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ABSTRACT

Data augmentation is an effective way to improve the generalization capability of
modern deep learning models. However, the underlying augmentation methods
mostly rely on handcrafted operations. Moreover, an augmentation policy use-
ful to one dataset may not transfer well to other datasets. Therefore, Automated
Data Augmentation (AutoDA) methods, like AutoAugment and Population-based
Augmentation, have been proposed recently to automate the process of search-
ing for optimal augmentation policies. However, the augmentation policies found
are not adaptive to the dataset used, hindering the effectiveness of these AutoDA
methods. In this paper, we propose a novel AutoDA method called AdaAug to ef-
ficiently learn adaptive augmentation policies in a class-dependent and potentially
instance-dependent manner. Our experiments show that the adaptive augmenta-
tion policies learned by our method transfer well to unseen datasets such as the Ox-
ford Flowers, Oxford-IIT Pets, FGVC Aircraft, and Stanford Cars datasets when
compared with other AutoDA baselines. In addition, our method also achieves a
state-of-the-art performance on the CIFAR-10, CIFAR-100, and SVHN datasets.1

1 INTRODUCTION

Data augmentation is a common way to enhance the robustness of deep learning models by aug-
menting the datasets used for model training. Applying popular data augmentation operations such
as randomized cropping, horizontal flipping, and color shifting to image data has become a standard
procedure in modern image recognition models (Krizhevsky et al., 2012; Shorten & Khoshgoftaar,
2019). Over the years, various augmentation methods using advanced operations have been pro-
posed. Examples include occlusion-based operations like Cutout (Devries & Taylor, 2017) that ran-
domly masks part of an image to avoid overfitting, label-mixing operations like CutMix (Yun et al.,
2019) that replaces the occluded part in Cutout with a different image patch, and Mixup (Zhang
et al., 2018) that interpolates two images with their corresponding one-hot encoded labels.

While these hand-crafted data augmentation methods can improve model generalization, choosing
the operations and their corresponding parameters is often decided manually to make the augmen-
tation scheme effective for the task at hand. Despite the manual efforts involved, an augmentation
policy that is useful for a particular dataset does not often generalize well to other datasets (Cubuk
et al., 2019). To tackle this problem, a series of recent studies has been conducted to automate
the process of finding an effective data augmentation policy for a target dataset. These automated
data augmentation (AutoDA) methodologies show impressive results on several benchmark image
datasets (Cubuk et al., 2019; Ho et al., 2019; Lim et al., 2019; Cubuk et al., 2020; Hataya et al.,
2020; Hendrycks et al., 2020; Li et al., 2020; Cheung & Yeung, 2021).

The manual tuning of augmentation parameters can also be addressed by using generative ap-
proaches, such as training a generative adversarial network (GAN) to create new artificial images
directly (Antoniou et al., 2017; Tran et al., 2017; Jha & Cecotti, 2020; Yorioka et al., 2020; Zhao
et al., 2020). However, these generative models are often hard to implement and computationally
expensive to train.

1Code is available at https://github.com/jamestszhim/adaptive_augment
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In supervised learning, data augmentation is considered to be a naive way to inject inductive biases,
such as translational invariance, to a classifier. With the recent advances in representation learning,
data augmentation has become a major approach to the learning of good representations. For exam-
ple, there is an increasing trend to replace convolutional neural networks (CNNs) with transformers
in computer vision (Carion et al., 2020; Dosovitskiy et al., 2021). Being a more generic architecture,
transformers do not come with additional inductive bias such as translational invariance in CNNs,
thereby requiring more data to learn the effective invariance properties. Data augmentation serves
as an effective way to achieve this goal (Touvron et al., 2020). In addition, recent self-supervised
models rely heavily on data augmentation to create different views of the same data and learn the
robust representations through contrastive learning (Chen et al., 2020; Grill et al., 2020; He et al.,
2020). However, an improper choice of augmentation operations, especially with excessive strength,
may impose a wrong inductive bias to the models and lead to performance degradation (Chen et al.,
2020; Xiao et al., 2021). Consequently, there is a need to enrich the current data augmentation meth-
ods, especially with a better choice of the data augmentation policy, to take advantage of the recent
advances in representation learning.

Previous AutoDA methods attempt to find an optimal augmentation policy to augment a given
dataset. However, most of the discovered policies are not adaptive to variations of the dataset.
Even in a dataset in which an augmentation policy is found to be effective, the same augmentation
scheme is applied equally to all classes. This can limit the potential of data diversity brought about
by data augmentation. For example, in digit classification, flip-invariance is useful for the digits
“0”, “1” and “8” but not for the other digits; in shape classification, shearing-invariance is useful for
“triangles” but not for “rectangles”. None of the previous AutoDA methods can learn an adaptive
class-dependent augmentation policy. To address this limitation, we propose AdaAug, as an Au-
toDA method, to learn a class-dependent and potentially instance-dependent augmentation policy
efficiently.

