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ABSTRACT

We consider the distributed learning problem with data dispersed across multiple workers
under the orchestration of a central server. Asynchronous Stochastic Gradient Descent (SGD)
has been widely explored in such a setting to reduce the synchronization overhead associated
with parallelization. However, prior works have shown that the performance of asynchronous
SGD algorithms depends on a bounded dissimilarity condition among the workers’ local
data, a condition that can drastically affect their efficiency when the workers’ data are highly
heterogeneous. To overcome this limitation, we introduce the Incremental Aggregated Asyn-
chronous SGD (IA2SGD) algorithm. With a server-side buffer, IA2SGD makes full use of stale
stochastic gradients from all workers to neutralize the adverse effects of data heterogeneity. In
an asynchronous implementation setting, the algorithm entails two distinct time lags in the
model parameters and data samples utilized in the server’s iterations. Furthermore, by adopting
an incremental aggregation strategy, IA2SGD maintains a per-iteration computational cost
that is on par with traditional asynchronous SGD algorithms. Our analysis demonstrates that
IA2SGD achieves a consistent convergence rate for smooth nonconvex problems for arbitrarily
heterogeneous data. Numerical experiments indicate that IA2SGD compares favorably with
existing asynchronous and synchronous SGD-based algorithms.

1 INTRODUCTION

In traditional machine learning, training often occurs on a single machine. This approach can be restrictive when
handling large datasets or complex models that demand substantial computational resources. Distributed machine
learning overcomes this constraint by utilizing multiple machines that work in parallel. This method distributes
the computational workload and data across several nodes or workers, enabling faster and more scalable training.

We focus on a common distributed machine learning paradigm, known as the data parallelism approach. In this
setup, the training data are distributed among multiple workers, with each worker independently conducting
computations on its local data. As an extension of stochastic gradient descent (SGD) used on a single machine,
synchronous SGD (Cotter et al., 2011; Dekel et al., 2012; Chen et al., 2016; Goyal et al., 2017) stands as a
prominent example of data-parallel training algorithms. In synchronous SGD, the server broadcasts the latest
model to all workers, who then simultaneously compute stochastic gradients using their respective datasets.
After local computation, these workers send their stochastic gradients back to the central server. The server then
aggregates these stochastic gradients and updates the model accordingly.

However, variations in computation speeds and communication bandwidths across workers, typically due to
the differences in hardware, are common. In synchronous SGD, this disparity forces all workers to wait for the
slowest one to complete its computations before proceeding to the next iteration. This issue, often referred to as
the straggler effect, leads to significant idle times, severely limiting the efficiency and scalability of the approach.
To address this problem, asynchronous SGD (ASGD) algorithms have been extensively studied to mitigate the
synchronization overhead among workers. Since nodes operate independently, each can proceed at its own pace
without waiting for others. This attribute is especially beneficial in ad-hoc clusters or cloud environments where
hardware heterogeneity is prevalent (Assran et al., 2020).

The primary challenge faced by asynchronous training is that its efficiency can be compromised by data
heterogeneity. This issue arises because fast workers are able to send more frequent updates to the server,
while slower workers participate less frequently. Consequently, the training process may become biased, as
the data from fast and slow workers are not equally represented in the server’s model updates. Recent research
efforts have addressed the problem of data heterogeneity in ASGD (Gao et al., 2021; Mishchenko et al., 2022;
Koloskova et al., 2022; Islamov et al., 2024). These studies focus on the convergence properties of ASGD
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under conditions where the dissimilarity of local objective functions is bounded. However, if the local datasets
are highly heterogeneous, leading to significant differences in local objective functions, then the convergence
performance of these algorithms can be substantially reduced.

1.1 OUR CONTRIBUTIONS

The aim of this paper is to tackle the above limitations of existing ASGD algorithms in handling heterogeneous
data. Our main contributions are summarized as follows:

1) We propose the incremental aggregated ASGD (IA2SGD) algorithm for distributed training, with the following
key features:
• IA2SGD handles the data heterogeneity issue through using an aggregated stochastic gradients from all

workers, which are computed based on both stale models and stale data samples. This leads to a dual-
delayed aggregated stochastic gradient at the server, contrasting sharply with existing ASGD algorithms
that use stale models but fresh data samples for each iteration.

• IA2SGD can operate in a fully asynchronous manner, meaning that the server updates the model as soon
as it receives a stochastic gradient from any worker, without the need to wait for other workers.

• Although IA2SGD requires aggregation of stochastic gradients from all workers in every iteration, it can be
implemented incrementally by storing each worker’s latest aggregated stochastic gradient at a server-side
buffer, ensuring a per-iteration computational cost comparable to existing ASGD algorithms.

2) Through a careful analysis accounting for the time lags inherent in the dual-delayed system, we demonstrate
that IA2SGD achieves a sublinear convergence rate for general smooth but nonconvex optimization problems
under mild assumptions. Our analysis does not depend on bounded function dissimilarity conditions,
indicating that IA2SGD can achieve rapid and consistent convergence on arbitrarily heterogeneous data.

3) We perform experiments comparing IA2SGD with other ASGD and aggregation-based algorithms in training
deep neural networks on the CIFAR-10 dataset. We show that IA2SGD delivers competitive runtime
performance relative to asynchronous and synchronous SGD-based algorithms, validating its effectiveness
and efficiency in practical applications.

To our best knowledge, the proposed IA2SGD algorithm is among the first ASGD algorithms with guaranteed
exact convergence without the assumption of bounded function dissimilarity.

