,r,o′ [(Q
πh(o, z)− y)2] (8)

y = r + γQπh(o
′, z′)|z′ ∼ π(zi|hi) (9)

∇θiπhJ(θ
i
πh
) = Eo,z[∇θiπhπ(zi|hi)Q

πh(o, z)] (10)

Our low-level policy is implemented based on IQL. Besides a critic network, our HLSI also
contains an attention communication network, and a short-term and long-term intention fusion
module. For agent i, they respectively parameter by a set of trainable parameter θlow =(
θiQl , θ

i =
(
θiQ, θ

i
K , θ

i
V

)
, θil
)
. We can train critic network as

L(θiQlow) = Eo,a,r,o′ [(Q
πl(τi, ai, zi)− y)2] (11)

y = r + γQπl (τ
′
i , a
′
i, zi)|a′ = argmaxaQ

π
l (ai, τ

′
i , zi) (12)

Based on chain roles, gradient can flow from Q-fuction to update each module. The behavior infer
network parameterized by θbi which can be learned by mean-squre loss of real others’ actions. Then
the loss is

L(θbi) = E[(f iθbi
(τ i)− a−i)2]. (13)

4 EXPERIMENTS

We evaluate our HLSI in three multi-agent cooperative tasks: Cooperative Navigation, Predator Prey,
and Level-Based Foraging. For this three different tasks, we implement HLSI based MADDPG (Pa-
poudakis et al. (2020)) as high-level policy and IQL (Tan (1993);Mnih et al. (2015)) as low-level
policy. Our HLSI is a hierarchical communication multi-agent reinforcement algorithm built on
MADDPG and IQL. Thus we respectively choose MADDPG, COMA(Foerster et al. (2018)) and
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IQL which are baselines of multi-agent reinforcement algorithm, IS(Kim et al. (2020)) which is an
intention sharing state-of-the-art baseline of multi-agent communication, I2C (Ding et al. (2020))
which is a state-of-the-art baseline of multi-agent efficient communication, and HSD (Yang et al.
(2019)) which is a state-of-the-art baseline of hierarchical multi-agent reinforcement learning. To
make sure the fairness of our results, we evaluate all the algorithms with the same basic hyperpa-
rameters.

4.1 MULTI-AGENT ENVIRONMENTS

Cooperative Navigation(CN): The agents in this environment are aimed to occupy all the landmarks.
Agents can move with a certain velocity and landmarks keep still. In our environment, the agent only
observes nearby three agents and landmarks and is rewarded by the Euclidean distance of the nearest
landmark. However, if the agent collide with others, it will receive a negative reward as a penalty.
The team reward is the sum of the Euclidean distance between the agent and the nearest landmark
and all the collision penalties. In this setting, the agent only communicates with nearby agents and
infers their next behavior. At the start of each episode, agents and landmarks are initialized in a
random position. Then agents should coordinate to move to cover as many as possible landmarks
and avoid collisions to gain the greatest team rewards. In this experiment, the number of agents and
landmarks is seven. The penalty reward is rpenalty=-1. The length of each episode is 30 timesteps.
The agent’s action space is [left, down, right, up, stop]. The agent’s observation is own velocity,
position and the position of nearby three agents and landmarks.

Predator Prey(PP): We modify the Predator-prey introduced in (Ding et al. (2020)). In this environ-
ment, there are N predators and M preys. Both the predators and preys can move at every timesteps
and preys are far from the nearest predator. Preys move faster than predators. Predators observe
the closest three predators and preys. And they are allowed to share intention with these predators.
Predators are rewarded by the distance of the closest prey and are penalty by colliding with other
predators. The collision penalty reward is rpenalty=-1. Thus our goal is to control this agent to
cooperate to capture as more as possible preys to get a higher team reward. Due to the prey velocity
is faster than predator, it is difficult to capture these preys when they don’t mutually cooperate. We
train our algorithm in the setting of N=7 and M=5 and the length of the episode is 30. The agent’s
action space is [left, down, right, up, stop]. The agent’s observation is own velocity, position and the
position of nearby three agents and preys.