Despite the attractive potential of such an adaptive scheme if it can indeed be realized, actually learn-
ing an adaptive augmentation policy poses at least two major technical challenges. First, the search
space for the per-class, per-instance augmentation policies is very large, rendering it intractable
when trying to maintain an individual policy for each class or even each realization of the input data.
Second, the gradient information of the augmentation parameters is hard to obtain as the operation
selection process and the transformations are non-differentiable. Optimizing the augmentation pol-
icy efficiently is a challenging problem to address. In this work, AdaAug employs a recognition
model to learn the underlying augmentation policy for each data instance and takes an alternating
exploit-and-explore procedure to update the augmentation policy using a differentiable workflow. In
the exploitation pass, AdaAug trains a classifier for a number of steps, followed by the exploration
pass which validates the classifier and updates the policy to minimize the validation loss. The intu-
ition behind our design of AdaAug is that such an alternating procedure can learn augmentations
that help generalize the trained model to unseen validation data. For example, rotational invariance
would be found to be a desirable inductive bias that the model should learn if the validation set
contains some similar but rotated versions of the training images. Our goal is to capture such infor-
mation and assign a higher probability to use rotation for augmentation in this case. An application
scenario would be a computer vision task for drones where the unseen data may contain different
kinds of rotated images. To summarize, our contributions are listed as follows:

• We introduce a novel AutoDA method to learn a class-dependent and potentially instance-
dependent augmentation policy for each data instance.

• We propose a differentiable workflow to search for the augmentation policy efficiently.

• We demonstrate that the policies learned by our method transfer better to unseen datasets,
such as Oxford Flowers, Oxford-IIT Pets, FGVC Aircraft, and Stanford Cars, when com-
pared to other AutoDA baselines.

• We demonstrate a state-of-the-art performance on the CIFAR-10, CIFAR-100, and SVHN
datasets.
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2 RELATED WORK

Automated Data Augmentation. Several AutoDA methods have been proposed to compose the
augmentation operations automatically. AutoAugment (Cubuk et al., 2019) learns to generate the
probability and magnitude when applying different augmentation operations as a policy using re-
inforcement learning (RL). It alternately generates an augmentation policy to train a child model
and updates the policy generator using the validation performance as a reward. Since it is com-
putationally expensive to train the child models repeatedly, several techniques have been proposed
subsequently in an attempt to reduce the search effort. Fast AutoAugment (Lim et al., 2019) uses
Bayesian optimization (BO) to tune the augmentation parameters. Population-based Augmentation
(PBA) (Ho et al., 2019) exploits population-based training (PBT) to search for an optimal augmen-
tation policy schedule by training multiple parallel child models using an evolutionary approach.
RandAugment (Cubuk et al., 2020) applies the augmentation operations uniformly and reduces the
search space significantly by covering only the number of operators and the global augmentation
magnitude. Instead of using the validation performance to evaluate the augmentation quality, Ad-
versarial AutoAugment (Zhang et al., 2020) uses an adversarial objective to learn the augmentation
policy. MODALS (Cheung & Yeung, 2021) utilizes PBA to search for an optimal latent space aug-
mentation policy and augment data from any modality not limited to image data.

Differentiable Data Augmentation. In addition to using RL, BO and PBT to optimize the augmen-
tation parameters, there exist related methods that modify the otherwise discrete search procedures
to make them end-to-end differentiable. This results in a more efficient optimization procedure and
a more precise policy than RL and PBT as the search space is continuous. In AdaAug, part of
our contribution is to design a differentiable workflow to learn the augmentation policy. For pre-
vious differentiable augmentation approaches, Faster AutoAugment (Hataya et al., 2020) proposes
a differentiable Relaxed Bernoulli distribution to sample the candidate augmentation functions and
estimate the gradients of the non-differentiable augmentation magnitude using the Stop Gradient es-
timator. Specifically, it optimizes a density matching loss between the training and validation data.
DADA (Li et al., 2020) differentiates through the discrete policy sampling process using Gumbel-
Softmax trick. While AutoDA and differentiable data augmentation have been shown to be success-
ful in improving the generalization performance of deep learning models, the learned augmentation
policy is often applied uniformly to the whole dataset, meaning that all classes and instances share
the same augmentation policy. On the contrary, each class and even each data instance receives an
adaptive policy to augment in our proposed method.

Adaptive Data Augmentation. Attempts have been made to apply adaptive data augmentation at a
class or subgroup level. Hauberg et al. (2016) model the transformations within each class and use
statistical models to augment the dataset. The approach shows improvement in the small MNIST
dataset and its variants. However, the augmentation operations are limited to spatial transforma-
tions. In addition, observations of the data must be locatable and alignable, making it difficult to
extend to most other computer vision tasks. Recently, CAMEL (Goel et al., 2021) adopts a finer
data-generation method by fixing the classifiers that fail on a subgroup of a class. It uses CycleGAN
to learn different variations of the same training data within a subgroup. However, CAMEL re-
quires the specifying of the subgroup information manually and assumes that the subgroups only
exist within the same class. MetaAugment (Zhou et al., 2021) learns a sample-wise weighting
scheme and a global probability parameter to control the sampling of augmentation transformations.
In AdaAug, the learned policy can capture class-dependent transformation automatically and also
instance-dependent information, such as the light intensity of an image, across different classes.