2 PROBLEM SETUP AND PRIOR ART

Consider a distributed machine learning setting involving n workers and a server. Our goal is to tackle the
following stochastic optimization problem:

min
w∈Rd

F (w) :=
1

n

n∑
i=1

Fi(w), where Fi(w) := Eξi∼Pi
[fi(w; ξi)] . (1)

Here, d ∈ Z+ denotes the dimension of the model parameters, and ξi ∈ Ξi is a data sample from worker i,
following a probability distribution Pi supported on the sample space Ξi. Each local loss function fi(·; ξi),
defined for i ∈ [n] := {1, . . . , n} and ξi ∈ Ξi, is continuously differentiable and accessible to worker i. Problem
(1) shall be solved collaboratively by n workers under the coordination of a central server. Our focus is on the
heterogeneous data scenarios, where the local data distributions Pi differ significantly. This setting is particularly
relevant in contexts such as data-parallel distributed training (Verbraeken et al., 2020) and horizontal federated
learning (Yang et al., 2019).

In vanilla ASGD (Nedić et al., 2001; Agarwal & Duchi, 2011), every computed stochastic gradient at a worker
triggers a model update at the server. Given some initial model w0 ∈ Rd, this results in the following iterations
performed by the server:

wt = wt−1 − η∇fjt(w
t−τjt (t); ξtjt), t = 1, 2, . . . , (2)

where jt ∈ [n] denotes the index of the worker that contributes to the server’s iteration t and τi(t) ∈ [1, t]
represents the delay of the model used to compute the stochastic gradient by worker i at server iteration t. The
updated model, wt, is then transmitted back to worker jt for subsequent local computations. It is important to
note that ξti ∼ Pi is indexed by t to indicate that this particular data sample has not been utilized by the server
prior to iteration t.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Under review as a conference paper at ICLR 2025

The iterative process (2) allows faster workers to participate in the server’s model updates more frequently.
However, when dealing with data heterogeneity where Fi are different, the stochastic gradient ∇fjt(w

t−τjt (t); ξti)
can significantly deviate from ∇F (wt) on average, which can impede the model’s convergence. To be more
specific, we assume that jt follows some distribution {p1, . . . , pn} over [n], where pi is the probability that jt = i
for i ∈ [n]. To have an intuitive understanding on the effects of data heterogeneity, we consider a hypothetical
scenario where the algorithm operates synchronously—that is, τi(t) = 1 for all i ∈ [n]. Then, the stochastic
gradient remains a biased estimate of the exact gradient:

E
[
∇fjt(w

t−1; ξtjt)
]
=

n∑
i=1

pi∇Fi(w
t−1) ̸= ∇F (wt−1).

This scenario serves to highlight that even under such a simpler condition, non-uniform participation by workers
can lead to biased gradient estimates solely due to data heterogeneity. When we transition to asynchronous
operation, as in ASGD, the situation becomes more complex. The inherent delays in ASGD amplify the biases
introduced by data heterogeneity. This results in gradient estimates that deviate further from the true gradient,
complicating convergence. The convergence analysis of vanilla ASGD on heterogeneous data has been attempted
by (Mishchenko et al., 2022). However, vanilla ASGD may not converge to a stationary point of Problem (1) and
the asymptotic bias is proportional to the level of data heterogeneity, as reported in Table 1.

To address the disparity between fast and slow workers, Koloskova et al. (2022) integrates a random worker
scheduling scheme within the ASGD framework. In this approach, after executing iteration (2), the server sends
the updated model wt to a worker sampled from the set of all workers uniformly at random. This method
promotes more uniform contribution of workers and ensures the convergence of the iterates to a stationary point
of Problem (1), achieving the best-known convergence rate for ASGD on heterogeneous data. However, as data
heterogeneity increases, the convergence rate is adversely affected, as detailed in Table 1. Additionally, there
is a potential issue with this scheduling method: a worker may be chosen multiple times consecutively before
it completes its current tasks, leading to a backlog of models in the worker’s buffer. This accumulation can
reduce the overall efficiency of the algorithm, as workers may struggle to process a queue of pending models.
In contrast to strategies that employ uniformly random worker sampling, Leconte et al. (2024a) introduces a
non-uniform worker sampling scheme in ASGD to balance the accumulation of queued tasks among both fast
and slow workers. The analysis involves specific assumptions about the processing time distributions, which
facilitate the accurate determination of the stationary distribution of the number of tasks currently being processed.
Additionally, Islamov et al. (2024) has proposed the Shuffled ASGD, which shuffles the sampling order of workers
after a specified number of iterations. This approach aims to further enhance the fairness and efficiency of task
distribution, ensuring that no single worker consistently benefits or suffers from its position in the sampling
sequence. Nevertheless, these state-of-the-art ASGD methods all require the dissimilarity among local functions
Fi to be bounded. Their performance tends to deteriorate in the presence of high data heterogeneity. Further
discussion on other works related to asynchronous training methods can be found in Appendix A.

3 INCREMENTAL AGGREGATED ASGD (IA2SGD)

Given the challenges of managing data heterogeneity while ensuring rapid convergence in ASGD, we introduce
the Incremental Aggregated ASGD (IA2SGD) method. Our key idea behind the method is to enhance updates by
incorporate a full gradient aggregation step, which utilizes the stale stochastic gradients from all the n workers.
Specifically, given some initial model w0 ∈ Rd, the iterative formula of IA2SGD is given by

wt = wt−1 − ηgt, t = 1, 2, . . . . (3)

Importantly, gt is taken as the aggregated stochastic gradient given by

gt :=


1

n

n∑
i=1

∇fi(w
0; ξ1i ), t = 1,

1

n

∑
i ̸=jt

∇fi(w
t−τi(t); ξ

t−ρi(t)
i ) +

1

n
∇fjt(w

t−τjt (t); ξtjt), t = 2, 3, . . . ,

(4)

where τi(t) ∈ [1, t] and ρi(t) ∈ [0, t− 1] are the delays of the models and data samples of worker i in iteration t.