Level-Based Foraging (LBF): The task of Level-based foraging is introduced in (Papoudakis et al.
(2020)). In our experimental setting, agents are located in a 15 × 15 grid world. They need to
cooperate to collect as many as possible foods and they can load the food only when the summation
of food’s adjacent agents’ level is greater than or equal to the level of the food. If they collect a
food, agents will be rewarded correlated to the level of the food. The goal of this task is to collect
as many as possible foods to gain maximum team. This environment is also partially observable
and the agent perceives the agents and foods of three grid cells. The number of agents is four and
the length of the episode is 30. We assume that agent can communicate with all agents, otherwise
the communication in this problem is too sparse. The agent’s action space is [left, down, right, up,
stop, load]. The agent’s observation is own position, level and the position of foods and other agents
within vision

Figure 2: The three multi-agent environment: (left) Cooperative Navigation (CN), (middle) Predator
Prey (PP) , (right) Level-Based Foraging (LBF).
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Figure 3: episodic reward of five evaluated methods in three multi-agent cooperative settings

4.2 QUANTITATIVE RESULTS

Figure 3 shows the learning curve of our HLSI and other baselines during training in three different
settings. The rewards of every method are average performance over five random seeds and the
shadow is the standard deviation. Appendix D shows more detailed indexes of three environments.

First of all, we observe that HLSI converges to the highest reward against other baselines in all three
environments and HLSI-NC, which is HLSI without communication and behavior inference mod-
ule, is closest to HLSI’s final rewards. Compared with HLSI-NC, HLSI effectively leverages real
long-term intention and inferred short-term intention to fuse to approximate others’ real current in-
tentions. This indicates real others’ short-term intentions can help agent make better decisions. And
the performance of HLSI-NC slightly surpasses IQL since the hierarchical structure played a certain
role. HSD perform worst in these two environment. The possible reason is that HSD can’t decom-
pose the team reward. Differing from MADDPG, I2C communicates by sharing agent’s observation
and IS communicates by sharing own intention. They help agents achieve better coordination in
cn environment through communicating. Further, sharing intention can achieve better performance
than current observation, since it contain more valid information. Due to the terrible performance
of the basic framework MADDPG, it doesn’t behave very well and agent’s partial observation in-
cludes less information compared with the policy’s latent embeddings. In the LBF environment, the
discrepancy between MADDPG and IQL is bigger. MADDPG hardly learns a valid policy. The
possible reason is that training a larger network over the joint observation-action space, as required
for these algorithms, demands sufficient training signals. However, this environment’s reward is
sparse. And the discrepancy between HISI-NC and IQL is also large. The performance improve-
ment of our HLSI is weak and the performance of i2c even falls can be explained by the fact that the
agent doesn’t always observe agents for communication which make communication and behavior
inference less effective. In this environment, hierarchical reinforcement learning can decompose
the comparatively complex problems into some subproblems which make them perform better than
other baselines. COMA hardly learns a valid policy as all results show.

Figure 4: (left) performance for HLSI compared with different module ablation baselines. (mid-
dle)performance for HLSI-NI comared with different σ during training. (right) performace for
HLSI-NI with and without attention module.
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4.3 ABLATION STUDY

In this section, we perform some ablations studies to justify the performance of our algorithm. We
design and evaluate three different ablations in cooperative navigation setting. Our HLSI composes
of hierarchical communication module, behavior inference module, and long short-term intention
fusion module. Firstly, we investigate the necessity of these three models. We evaluate the effect
of real long-term intention and inferred short-term intention. Thus we compared our HLSI with the
agent without inferring others’ behavior model, denoted as HLSI-NI , the agent without hierarchical
attention communication model, denoted as HLSI-NA, the agent communicates with general low-
level policy’s latent embeddings, denoted as GLC and the agent without communicating with others,
denoted as HLSI-NC. Then, we verify the importance of our high-level’s extra mutual information
maximum reward and compare four different combined ratio σ to evaluate how it affect the per-
formance of agent’s cooperation. Finally, we compare that agent leverages the received long-term
intention with and without attention module.