3 ADAAUG

3.1 SEARCH SPACE

Let T be a set of augmentation operations where τj denotes the j-th operation (e.g., “rotation”) in
the set. We formulate an augmentation policy as the probability p and magnitude λ in applying the
augmentation operations. Here, p is a probability vector with each entry pj ∈ [0, 1];

∑|T|
j=1 pj = 1

and λ is a vector with each entry λj ∈ [0, 1], where pj and λj are the probability and magnitude,
respectively, of applying the operation τj . Mathematically, τj : X → X is a mapping from the
input space X to itself. For an image x ∈ X , τj transforms it with the magnitude parameter λj that
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Figure 1: Illustration of the AdaAug pipeline. In the exploitation pass (solid line), the training im-
ages are augmented by the policy network (hγ ◦ fα(x)) as new unseen data to train the classifier
(colored in blue). In the exploration pass (dotted line), each validation data instance passes through
multiple augmentation paths. The corresponding latent representations are summed with the gen-
erated augmentation probabilities as weights. The policy projection network (colored in green) is
updated to minimize the validation loss. To compute the probability and magnitude vectors, σ and
sm denote the sigmoid and softmax functions, respectively.

specifies the strength of the transformation (e.g., degree of rotation), i.e., x 7→ τj(x;λj). Note that
some operations like flipping do not depend on the magnitude parameter. In a training pass, given an
input data x, an augmentation policy (p, λ), and the number of operators k, we sample k operations
according to p and apply them with their corresponding magnitudes specified by λ:

T (x; p, λ) = τj(x;λj); j ∼ p
x̂ = T (k) ◦ · · · ◦ T (1)(x; p, λ)

(1)

Here, T (t), 1 ≤ t ≤ k, denotes applying the t-th operation. Our goal is to learn an augmentation
policy function πθ : x 7→ (p, λ) to generate an adaptive augmentation policy that optimizes the
generalization performance and is dependent on the input data (see Figure 1 and Algorithm 1).

3.2 SEARCH ALGORITHM

Exploitation. AdaAug uses a feature extraction network fα : X → Z to map an input space to
a latent space, a dense layer gβ : Z → Y to map a latent space to a label space, and a projection
function hγ : Z → P × Λ to map a latent space (representation) to a probability and magnitude
space, where p = [0, 1]|T| and ‖p‖1 = 1,∀p ∈ P and λ = [0, 1]|T|,∀λ ∈ Λ. In our case, the
functions f, g, h (with the subscripts dropped for notational simplicity) are implemented as neural
networks with network weights α, β, γ, respectively. The softmax operation is applied to the first
half of the output from h to get the probabilities and the sigmoid function is applied to the other half
to get the magnitudes. The policy network πθ(x) can then connect the class and image information
to the augmentation policy via h ◦ f(x) with parameters θ = (γ, α). In an exploitation pass,
given the training data x, the policy function generates the data-dependent augmentation policy
(p, λ) = πθ(x) and augments x to give x̂ using Equation (1). Here, x̂ is treated as a new unseen
training example and is used to train the classification model g ◦ f(x̂) by minimizing the cross-
entropy loss: minα,β Ltrain(α, β). Note that there is a discrete sampling procedure in Equation (1).
During the update, the gradient of α does not involve the computations in the policy network.

Exploration. In the exploration pass, AdaAug generates the augmentation policy (p, λ) = πθ(x)
given the validation data x. The |T| operations are applied to x separately with the corresponding
magnitudes in λ. The augmented validation data are passed to the feature extraction network f
individually to get the latent representations, which are then summed based on their weights in the
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probability vector p. The mixed representation is passed to g for computing the predicted labels:

ŷ = g

 |T|∑
j=1

pj · f ◦ τj(x;λj)

 ; (p, λ) = πθ(x) (2)

AdaAug updates γ to minimize the validation loss: minγ Lvalid(α, β, γ). As we make no assump-
tion that the augmentation operations are differentiable, we follow prior approaches (Bengio et al.,
2013; Li et al., 2020) using a straight-through gradient estimator to optimize the augmentation mag-
nitudes. Specifically, the gradient of the magnitudes is estimated with respect to each input pixel
value xh,w of the augmented data, i.e., ∂x̂h,w

∂λj
= 1. The gradient can then be calculated by:

∂Lvalid
∂λj

=
∑
w,h

∂Lvalid
∂x̂w,h

∂x̂w,h
∂λj

=
∑
w,h

∂Lvalid
∂x̂w,h

(3)