We justify that the above recursions can be implemented in the context of asynchronous training. In iteration
t ≥ 2, the server updates the model according to (3) once it receives the stochastic gradient ∇fjt(w

t−τjt (t); ξtjt)

3
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Server's Iteration Count t

Worker 1:

Worker 2:

Worker 3:

Figure 1: Parallel execution of IA2SGD in a system with 3 workers. The length of each colored arrow
box represents the time a worker spends computing a stochastic gradient. To simplify the illustration,
we assume that the computation time for each worker is constant throughout the training process. Addi-
tionally, the time required for communication between the workers and the server, as well as the server’s
computation time, are not considered in this visualization. Focusing on the server’s iteration t = t0 + 4,
we have jt0+4 = 1 and the aggregated stochastic gradient used in IA2SGD is expressed as: gt0+4 =
1
3

(
∇f1(w

t0+2; ξt0+4
1 ) +∇f2(w

t0−1; ξt0+1
2 ) +∇f3(w

t0−2; ξt0+3
3 )

)
. Except for ξt0+4

1 from worker 1, all the
models and data samples utilized within gt0+4 are stale. Besides, the staleness of the model w and data sample ξ
used by each worker are different, exhibiting dual delays. In contrast, the vanilla ASGD algorithm would only
use the stochastic gradient ∇f1(w

t0+2; ξt0+4
1 ) from worker 1.

from worker jt—which is called the participating worker—without the need to wait for any other workers. For
each non-participating worker i ̸= jt, the superscript of ξt−ρi(t)

i represents the most recent iteration during which
worker i participated in the server’s model update before iteration t. For each newly computed stochastic gradient
∇fjt(w

t−τjt (t); ξtjt), the model used may be outdated, even though the data ξtjt is freshly sampled. This implies
that within the aggregated gradient gt, the delay of the model is always larger than that of the data sample by at
least 1, i.e., for all i ∈ [n] and t ≥ 1,

τi(t) ≥ ρi(t) + 1. (5)

After performing iteration (3), the server sends wt to worker jt for its subsequent gradient computation using
this model.

Dual-Delay Characterization. Unlike the ASGD algorithm (2) that uses only the stochastic gradient
∇fjt(w

t−τjt (t); ξtjt) of the participating worker jt in iteration t, the IA2SGD method further incorporates

the stale stochastic gradients ∇fi(w
t−τi(t); ξ

t−ρi(t)
i ) of all other workers i ̸= jt. In addition, different from (2)

where only the model experiences delay while the data sample remains current, the updates of IA2SGD involves
two distinct types of delays—in both the models and the data samples—which we call dual-delayed. This dual
consideration is crucial for rigorously characterizing asynchrony in our system. To clarify, suppose that worker
jt send a stochastic gradient to the server in iteration t. We use ∇fjt(w

t−τjt (t); ξtjt) to denote this stochastic
gradient, because the model wt−τjt (t) was created in a prior iteration t− τjt(t) while the data sample ξtjt is first
utilized by the server (the data sample is still fresh at time t). As the computation progresses and another worker
sends its gradient at iteration t+ 1 , the previous gradient ∇fjt(w

t−τjt (t); ξtjt) remains as a component in gt+1,
rendering both the model and data used by worker jt increasingly stale at time t+ 1. In Figure 1, we present a
simplified algorithmic process of IA2SGD in a system with 3 workers to illustrate the dual-delay property.

Intuition behind the Effect of Full Aggregation. Traditional ASGD can lead to a bias in the model towards
the data characteristics of faster workers. This is particularly problematic when local data distributions are
heterogeneous, as it can skew the convergence of the model and necessitate assumptions about bounded data
heterogeneity to control this bias. Our IA2SGD tackles this issue by incorporating outdated stochastic gradients
from all workers in every iteration, similar to a synchronous aggregation model. In synchronous SGD, the gradient
at each iteration is the average of gradients computed concurrently across all workers: 1

n

∑n
i=1 ∇fi(w

t−1; ξti).
This full aggregation naturally mitigates the bias caused by data heterogeneity among workers and does not
require the assumption of bounded heterogeneity. In IA2SGD, the term gt serves as an approximation of this
synchronous gradient. By ensuring that every worker, regardless of their speed, contributes to the global update
within a bounded delay (Assumption 5), we control the approximation error of gt. This controlled approximation
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Algorithm 1 Incremental Aggregated Asynchronous SGD (IA2SGD)

1: Input: n, T ∈ Z++, η > 0, w0 ∈ Rd

2: Initialization: For worker i ∈ [n], it computes G1
i = ∇fi(w

0; ξ1i ), stores it in the worker’s buffer, and
sends it to the server. The server computes g1 = 1

n

∑n
i=1 G

1
i and w1 = w0 − ηg1, stores them in the

server’s buffers, and broadcasts w1 to all workers
3: for t = 2, 3, . . . , T do
4: Once some worker jt finishes computing Gt

jt
= ∇fjt(w

t−τjt (t); ξtjt), it sends δt = Gt
jt
−Gt−1

jt
to the

server and write Gt
jt

into its local buffer
5: The server computes the aggregated stochastic gradient as gt = gt−1+δt/n and writes gt into its gradient

buffer
6: The server computes the new model as wt = wt−1 − ηgt, sends wt to worker jt, and writes wt into its

model buffer
7: end for
8: Output: wr−1, where r selected uniformly random from [T ]

allows us to effectively balance between the benefits of asynchrony and the robustness of synchronous updates,
improving convergence rates despite the use of potentially outdated gradients.