The left in figure 4 exhibits the reward of HLSI and the related ablations baselines in Cooperative
Navigation setting. We observe that agent with hierarchical communication module performs better
than agent without hierarchical communication module. The reason is that this environment is par-
tially observable and agent could be influenced by the others behavior. Communicating with long-
term intention can make agents understand others’ next intention which lets them make more correct
decisions. We also observe that either without hierarchical communication module (HLSI-NC) or
without behavior module (HLSI-NI) results in lower rewards. This demonstrates that long-term and
short-term intentions are necessary in multi-agent cooperative task. And the final reward of HLSI
and GLC is equal, which indicates that fusing long-term and short-term intention can approximate
the real agent current intention.

Second, it can be found that extra mutual information reward help agent capture more future in-
formation which make them coordinate better. As the middle in figure 4 shows, when σ is 0.5, it
behaves better than σ is 0.8 and 0.2. The possible reason is that too larger σ could impair high-level
policy to obtain optimal strategy and too little σ provide less future intention. In practice, we need
to determine the optimal value of σ by the trial-and-error method according to specific task.

Finally, we investigate the effect of attention communication module. We replace the learnable
weight α by averaging the received message to vertify the importance of weight learnt by attention
module. We compare two different σ with or without attention module in the right figure 4. We can
see that the method with attention module can more effectively combine the received messages to
achieve better coordination .

4.4 MODEL EVALUATION
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Figure 5: Visualizing the relationship between attention weight and agent’s long-term behavior.

We display some frames of an episode and the importance weight at that moment. The key is the
other agents’ long-term intentions and the query is the agent’s own historical trajectory. Figure 5
exhibits partial frames of a test episode. In the first two frames, agent two is moving up. In the
long term, agent four or six could bring greater impact than agent zero, thus their importance of
weight is higher corresponding. In the next two frames, agent two moves to the left and then finds
an unoccupied landmark. It doesn’t move toward agent four, so its weight is lower compared with
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the other two agents. We speculate that attention communication module can capture possible future
influence based on others‘ long-term intentions.
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Figure 6: (left) Top-1 and top-2 actions predict accuracy of all agents as the episode progresses
time. (middle) The communication overhead ratio between our pattern and normal patternt in three
different environment. (right) The relationship between combination ratio and predict accuracy.

Figure 6(a) shows the top-1 and top-2 average actions predict the accuracy of all agents in the
cooperative navigation environment through time. At each timestep t, we use the embedding zit,
which is the historical trajectory of agent i, to predict the adjacent agent’s next actions. We observe
that top-1 and top-2 accuracy is higher and higher and top-2 prediction accuracy is closer to 0.6
after time steps. This shows that at the later stage, the behavior inference network can output a good
representation of others’ current intentions.

Based on hierarchical communication pattern, each pair of agents communicates only once until
the high-level policy change. We compare our pattern’s number of communications with normal
partten. Figure 6(b) illustrates the communication overhead ratio of all the overheads of our pattern
and normal pattern in the total process. We find that our communication pattern’s overhead is far
less than normal communication pattern. Thus hierarchical communication pattern can be used to
high costs real-world problems.

Finally, we explore the relationship between combined ratio and predict accuracy to investigate
how long short-term intention fusion module Leverages the short-term and long-term intentions. In
figure 6(c), we observe that at the beginning of the episode, the agent can’t correctly infer other’s
short-term intention, so it combines more long-term intentions. After certainty interacting with the
environment, the agent can more accurately infer other’s short-term intentions, thus it will use more
inferred short-term intention. Through appropriately combining real long-term and inferred short-
term intention, we can approximate other’s real short-term intentions which helps agent can better
understand others’ next behavior.

5 CONCLUSION

In this paper, we propose HLSI, a hierarchical multi-agent cooperation framework to improve
agents’ coordination with long short-term intention. First of all, we maximize mutual informa-
tion to make latent embeddings contain more future information. Next, agents integrate long-term
intentions come from other’s high policy’s long-term intention through the attention mechanism.
Then to compensate the lack of current information, behavior inference network infer other’s inten-
tions according to own historical trajectory information. Finally, long short-term intention fushion
module fushs long-term and short-term intention to approximate others’ real short-term intentions,
which helps agent better understand other’s next intentions. Empirically, it is demonstrated that
HLSI outperforms existing multi-agent communication and hierarchical multi-agent reinforcement
baselines in a variety of cooperative multi-agent scenarios. The main limitation of our HLSI is that
behavior inference module and communication module are less effective when the vision of agents
is narrow. Due to the limitation of vision, agent couldn’t observe others for a long time such as LBF
environment. Thus, it is difficult to infer others’ next behavior based on own historic trajectory. And
communicating with agents, which is out of sight, doesn’t help much since it doesn’t directly inter-
act with controlled agent. To overcome these, we think that there is some prior knowledge supplied
to agent. To alleviate the difficult of behavior prediction under partially observable environment, we
can set some limits on agent policy selection(Papoudakis et al. (2021)). In the future, we would like
to extend our method to competitive and mixed environment and apply it to large-scale multi-agent
tasks.
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A LOWER BOUND ON MUTUAL INFORMATION