Algorithm 1 Search algorithm

1: procedure SEARCH(Dtrain, Dvalid,T, k,m, r)
2: Initialize α, β, γ
3: for r steps do # Exploitation
4: Sample a mini-batch dtrain ∈ Dtrain

5: for (x, y) ∈ dtrain do
6: (p, λ) = πθ(x)
7: x̂ = augment(x) . augment computes Eq. 1
8: ŷ = g ◦ f(x̂)
9: Ltrain(α, β) = CrossEntropyLoss(ŷ, y)

10: (α, β)← arg minα,β Ltrain(α, β)

11: if r is divisible by m then # Exploration
12: Sample a mini-batch dvalid ∈ Dvalid

13: for (x, y) ∈ dvalid do
14: (p, λ) = πθ(x)
15: ŷ = explore(x) . explore computes Eq. 2
16: Lvalid(α, β, γ) = CrossEntropyLoss(ŷ, y)
17: γ ← arg minγ Lvalid(α, β, γ)

return α, γ

Relation to Neural Architecture Search (NAS). Tuning of the augmentation policy parameters
bears some similarity to the optimization of the network architecture weights in DARTS from the
NAS literature (Liu et al., 2019). DARTS prescribes different computation paths to different opera-
tion cells and relaxes the computation to a mixture of the operations weighted by learnable weights
for each path. With w as the model parameters and α as the weights for the computation paths, the
search algorithm solves a bi-level optimization problem:

min
α
Lvalid(w∗(α), α) s.t. w∗(α) = arg min

w
Ltrain(w,α) (4)

While DARTS optimizes the architecture weights, AdaAug optimizes the projection parameter γ
that decides the augmentation weights and magnitudes in the exploration. DARTS solves the opti-
mization by a first-order and finite-difference approximation of the architecture gradient. AdaAug
samples the augmentation operations and treats the augmented data as missing training data X̂train.
By absorbing the augmentation parameter in the training dataset, we avoid the complex bi-level
optimization and simplify the exploitation procedure into training a standard classifier:

min
γ
Lvalid(α∗, β∗, γ;Xvalid) s.t. α∗, β∗ = arg min

α,β
Ltrain(α, β; X̂train) (5)

Relation to Density Matching. Data augmentation can be regarded as a density matching problem
between the training and validation data (Ratner et al., 2017; Tran et al., 2017; Hataya et al., 2020;
Lim et al., 2019). From this perspective, AdaAug improves model generalization by matching the
density of Dtrain with the density of the augmented Dvalid. In the outer optimization objective in
Equation (5), AdaAugminimizes the classification loss with the augmentation parameters γ over the
same optimal model parameters α∗, β∗ learned from D̂train. In so doing, it approximately reduces
the distance between the densities of the augmented Dvalid and Dtrain.
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3.3 INFERENCE

Like most automated augmentation pipelines (Cubuk et al., 2019; Ho et al., 2019; Lim et al., 2019;
Hataya et al., 2020; Li et al., 2020), AdaAug searches for the augmentation policy on a small
dataset using a small model and then applies the learned policy network πθ to train with a larger
dataset or model. We call the process of applying a searched policy to augment a new dataset as
inference time. Regarding this workflow, RandAugment argues that the different search spaces in
search time and inference time makes the augmentation policy unable to adjust the regularization
strength to different target datasets and models (Cubuk et al., 2020). Therefore, it proposes to search
for the global magnitude and number of operators for each case. To address this concern, AdaAug
utilizes three diversity parameters to fine-tune the regularization strength of the found policy for
large datasets and models. First, the number of operators k is set to 1 at search time, but a larger
value of k can be used at inference time. To control the selection of more diverse operations, a
temperature parameter T is introduced in the softmax function: pi = exp [h(zi)/T ]∑|T|

j exp [h(zj)/T ]
. Setting a

larger T value allows the operations with lower probability being sampled more often in the same
order. Last, AdaAug perturbs the magnitude value with the parameter δ so the perturbed magnitude
λ̂ is given as λ̂ ∼ Uniform(λ− δ, λ+ δ). This allows the augmented data to show slight variations
even with the same operation on the same input data. In practice, we can perform grid search on
these three diversity parameters with the other hyperparameters using a holdout validation set.

4 EXPERIMENTS AND RESULTS

In this section, we explain our experimental design followed by presenting the results. We evaluate
the empirical performance of AdaAug in two experiments: AdaAug-transfer and AdaAug-direct.
We select the comparison baselines that use the validation performance as the evaluation method to
learn the augmentation policy. For all the experiments, we report the average test-set error rate as
the performance metric. Each model is evaluated three times with different random initializations.

Augmentation operations. We match the operations adopted by AutoAugment. In addition to the
16 operations proposed previously (ShearX, ShearY, TranslateX, TranslateY, Rotate, AutoContrast,
Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout, and Sample
Pairing), we add the Identity operation for not applying data augmentation. For the simple baseline,
we apply random horizontal flip, color jittering, color normalization, and Cutout with a 16×16 patch
size. Our method and other baselines apply the found policy on top of these standard augmentations.