3.1 INCREMENTAL AGGREGATED IMPLEMENTATIONS

We define τi(1) = 1 and ρi(1) = 0 for all i ∈ [n]. Note that τjt(t) ≥ 1 and ρjt(t) = 0 for all t ≥ 1, then the
aggregated stochastic gradient gt defined in (4) can be expressed more compactly as

gt =
1

n

n∑
i=1

∇fi(w
t−τi(t); ξ

t−ρi(t)
i )︸ ︷︷ ︸

=:Gt
i

, t = 1, 2, . . . .

The evolution of the delays associated with the data samples is described by:

ρi(t) =

{
0, if i = jt
ρi(t− 1) + 1, if i ̸= jt

, t = 2, 3, . . . , (6)

and the delay τi(t) associated with the model satisfies τi(t) = τi(t − 1) + 1 for all i ̸= jt. Therefore, the
aggregated stochastic gradient gt utilized by IA2SGD can be updated in an incremental manner:

gt = gt−1 − 1

n
∇fjt(w

t−1−τjt (t−1); ξ
t−1−ρjt (t−1)
jt

)︸ ︷︷ ︸
Gt−1

jt

+
1

n
∇fjt(w

t−τjt (t); ξtjt)︸ ︷︷ ︸
Gt

jt

, t = 2, 3, . . . , (7)

thus we call IA2SGD an incremental aggregated method. By letting each worker to maintain a record of the
last stochastic gradient Gt−1

i and the server to maintain the aggregated stochastic gradient gt−1 computed in
the last iteration, computing the new gt can be implemented rather efficiently. Specifically, once worker jt has
completed computing Gt

jt
, it uploads δt := Gt

jt
−Gt−1

jt
to the server. Then, the server updates the aggregated

stochastic gradient as gt = gt−1+δt/n according to (7). In view of this, the server’s per-iteration computational
complexity is O(d) in IA2SGD, which is independent of the number of workers n and thus aligns with that of
traditional ASGD algorithms (Mishchenko et al., 2022; Koloskova et al., 2022; Leconte et al., 2024a; Islamov
et al., 2024). The overall procedures of IA2SGD are described in Algorithm 1 and a pictorial comparison between
traditional ASGD and IA2SGD during a single communication round is illustrated in Figure 2.

Server-Side Memory Management. As depicted in Figure 2, compared to traditional ASGD, IA2SGD requires
only an additional memory allocation for a d-dimensional vector at the server and each worker. The additional
O(d) memory requirement per worker, indeed, does not scale with the number of workers or the mini-batch
size, which generally keeps the memory overhead manageable. However, this could still be a limitation in
environments where clients have extremely restricted memory capabilities. To address such scenarios, our
algorithm design includes provisions for flexible implementation strategies that can accommodate varying
memory capacities among the workers. For example, using the system architecture illustrated in Figure 2, we can
adopt the following server-side memory management strategy: For a memory-restricted worker (e.g., worker
2), we can adapt the system such that the server temporarily stores the previous gradient Gt−1

2 . When worker 2

5
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computes the new gradient Gt
2, it only needs to send this new gradient to the server. The server then computes

the difference δt = Gt
2 −Gt−1

2 , reducing the memory load on worker 2.

Mini-Batch Variant. For conciseness of presentation, each worker computes a stochastic gradient using just
one data sample at a time in Algorithm 1. However, to better balance the stochastic gradient noise and per-
iteration computation/memory costs, it is advantageous to employ multiple samples. With a slight abuse of
notation, we define ∇fi(w

t−τi(t);Dt−ρi(t)
i ) := 1

bi

∑bi
k=1 ∇fi(w

t−τi(t); ξ
t−ρi(t)
i,k ), where Di is a set of data

samples independently drawn from Pi with batch size bi ≥ 1. Using gt = 1
n

∑n
i=1 ∇fi(w

t−τi(t);Dt−ρi(t)
i ) as

the aggregated stochastic gradient in iteration (3) yields the mini-batch version of IA2SGD.

4 THEORETICAL ANALYSIS

This section delves into the theoretical underpinnings of convergence behaviors of IA2SGD. For clarity in our
discussion, we present the convergence analysis of Algorithm 1 without mini-batching. The technical results
discussed herein can be readily generalized to the mini-batch variant of IA2SGD.

To prepare for the analysis, we introduce the following standard assumptions that are instrumental to our analysis.

Assumption 1. There exists F ∗ > −∞ such that F (w) ≥ F ∗ for all w ∈ Rd.

Assumption 2. Fi is L-smooth, i.e., Fi is continuously differentiable and there exists L ≥ 0 such that

∥∇Fi(w)−∇Fi(w
′)∥2 ≤ L∥w −w′∥2, ∀ w,w′ ∈ Rd.