To enable the long term intention contain more future information, we propose to maximize the
mutual information between zt and τt+k condition on τt. We borrow ideas from (Sharma et al.
(2019)) to obtain a lower bound of this mutual information.

Theorm 1. A lower bound of I(τt+k; z|τt) is

Ez,τt+k,τt∼p[log
qφ(z|τt+k, τt)
πh(z|τt)

], (14)

where τt is historical trajactory, τt+k is agent’s trajectory from t to t+k, z is agent macro action and
qφ(z|τt+k, τt) is variational distribution with parameter φ.

Proof.

I(τt+k; z|τt) =
∫
p(z, τt, τt+k)log

p(z|τt+k, τt)
p(z|τt)

dzdτt+kdτt (15)

We introducce qφ(z|τt+k, τt) to approximate to variational distribution to approximate the condi-
tional distribution p(z, τt, τt+k). Then we obtain the lower variationally bound object as follows:

I(τt+k; z|τt) =
∫
p(z, τt, τt+k)log

p(z|τt+k, τt)
p(z|τt)

dzdτt+kdτt

= Ez,τt+k,τt∼p[log
qφ(z|τt+k, τt)

p(z|τt)
]

+ Eτt+k,τt∼p[DKL(qφ(z|τt+k, τt)||p(z, τt, τt+k))]

≥ Ez,τt+k,τt∼p[log
qφ(z|τt+k, τt)
πhigh(z|hbt/kc).

]. (16)

Since Eτt+k,τt∼p[DKL(qφ(z|τt+k, τt)||p(z|τt, τt+k))] ≥ 0. Then we approximately assmue that
p(z|τt) ≈ πhigh(z|hbt/kc). Thus we get the lower bound in Theorm 1.

When this divergence is small enough. We can use this bound replace MI. When the expectation
of Kullback-Leibler (KL) divergence between qφ(z|τt+k, τt) and p(z|τt+k, τt) is zero, the MI is
equal to its lower bound. It is easy to use maximizing the likelihood to optimize qφ(z|τt+k, τt) to
approximate p(z|τt+k).
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B IMPLEMENTATION DETAILS

Table 1 and 2 summarize the hyperparameters used by HLSI and the baselines in the three environ-
ments.

Table 1: hyperparameters for cooperative navigation and predator prey

Hyperparameter HLSI MADDPG I2C IQL HSD IS COMA

discount(γ) 0.99 0.99 0.99 0.99 0.99 0.99 0.99

repay buffer size 5×105 5×105 5×105 5×105 5×105 5×105 5×105

batch size 128 128 128 128 128 128 128

optimizer ADAM ADAM ADAM ADAM ADAM ADAM ADAM

learning rate of low-level policy 5×10−4 5×10−4 1×10−2 5×10−4 1×10−4 5×10−4 1×10−4

learning rate of high-level policy 5×10−4 - - - 1×10−4 - -

Table 2: hyperparameters for Level-based foraging

Hyperparameter HLSI MADDPG I2C IQL HSD IS COMA

discount(γ) 0.99 0.99 0.99 0.99 0.99 0.99 0.99

repay buffer size 5×105 5×105 5×105 5×105 5×105 5×105 5×105

batch size 128 128 128 128 128 128 128

optimizer ADAM ADAM ADAM ADAM ADAM ADAM ADAM

learning rate of low-level policy 3×10−4 3×10−4 1×10−2 3×10−4 1×10−4 3×10−4 1×10−4

learning rate of high-level policy 3×10−4 - - - 1×10−4 - -
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C PSEUDO CODE