Policy search. We follow the setup adopted by AutoAugment (Cubuk et al., 2019) to use 4,000
training images for CIFAR-10 and CIFAR-100, and 1,000 training images for SVHN. The remaining
images are used as the validation set. We use Wide-ResNet-40-2 (Zagoruyko & Komodakis, 2016)
as the feature extraction network for all searches. We implement h as a linear layer and update the
policy parameter γ after every 10 training steps using the Adam optimizer with a learning rate of
0.001 and a batch size of 128.

AdaAug-transfer. In the first experiment, we investigate how well the learned augmentation policy
can transfer to unseen datasets. We search for the optimal augmentation policy on the CIFAR-100
dataset and use the learned policy to train with four fine-grained classification datasets: Oxford 102
Flowers (Nilsback & Zisserman, 2008), Oxford-IIIT Pets (Em et al., 2017), FGVC Aircraft (Maji
et al., 2013), and Stanford Cars (Krause et al., 2013). We compare the test error rate with AutoAug-
ment, Fast AutoAugment, DADA, and RandAugment using their published policies for CIFAR-100.
For all the tested datasets, we compare the transfer results when training the ResNet-50 model (He
et al., 2016) for 180 epochs from scratch and fine-tuning the ResNet-50 model pretrained on Ima-
geNet for 100 epochs. We use the cosine learning rate decay with one annealing cycle (Loshchilov
& Hutter, 2017), initial learning rate of 0.1, weight decay 1e-4 and gradient clipping parameter 5.

AdaAug-direct. In the second experiment, we search for the optimal augmentation policy on a small
subset of the target dataset and use the learned policy to train the full dataset. The purpose of the
experiment is to demonstrate that while the AdaAug policy can adapt to other unseen datasets, it can
also achieve competitive performances on the seen datasets with more training data. We compare
AdaAug-direct with state-of-the-art AutoDA methods using the same evaluation datasets: CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton, 2009), and SVHN (Netzer et al., 2011). We test our method
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Table 1: Test error (%) when training ResNet-50 with different augmentation methods.

Dataset Train Size Classes Simple AA Fast AA DADA RA AdaAug

Oxford 102 Flowers 6,552 102 5.87 3.71 3.99 5.06 4.28 3.63 ± 0.14
Oxford-IIIT Pets 3,680 37 26.42 22.61 22.11 23.80 27.84 20.14 ±0.12
FGVC Aircraft 6,667 100 19.87 17.72 17.80 18.84 17.70 17.50 ± 0.19
Stanford Cars 8,144 196 13.64 11.96 12.81 12.86 12.21 11.51 ± 0.21

Table 2: Test error (%) when fine-tuning pretrained ResNet-50 with different augmentation methods.

Dataset Simple AA RA Fast AA AdaAug

Oxford 102 Flowers 5.02 6.12 4.77 3.92 2.81 ± 0.13
Oxford-IIIT Pets 19.47 18.75 23.03 16.79 16.14 ± 0.07
FGVC Aircraft 18.40 16.61 17.02 17.44 16.03 ± 0.15
Stanford Cars 11.92 9.18 10.72 10.29 8.82 ± 0.08

using Wide-ResNet-40-2 and Wide-ResNet-28-10. At inference time, we set the temperature T = 3
and magnitude perturbation δ = 0.3 and search for the number of operators k ∈ {1, 2, 3, 4} using a
holdout validation set, like RandAugment (Cubuk et al., 2020). For the hyperparameters, we follow
AutoAugment, PBA, and Fast AutoAugment if possible.

4.1 ADAAUG-TRANSFER

Table 1 and Table 2 show that the AdaAug policy outperforms the other baselines when training
and fine-tuning the ResNet-50 model on the Flowers, Pets, Aircraft, and Cars datasets, respectively.
These baselines apply the same augmentation policy to all datasets. Such a policy may not be optimal
to the target domain. In contrast, AdaAug adapts the augmentation policy to individual image classes
and instances automatically. The AdaAug policy network applies different augmentation policies
to unseen images according to their similarity to the classes that AdaAug has seen in the search. To
further justify our claim, we show the distribution of the augmentation parameters for different tasks
in Appendix A.5.4. The four datasets have many classes but few training examples per class. The
negative effect of using a non-adaptive data augmentation policy is likely to be more imminent than
a situation where its dataset has fewer classes but more examples per class.