Assumption 3. Let wr and ws with s, r ≥ 0 be iterates generated by Algorithm 1, ξti ∈ Ξi with i ∈ [n] and
t ≥ 1 be a data sample drawn from Pi, and Fs be the sigma algebra generated by w1, . . . ,ws. If r ≤ s < t,
then

E
[
∇fi(w

r; ξti) | Fs

]
= ∇Fi(w

r). (8)

Assumption 3 specifies that the stochastic gradient estimate is unbiased. It is important to note that the iterate wr

may depend on ξti for different times r and t, rendering ∇fi(w
r; ξti) a potentially biased estimate of ∇Fi(w

r).
To maintain the unbiasedness as defined in equation (8), it is critical to ensure that r ≤ s < t. This condition
guarantees that Fs encompasses all information present in wr and that ξti is independent of Fs.

Furthermore, we impose upper bounds on the conditional variance of stochastic gradients:

Assumption 4. Let wr and ws with s, r ≥ 0 be iterates generated by Algorithm 1, ξti ∈ Ξi with i ∈ [n] and
t ≥ 1 be a data sample drawn from Pi, and Fs be the sigma algebra generated by w1, . . . ,ws. If r ≤ s < t,
then there exists a constant σ ≥ 0 such that

E
[
∥∇fi(w

r; ξti)−∇Fi(w
r)∥22 | Fs

]
≤ σ2.

Lastly, we assume that each worker participates in the server’s model updates within a bounded number of
iterations, encapsulated by the following assumption regarding the maximum delay of model parameters:

Assumption 5. There exists τmax ≥ 1 such that τi(t) ≤ τmax for all i ∈ [n] in Algorithm 1.

4.1 CONVERGENCE ANALYSIS OF IA2SGD

As we focus on the non-convex optimization setting where the loss functions are only assumed to the lower
bounded and smooth (cf. Assumption 1, 2), our aim is to analyze the convergence rate of IA2SGD towards a
stationary solution of (1), i.e., the number of iterations required to find ŵ so that E∥∇F (ŵ)∥2 ≤ ϵ for some
ϵ > 0. In the following, we outline the analysis idea and highlight on the technical challenges that have to be
overcomed.

Our first step is to observe the following descent lemma that holds under Assumption 2, i.e., for any t ≥ 1,

E[F (wt)]− E[F (wt−1)] ≤ E[⟨∇F (wt−1),wt −wt−1⟩] + L

2
E∥wt −wt−1∥22

=− ηE⟨∇F (wt−1), gt⟩+ Lη2

2
E∥gt∥22. (9)
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(a) Traditional ASGD
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Worker 2

Training Data
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1 5

3 4

2

(b) IA2SGD

Figure 2: Comparison of a single communication round of traditional ASGD and IA2SGD. Suppose that worker
2 participates in the server’s model update in iteration t. In traditional ASGD, each worker directly sends the
freshly computed stochastic gradient Gt

2 = ∇f2(w
t−τ2(t); ξt2) to the server. While in IA2SGD, each worker

maintains a memory of the most recently evaluated stochastic gradient Gt−1
2 and sends the gradient difference

δt = Gt
2 −Gt−1

2 to the server.

Intuitively, both E⟨∇F (wt−1), gt⟩ and E∥gt∥22 can be regarded as biased estimates of ∥∇F (wt−1)∥22 ≥ 0.
Subsequently, selecting an appropriate step size η can make the right-hand side of (9) negative, thereby ensuring
a sufficient decrease in the expected function value in each iteration.

The above intuition is indeed correct when τmax = 1, i.e., the algorithm is synchronous and there are no delays.
However, due to the dual-delayed property of the information encapsulated in gt, handling the inner product
term is not trivial. To describe the challenge, note that

⟨∇F (wt−1), gt⟩ = 1

n

n∑
i=1

⟨∇F (wt−1),∇fi(w
t−τi(t); ξ

t−ρi(t)
i )⟩.

According to the iterative formula (3), wt−1 is a function of ξt−ρi(t)
i for all i ∈ [n] so that t − ρi(t) ≤ t − 1.

Consequently, we cannot apply conditional expectation to simplify the summand in the above, i.e.,

E⟨∇F (wt−1),∇fi(w
t−τi(t); ξ

t−ρi(t)
i )⟩ ≠ E⟨∇F (wt−1),∇Fi(w

t−τi(t))⟩.
Thus we can no longer obtain a simple expression for the expectation of the inner product.1 To address this
challenge, our idea is to decompose the inner product into two terms:

⟨∇F (wt−1), gt⟩ = ⟨∇F (w[t−τmax]+), gt⟩+ ⟨∇F (wt−1)−∇F (w[t−τmax]+), gt⟩, (10)

where [x]+ := max{x, 0} for x ∈ R. For the first term in the right-hand-side (RHS) of (10), utilizing Assumption
5 and considering the expectation conditioned on the most outdated model, we have the desired property:

E
〈
∇F (w[t−τmax]+), gt

〉
= 1

n

∑n
i=1 E⟨∇F (w[t−τmax]+),∇Fi(w

t−τi(t))⟩
Then, through carefully controlling the second error term in the RHS of (10), we arrive at a lower bound for the
inner product:
Proposition 1. Suppose that Assumptions 2–5 hold. If the stepsize satisfies η ≤ 1

16Lτmax
, then it holds for all

t ≥ 1 that

E⟨∇F (wt−1), gt⟩ ≥ 1

8
E∥∇F (wt−1)∥22 − 2Lη

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22 − 3Lτmaxη
σ2

n

+
1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

− 6L2τmaxη
2

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

,

1We remark that prior studies (Lian et al., 2018; Avdiukhin & Kasiviswanathan, 2021; Zhang et al., 2023; Wang et al.,
2023b) involved similar inner product terms in their analysis and have treated them with E