Algorithm 1 learning hierarchical multi-agent cooperation with long short-term intention
Initialize parameters θiQh , θiQl ,θ

i
πh

, θbi for each agent i.
1: for episode = 1, . . . , N do
2: initialize observation o1
3: for t = 0,. . . ,T do
4: for each agent i do
5: if t mod k then
6: choose a macro action zbt/kci ∼ πhighi (z

bt/kc
i |hbt/kc)

7: share long-term intention hbt/kc if adjacent agent j hasn’t save it
8: integrate received long term intention lji with attention module to obtain mt

i
9: infer other’s short intention It−i with behavior inference network

10: long short-term fusion module fuse other’s short-term intentions It−i and long-term
11: intentions mt

i to obtain f ti
12: choose action ati ∼ πlowi (ati|τ ti , f ti , z

bt/kc
i )

13: EndFor
14: excute action at to obtain feedback ot+1,rt
15: store tansition in Buffer
16: if t mod update frequency then
17: for each agent i do
18: Update θiQh , θiQl by minimizing the loss (8) and loss(11)
19: Update θiπh through gradient (10)
20: Update θbi by minimizing the loss (13)
21: EndFor
22: EndIf
23: EndFor
24: EndFor
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D ADDITIONAL DETAILED INDEXES

We test HLSI and other baselines in three different environment. The results of more detailed in-
dexes are from 100 test episodes among 5 random seeds. The ”collision” means that the number
of collisions in the whole episode. The ”occupid” and ”captued” mean that the mean occupid land-
marks and captured preys from 20th time step to the end of this episode.

Table 3: detailed indexes for CN

HLSI HLSI-NC MADDPG I2C IQL HSD IS COMA

reward -184.52±58.44 -234.62±49.21 -435.99±60.03 -354.08±79.86 -281.99±58.09 -422.80±75.87 -304.39±79.60 -613.13±142.94

collisions 0.10±0.51 0.02±0.19 3.56±3.55 0.44±1.61 0.52±1.40 5.5±5.52 0.28±1.49 0.08±0.55

occupied 6.48±0.89 2.71±1.17 1.39±0.76 1.38±0.69 3.07±0.98 1.41±0.88 2.71±1.17 0.44±0.65

Table 4: detailed indexes for PP

HLSI HLSI-NC MADDPG I2C IQL HSD IS COMA

reward -108.68±23.73 -143.19±53.88 -324.83±57.39 -354.92±52.08 -169.94±51.49 -439.42±56.56 -232.96±50.03 -433.93±121.83

collisions 0.06±0.31 0.13±0.36 1.95±2.02 0.56±0.97 0.20±0.52 1.40±1.42 0.16±0.62 0.00±0.00

captured 4.56±0.50 3.94±0.80 0.53±0.47 0.36±0.33 2.77±0.70 0.16±0.32 0.71±0.47 0.19±0.44

Table 5: detailed indexes for LBF

HLSI HLSI-NC MADDPG I2C IQL HSD IS COMA

reward 0.85±0.25 0.83±0.25 0.06±0.11 0.00±0.00 0.51±0.39 0.57±0.34 0.02±0.06 0.02±0.08

15

王泓宇



Under review as a conference paper at ICLR 2023

E ADDITIONAL ABLATION STUDY

We conduct two additional ablation studies to compare the effect of different communication interval
k and the length of one-hot variable in cooperative navigation environment. Firstly, we compare
three different k to evaluate how it affect the performance of agent’s cooperation. Then, we compare
three different length of one-hot variables.

Figure 6(a) shows that choosing a relatively long communication interval don’t impair model’s per-
formance, however, HLSI-NI becomes very instable when communication interval becomes larger.
Thus we can try to choose relatively long communication interval in different task. Figure 6(b)
illustrates the different length of one-hot variables don’t affect the performance of communicating
with high-level policy’s output of the penultimate layer network. Thus the k is ten and the length of
one-hot variables is sixteen in our experiments.
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Figure 7: (a) performance for HLSI-NI comared with different communication interval k during
training. (b) performance for HLSI-NI comared with different length of one-hot variables during
training.
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