4.2 ADAAUG-DIRECT

CIFAR-10 and CIFAR-100. The policies learned by AdaAug mostly achieve either comparable or
better performances than the baselines for both WRN-40-2 and WRN-28-10 models on the CIFAR-
10 and CIFAR-100 datasets (see Table 3). We visualize the augmentation policy of CIFAR-10 by
applying the policy to the validation data and averaging the predicted augmentation probability of
each image for each class (see Figure 2). The policy contains all types of augmentations at some
degree. Among the operations, Flip dominates the policy. It is in line with the augmentation se-
lected manually as people find applying horizontal flipping to CIFAR-10 can improve the prediction
accuracy. The policy learned by AdaAug puts higher emphasis on Invert and Equalize, which are
also reported by PBA. The focus on Brightness is also aligned with the policy in AutoAugment. Al-
though there are minor variations in the importance of some operations between the policies learned
by AdaAug, AutoAugment, and PBA, their empirical performance is similar.

SVHN. AdaAug performs comparably to the baselines on the core set of SVHN. We visualize
the augmentation policy for SVHN in Figure 2. We found that AutoContrast, Invert, and Solarize
receive much attention in SVHN. This makes sense because the specific color of the number and
background is irrelevant to the prediction. This is consistent with the findings by AutoAugment and
PBA. The Flip operation receives a significantly higher probability in digits “0”, “1”, and “8”. It is
likely because these three digits appear similar after flipping. This shows that AdaAug captures not
only a dataset-specific augmentation policy, but also class-dependent augmentation, which cannot
be achieved by other baselines. In addition to the augmentation probability, we visualize the learned
augmentation magnitude in Appendix A.5.2.
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Table 3: Test error (%) on Reduced CIFAR-10, CIFAR-10, CIFAR-100, reduced SVHN and the
SVHN core set (∗evaluated using the policy released by the baseline).

Simple AA PBA Fast AA DADA Faster AA RA AdaAug

Reduced CIFAR-10
WRN-28-10 17.1 14.1 12.8 14.6∗ 15.6∗ - 15.1∗ 13.6 ± 0.03

CIFAR-10
WRN-40-2 5.3 3.7 3.9∗ 3.6 3.6 3.7 4.1∗ 3.6 ± 0.11
WRN-28-10 3.9 2.6 2.6 2.7 2.7 2.6 2.7 2.6 ± 0.10

CIFAR-100
WRN-40-2 26.0 20.6 22.3∗ 20.7 20.9 21.4 - 19.8 ± 0.08
WRN-28-10 18.8 17.1 16.7 17.3 17.5 17.3 16.7 17.1 ± 0.12

Reduced SVHN
WRN-28-10 13.2 8.2 7.8 8.1∗ 7.6∗ - 9.4∗ 8.2 ± 0.12

SVHN (core set)
WRN-28-10 3.1 1.9 2.1∗ 2.3∗ 2.4∗ - 1.7 2.3 ± 0.13

Figure 2: Illustration of the learned augmentation probability for CIFAR-10 (left) and SVHN (right).

ImageNet. We also validate our method on large-scale ImageNet dataset. AdaAug improves the
top-1 accuracy 1% over the ResNet-50 baseline (see Appendix A.1.1). Although some baselines
like AutoAugment produce similar performance or slightly outperform our method in the AdaAug-
direct experiment, AdaAug uses less computational effort in searching for the policy. Specifically,
AutoAugment takes 5,000 GPU hours to search for the CIFAR-10 policy, while AdaAug takes only
3.3 GPU hours on an old GeForce GTX 1080 GPU card (see Appendix A.4).

5 DISCUSSION

Instance-dependent augmentation. The AdaAug-direct results show that the learned AdaAug pol-
icy can capture dataset- and class-dependent augmentations on CIFAR-10, CIFAR-100, and SVHN.
We further investigate whether AdaAug can learn instance-dependent information. According to
the architecture, AdaAug takes the output from the last layer of a CNN network as the image rep-
resentation and uses it to predict the augmentation parameters. The image representation contains
the class information and potentially some image features. Empirically, we first examine if AdaAug
generates different augmentation policies for different instances even within the same class. In Ap-
pendix A.5.3, we plot the standard deviations of the predicted augmentation probabilities of the
image instances for each class. It is observed that even within the same class, the predicted aug-
mentation policy is slightly different across instances. It is a clue that the AdaAug policy captures
some instance-level augmentation information. Qualitatively, we show the augmented examples of
a flower image using the AdaAug policy in Figure 3. The input image is relatively darker than the
other images. Apparently, AdaAug is aware of this property and applies more brightness-related
augmentation to lighten up the image. We observe similar behaviour of AdaAug in other classes,
but there is inadequate empirical support to conclude a general rule on how the network decides the
instance-aware augmentation as policies are learned in a data-driven way.
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Figure 3: Visualization of the augmented images under different augmentation strengths using: Ran-
dAugment (left); and AdaAug (right). (k is the number of operators, m is the magnitude parameter
in RandAugment, and δ is the magnitude perturbation parameter in AdaAug.)