〈
∇F (wr),∇fi(w

s; ξt
i)
〉
=

E ⟨∇F (wr),∇Fi(w
s)⟩ for s < t. The latter identity may not hold in the asynchronous setting. This nuanced but crucial

issue may not have been adequately emphasized in these works.
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The proof of Proposition 1 is deferred to Appendix B.2. Equipped with this, we establish the following
convergence bound of IA2SGD:
Theorem 1. Suppose that Assumptions 1–5 hold. Let {wt}Tt=1 be the sequence generated by Algorithm 1. If the
step size η satisfies η ≤ 1

64Lτmax
with ∆ := F (w0)− F ∗, then it holds that

1

T

T∑
t=1

E∥∇F (wt−1)∥22 ≤ 32∆

Tη
+ 128Lτmaxη

σ2

n
+ 128L3τ2maxη

3σ
2

n
. (11)

The proof of Theorem 1 is deferred to Appendix B.3. By property choosing the step size η in Theorem 1, we can
obtain the specific convergence rate of IA2SGD, as stated in the following Corollary:
Corollary 1. Suppose that Assumptions 1–5 hold. Let {wt}Tt=1 be the sequence generated by Algorithm 1 and

the step size be η = 1
2

√
n∆

LτmaxT
. Then, for T = Ω(L∆nτmax), it holds that

1

T

T∑
t=1

E∥∇F (wt−1)∥22 = O

(
(1 + σ2)

√
L∆τmax

nT
+

Lσ2∆3/2√nτmax

T 3/2

)
.

Corollary 1 demonstrates that IA2SGD converges to a stationary point of Problem (1) at a rate of
O
(
(1 + σ2)

√
L∆τmax/(nT )

)
and the transient time T = Ω(nτmax) required for convergence exhibits

moderate linear dependence on both the number of workers and the maximum model delay. Critically,
the convergence rate of IA2SGD is achieved without imposing any assumptions on upper bounds for data
heterogeneity or dissimilarity among individual functions Fi. This indicates that IA2SGD is well-suited
for distributed environments with highly heterogeneous data. For sufficiently small ϵ > 0, we can de-
duce that after acquiring O

(
(1 + σ2)2L∆τmax/(nϵ

2)
)

samples, the output of Algorithm 1, wr−1, satisfies
E∥∇F (wr−1)∥22 = 1

T

∑T
t=1 E∥∇F (wt−1)∥22 ≤ ϵ.

Additionally, Corollary 1 implies that when τmax = O(n), the dependence on τmax in the dominant term of
the convergence bound is offset by the speedup factor 1/n. Consequently, the convergence rate of IA2SGD is

O
(
(1 + σ2)

√
L∆
T + Lσ2∆3/2n

T 3/2

)
.

Remark 1. The step size selection is not unique. A simpler choice can be η =
√

n/T , which does not

rely on any unknown quantities. However, this yields a rate of O
(

∆+Lτmaxσ
2

√
nT

)
, which is suboptimal in

terms of the constant factor. Moreover, the lower bound on T in Corollary 1 can be relaxed by selecting a

smaller step size: η = min

{
1

64Lτmax
, 1
2

(
n∆

Lσ2τmaxT

)1/2
,
(

n∆
4L3σ2τ2

maxT

)1/4}
. Substituting this into (11) yields

1
T

∑T
t=1 E||∇F (wt−1)||22 ≤ O

(
L∆τmax

T +
(

L∆σ2τmax

nT

)1/2
+

(
3
√

L3σ2τ2
max∆

3
√
nT

)3/4
)

for all T ≥ 1, as derived

in Lemma 17 from Koloskova et al. (2020). However, this approach results in a degradation of the non-dominant
term from O(1/T

3
2 ) as shown in Corollary 1 to O(1/T

3
4 ).

Remark 2. Theorem 1 covers the deterministic setting (i.e., σ2 = 0) as a special case. By setting σ2 = 0 and
choosing η = 1

64Lτmax
, inequality (11) simplifies to 1

T

∑T
t=1 E[∥∇F (wt−1∥22)] ≤ O

(
L∆τmax

T

)
. This surpasses

the rate of O(
√

(1+σ2)τmax

nT ) achieved by IA2SGD in the stochastic setting. Furthermore, if τmax = O(n), then
the sample complexity of this deterministic algorithm to reach an ϵ-stationary point is O

(
n
ϵ

)
, which aligns with

that of the nonconvex full gradient descent (see, e.g., Reddi et al. (2016)).

Comparisons with Prior Theoretical Results. We compare the theoretical performance of IA2SGD with several
representative distributed SGD-based algorithms as detailed in Table 1. Representative SGD-based algorithms
that employ full aggregation strategies include sIAG (Wang et al., 2023a) and MIFA (Gu et al., 2021), while
both of which operate synchronously. The analysis of sIAG is applicable only to strongly convex objectives.
The convergence rate of MIFA is established based on the Lipschitz continuity of Hessians and boundedness of
gradient noise, and the transient time of order Ω(nτ2max) exhibits a quadratic dependence on the maximum model
delay. By contrast, our analysis is conducted under less restrictive conditions and achieves a reduced transient
time. FedBuff (Nguyen et al., 2022), a notable semi-asynchronous2 federated learning algorithm, incorporates

2Semi-asynchrony refers to the property that the server needs to wait for multiple participating workers to synchronize
before performing an update, while the non-participating workers continue their on-going jobs asynchronously.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Under review as a conference paper at ICLR 2025

Table 1: Convergence rates of representative distributed SGD-based algorithms for smooth nonconvex problems
with heterogeneous data. (Shorthand notation: Async. = Asynchronous, Agg. = Aggregation-based, Add.
Assump. = Additional assumptions aside from Assumptions 1–4, BDH = Bounded Data Heterogeneity3, BN =
Bounded Noise4, LH = Lipschitz Hessian5, UWP = Uniform Worker Participation6, BG = Bounded Gradients7)

Algorithms Async.? Agg.? Convergence Rates Add. Assump.

Synchronous SGD
(Khaled & Richtárik, 2023)

No Yes O

√ σ2

nT
+

1

T

 –

MIFA
(Gu et al., 2021)

No Yes O
(√

1 + τavg

nKT
σ
2
+

nKστmaxζ + σ2τmaxδρ

T

)
8 BDH, BN, LH

FedBuff
(Nguyen et al., 2022)

Semi Partial O
(

σ2 + Kζ2

√
mKT

+
Kτavgτmaxζ

2 + τmaxσ
2

T

)
9 BDH, UWP

Vanilla ASGD
(Mishchenko et al., 2022)

Yes No O

√σ2

T
+

n

T
+ ζ

2
max

 BDH

Uniform ASGD
(Koloskova et al., 2022)

Yes No O


√

σ2 + ζ2

T
+

3
√

τavg
1
n

∑n
i=1 τ i

avgζ
2
i

T 2/3

 BDH

Shuffled ASGD
(Islamov et al., 2024)

Yes No O

√σ2

T
+

(
√
nζ)2/3 + (nG)2/3

T 2/3
+

n

T

 BDH, BG

IA2SGD
(This Paper)

Yes Yes O
(
(1 + σ

2
)

√
τmax

nT
+

σ2√nτmax

T 3/2

)
–

partial aggregation where only a subset of delayed local updates are considered during each model update of
the server. There has been several convergence analyses for FedBuff (Nguyen et al., 2022; Toghani & Uribe,
2022; Wang et al., 2023b), while they all assume equal probability of worker’s participation in the server’s global
update—an idealistic scenario that rarely holds in practical systems. In the context of asynchronous learning,
existing ASGD algorithms (Mishchenko et al., 2022; Koloskova et al., 2022; Islamov et al., 2024) all require the
data heterogeneity to be bounded, while this assumption is eliminated in our analysis for IA2SGD.

5 NUMERICAL EXPERIMENTS

We simulate a distributed system comprising n workers. To model the hardware variations across different
workers, we employ the fixed-computation-speed model described in (Mishchenko et al., 2022). Specifically,
each worker i consistently takes fixed units of time, si, to compute a stochastic gradient. For each i ∈ [n], si is
drawn from the truncated normal distribution T N (µ,std) with a mean µ = 1 and standard deviation std = 1
and 5, ensuring all time values are greater than 0. A higher std indicates more significant hardware variation,
leading to a greater maximum delay in the models during the training process. Furthermore, we assume that the
communication time between the server and workers, as well as the server’s computation time, are negligible.
We implement IA2SGD with mini-batching, along with other distributed SGD-based algorithms listed in Table 1.
Additionally, we compare the Melenia SGD (Tyurin & Richtárik, 2023) that achieves the optimal time complexity
under the fixed-computation-speed model. Each mini-batch comprises 64 samples, uniformly drawn from the
local datasets allocated to the workers. We allow MIFA and FedBuff to perform one local step each, ensuring
that the workers in these two algorithms have a computation workload comparable to that of the other algorithms.

3There exists ζi > 0 such that ∥∇Fi(w)−∇F (w)∥22 ≤ ζ2i for all i ∈ [n] and w ∈ Rd. Define ζ2 := 1
n

∑n
i=1 ζ

2
i and

ζmax := maxi∈[n]{ζi}, which characterize the heterogeneity of data distributions.
4There exists δ > 0 such that ∥∇fi(w; ξi)−∇Fi(w)∥2 ≤ δ almost surely for all i ∈ [n], w ∈ Rd, and ξi ∼ Pi.
5There exists ρ > 0 such that ∥∇2Fi(w)−∇2Fi(w

′)∥2 ≤ ρ∥w −w′∥2 for all w,w′ ∈ Rd.
6Every worker participates in each iteration of the server with equal probability.
7There exists G ≥ 0 such that ∥∇Fi(w)∥22 ≤ G2 for all i ∈ [n].
8K is the number of local updates and τavg := 1

n(T−1)

∑T−1
t=1

∑n
i=1 τi(t).

9m is the number of workers participating in each iteration of the server. We report the best-known convergence rate of
FedBuff established in (Wang et al., 2023b).
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Figure 3: Convergence curves displaying training losses and test accuracies over time with n = 10 workers.
(1st column: α = 0.1,std = 1; 2nd column: α = 0.1,std = 5; 3rd column: α = 0.5,std = 1; 4th column:
α = 0.5,std = 5)

We evaluate the performance of these algorithms using the CIFAR-10 image dataset (Krizhevsky et al., 2009)
by training a convolutional neural network with two convolutional layers for image classification. Following
the approach described in Yurochkin et al. (2019), we allocate the dataset to the workers based on the Dirichlet
distribution with concentration parameter α. A lower α results in greater data heterogeneity among the workers.
The step sizes for the algorithms under comparison are selected from the set {0.001, 0.005, 0.01}, based on
which they achieve the fastest convergence.