Quality of augmented data. We compare the augmented images from AdaAugwith RandAugment
under different augmentation strengths in Figure 3. In terms of augmentation diversity, RandAug-
ment produces more variations of the input image. However, not all augmented images produced are
plausible. As RandAugment applies the augmentations uniformly, some augmented flower images
show a strange color difference to the original image. With an increasing number of operators and
magnitude, the flower object is sometimes translated out of the frame and results in a black image.
This may affect the learning performance as color can be an important feature in classifying different
species of flowers. For AdaAug, the augmented images are more visually appealing.

Ablation study. In this section, we study the effects of AdaAug-transfer on Oxford 102 Flowers
and AdaAug-direct on CIFAR-10 using three alternative search configurations. First, does the use
of a nonlinear projection deliver a better performance? We replace the linear layer in h with a
2-layer MLP using a 128 hidden layer size with ReLU activation. Second, we study whether the
class-dependent and instance-dependent configuration improves model accuracy. We remove the
class and instance information by replacing the policy network with a fixed vector, which decides
the augmentation probabilities and magnitudes for the entire dataset. In the third setting, we mix the
augmented images in the input space instead of the latent space and observe the effects. Our results
show that the use of class- and instance-adaptive augmentation policies contribute larger improve-
ments in AdaAug-direct. In AdaAug-transfer, using a nonlinear projection harms the prediction
performance. A possible reason is that the nonlinear projection is more likely to overfit the search
dataset and fail to generalize to unseen datasets. Moreover, combining the augmentation path in the
latent space learns a better policy (see Table 4).

Table 4: Test error rate (%) on AdaAug-transfer and AdaAug-direct with different search settings.

AdaAug
AdaAug w/ 2-layer MLP
as the projection function

AdaAug w/o class,
instance information

AdaAug w/ input-
space mixing

transfer 3.7 4.5 3.9 4.0
direct 3.6 3.7 4.4 3.9

6 CONCLUSION

In this work, we propose a novel AutoDA approach, AdaAug, to learn class- and instance-adaptive
augmentation policies efficiently. We demonstrate that the found policy transfers well to unseen
datasets while achieving state-of-the-art results on the seen datasets. We provide evidence to show
that the learned adaptive policy captures class- and instance-level information. We think that
AdaAug can show further gains over existing baselines when applied to datasets with more dis-
similar underlying augmentation rules among the data classes, and with fewer training examples for
each class. It is also promising to investigate in the future if the proposed adaptive augmentation
method can improve the performance of other computer vision and representation learning tasks.
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Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond empiri-
cal risk minimization. In 6th International Conference on Learning Representations, ICLR 2018,
2018.

Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial AutoAugment. In 8th Inter-
national Conference on Learning Representations, ICLR 2020, 2020.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient GAN training. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

Fengwei Zhou, Jiawei Li, Chuanlong Xie, Fei Chen, Lanqing Hong, Rui Sun, and Zhenguo Li.
MetaAugment: Sample-aware data augmentation policy learning. In Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI, pp. 11097–11105. AAAI Press, 2021.

A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

A.1.1 LARGE-SCALE DATASET

For large-scale dataset, AdaAug improves the top-1 accuracy 1% over the ImageNet ResNet-50
baseline (see Table 5). The performance gain is similar to previous AutoDA methods and validates
the positive effect of AdaAug on complex dataset.

A.1.2 ARCHITECTURE TRANSFER

We also provide the experimental results when using the learned Augmentation policy to train the
Shake-Shake (26 2x96d) model on Reduced CIFAR-10 and Reduced SVHN in Table 6.
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Table 5: Test error rates (%) on ImageNet using ResNet-50.

Simple AA Fast AA DADA Faster AA RA AdaAug

23.7 22.4 22.4 22.5 23.5 22.4 22.8

Table 6: Test error rates (%) of Shake-Shake (26 2x96d) on Reduced CIFAR-10 and reduced SVHN

Simple AutoAugment PBA AdaAug

Reduced CIFAR-10
Shake-Shake (26 2x96d) 17.05 10.04 10.64 10.92 ± 0.07

Reduced SVHN
Shake-Shake (26 2x96d) 13.32 5.92 6.46 6.44 ± 0.17

A.2 ADDITIONAL ABLATION STUDY

To clarify the improvements of AdaAug, we compare the performance of AdaAug under different
settings in Table 7: Simple: standard data augmentation is applied; Random: AdaAug is applied with
randomly initialized hγ while keeping the diversity parameters the same; AdaAug (w/o diversity):
AdaAug is applied without the diversity parameters; AdaAug: AdaAug is applied with learned hγ
and the diversity parameters.

Table 7: Test error rate (%) on AdaAug-transfer and AdaAug-direct with different augmentation
configurations.

Task Dataset Simple Random AdaAug (w/o diversity) AdaAug

transfer Oxford 102 Flowers 5.87 4.65 3.70 3.63 ± 0.14
Oxford-IIIT Pets 26.42 23.31 21.18 20.14 ±0.12
FGVC Aircraft 19.87 18.70 17.62 17.50 ± 0.19
Stanford Cars 13.64 12.27 11.62 11.51 ± 0.21

direct CIFAR-10 5.3 3.8 3.7 3.6 ± 0.11
CIFAR-100 26.0 22.4 20.7 19.8 ± 0.08

A.3 FINE-TUNING OF THE DIVERSITY PARAMETERS

The following experiments study the sensitivity of the temperature T and magnitude perturbation
δ on the Flower dataset by changing the values of T and δ around the default values used in our
original experiments. The fine-tuning of the diversity parameters reduces the test-set error rate of
AdaAug-transfer on the Flower dataset from 3.63 to 3.49.

A.4 EFFICIENCY OF POLICY SEARCH

We compare the GPU hours needed to search the augmentation policy between different Automated
Data Augmentation methods in Table 9. Among the baselines, AdaAug is more efficient than
AutoAugment, PBA and Fast AutoAugment.

A.5 MORE ANALYSIS ON ADAAUG POLICY LEARNING

A.5.1 CONVERGENCE OF POLICY LEARNING

Here, we provide some insights and empirical evidences for the convergence in policy training. In
particular, Figure 4 shows the training and validation losses when learning the CIFAR-10 augmen-
tation policy. The training and validation losses converge to some fixed values towards the end of
training. In addition, we also visualize the change of the augmentation parameters (p and µ) in Fig-
ure 5. The magnitude parameters start at a smaller value and converge towards the end of training.
For the augmentation probability, most of the candidates are stabilized after certain epochs while
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Table 8: Test-set error rate (%) on AdaAug-transfer on Flower dataset with different values of δ and
T .

δ 0.1 0.2 0.3 0.4 0.5 T 0.1 0.2 0.3 0.4 0.5

T = 3.0 3.80 3.81 3.63 3.49 3.67 δ = 0.3 4.16 3.92 3.63 3.92 4.28

Table 9: GPU hours needed to find the augmentation policy using AA, PBA, Fast AA, DADA, Faster
AA, and AdaAug.

AA PBA Fast AA DADA Faster AA AdaAug

CIFAR-10 5,000 5 3.5 0.1 0.23 2.89
SVHN 1,000 1 1.5 0.1 0.061 1.63

some others are updated more frequently. These are the evidences that show the convergence of
our proposed policy training method. For a more thorough analysis for the policy convergence, we
would like to leave it as the future work.

Figure 4: Convergence of the training loss (left) and validation loss (right) during the policy learning
on CIFAR-10 dataset.

A.5.2 ANALYSIS OF LEARNED AUGMENTATION MAGNITUDE

Complement with the augmentation probability in Figure 2, Figure 6 shows the augmentation magni-
tude for CIFAR-10 and SVHN. We observe that the policy magnitude λ also shows slight variations
among different classes and instances. Although the observation is less prominent and is harder to
interpret when compared to the augmentation probability p, the learned augmentation magnitude
adapts to different data samples.

A.5.3 VARIANCE OF LEARNED AUGMENTATION POLICY GROUPED BY CLASS

In Figure 7, we plot the standard deviations of the predicted augmentation probabilities of the image
instances grouped by its class label. It is observed that even within the same class, the predicted
augmentation policy is different across instances. It is a clue that the AdaAug policy captures some
instance-level augmentation information.

A.5.4 DISTRIBUTIONS OF THE AUGMENTATION PARAMETERS IN ADAAUG-TRANSFER

In Figure 8, we show the distributions of the augmentation parameters when transferring the learned
policy to the Flower, Pet, Car and Aircraft datasets. The distributions of the augmentation pa-
rameters show slight differences between different tasks. Apparently, we observe that the colour
transformations, for example Colour, Invert and Solarize are less preferred in the Flower and Pet
datasets, while shearing operations are relatively more favourable in the Car and Aircraft dataset.
The observation of using less color transformation for the Flower dataset aligns with the findings
from Lee et al. (2021). Although some differences in the augmentation distributions may be less
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Figure 5: Update of the augmentation probability (left) and magnitude (right) during the policy
learning.

Figure 6: Illustration of the learned augmentation magnitudes for CIFAR-10 (left) and SVHN (right).

prominent and harder to interpret when compared to the AdaAug-direct cases, the policy shows its
adaptations to different tasks.

A.6 LIMITATIONS

Although AdaAug is differentiable and efficient in search, it requires forming different augmen-
tation paths and passing the images through each path. Compared to standard training, where we
forward b images in one mini-batch, AdaAug processes b · |T| images in the exploration pass. At
inference time, AdaAug keeps a pre-trained policy network (πθ) to augment the new dataset. This
adds extra computational effort when compared to other AutoDA policies, which may be a concern
if the image resolution and model size are large but the computational resources are limited.
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Figure 7: Illustration of the policy probability variations for CIFAR-10 (left) and SVHN (right).

Figure 8: Illustration of the augmentation probability (left) and magnitude (right) when transferring
the learned augmentation policy to the Flower, Pet, Car and Aircraft datasets.
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