5.1 NUMERICAL RESULTS

Each experiment is independently repeated three times using different random seeds, and the mean and standard
deviation of the numerical performance for a configuration of n = 10 workers are shown in Figure 3. In scenarios
of high data heterogeneity, specifically α = 0.1, IA2SGD achieves a better convergence rate in training loss
and test accuracy. Additionally, IA2SGD maintains consistent performance even as the computation speeds of
the workers vary significantly, as indicated by an increasing std. This manifests its robustness to hardware
variations. On the other hand, under conditions of low data heterogeneity, where α = 0.5, the performance of
IA2SGD aligns closely with that of vanilla ASGD. This similarity supports the theoretical convergence rate of
vanilla ASGD, which includes an additive ζ2max term that becomes less significant in the low data heterogeneity
regime. The convergence rate of synchronous SGD is theoretically invariant across different levels of data
heterogeneity. However, its practical runtime performance suffers from the slowest worker, particularly as std
increases. Furthermore, the Uniform ASGD does not deliver satisfactory outcomes, potentially because the
repeated sampling of a slow worker before it completes its task can impair performance.

6 CONCLUSIONS

This paper introduces the Incremental Aggregated Asynchronous SGD (IA2SGD), a novel approach to distributed
machine learning that effectively counteracts the challenges posed by data heterogeneity across workers. By
leveraging an asynchronous mechanism that utilizes stale gradients from all workers, IA2SGD not only alleviates
synchronization overheads but also balances the contributions of diverse worker datasets to the learning process.
Our comprehensive theoretical analysis shows that IA2SGD achieves an O((1 + σ2)

√
τmax/nT ) convergence

rate for solving nonconvex problems, regardless of variations in data distribution across workers. This significant
advancement highlights the robustness and efficiency of IA2SGD in handling highly heterogeneous data scenarios,
which are prevalent in modern distributed environments. Experiments on real-world datasets validate its superior
runtime performance under high data heterogeneity in comparison to other leading distributed SGD-based
algorithms, thereby confirming its potential as an effective tool for large-scale machine learning tasks. While our
approach was to focus comprehensively on data heterogeneity, there can be room for improvement in reducing
the dependence of our convergence rate on maximum delay. Whether our algorithmic framework is able to
achieve both unbounded data heterogeneity and unbounded delay is worth further exploring.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Under review as a conference paper at ICLR 2025

Reproducibility. The source code is available at this anonymized link: https://anonymous.4open.
science/r/asgd/.
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Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions on Machine
Learning Research, 2023.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified theory of
decentralized SGD with changing topology and local updates. In International Conference on Machine
Learning, pp. 5381–5393. PMLR, 2020.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for asynchronous
SGD for distributed and federated learning. In Advances in Neural Information Processing Systems 35, pp.
17202–17215, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009. Available online: https://www.cs.utoronto.ca/˜kriz/
learning-features-2009-TR.pdf.
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A ADDITIONAL RELATED WORKS

Other Variants of ASGD. While numerous variants of ASGD have been developed, they mostly address simpler
scenarios with homogeneous data (Agarwal & Duchi, 2011; Lian et al., 2015; Feyzmahdavian et al., 2016;
Leblond et al., 2018; Stich & Karimireddy, 2020; Arjevani et al., 2020; Dutta et al., 2021), where all workers
operate on the same loss function and possess data with an identical probability distribution. In this setup,
F1 = F2 = · · · = Fn and thus Problem (1) reduces to

min
w∈Rd

F1(w).

Another line of research explores ASGD for homogeneous data under the model parallelism setting (Recht
et al., 2011; De Sa et al., 2015; Mania et al., 2017), where each worker is solely responsible for updating
a specific block of the model parameters independently, such as a distinct layer of a neural network. The
assumption of data homogeneity is valid for shared-memory architectures; however, this assumption becomes
highly idealistic in data-parallelism scenarios, where workers may hold significantly diverse local datasets,
especially in applications such as Internet of Things, healthcare, and financial services (Li et al., 2020; Kairouz
et al., 2021). An independent line of works have also considered ASGD in decentralized networks (Lian et al.,
2018; Even et al., 2024), contrasting with the more commonly studied centralized architectures, as depicted in
Figure 2, that rely on a central server.

Asynchronous Federated Learning. Federated learning (FL) is an emerging distributed machine learning
paradigm that pays particular attention to data privacy and heterogeneity. Asynchronous federated learning
algorithms (Xie et al., 2019; Chen et al., 2020; Nguyen et al., 2022; Zakerinia et al., 2022; Wang et al., 2023b;
Fraboni et al., 2023; Wang et al., 2024; Leconte et al., 2024b) share similarities with ASGD but typically include
a local update strategy that potentially reduces the communication frequency between the server and the workers.
Among these works, FedBuff (Nguyen et al., 2022) serves as a representative algorithm where workers operate
independently, and the server waits for a subset of workers Ct to submit their local updates in each global iteration.
The local and global updates of FedBuff proceeds as follows:

w
τi(t),k
i = w

τi(t),k−1
i − ηℓ∇fi(w

τi(t),k−1
i ; ξt,ki ), k = 1, 2, . . . ,K, i ∈ Ct,

wt = wt−1 − ηg
|Ct|

∑
i∈Ct

(w
τi(t),0
i −w

τi(t),K
i ), t = 1, 2, . . . ,

where ηℓ and ηg are the local and global step sizes, respectively. This approach is a semi-asynchronous algorithm
designed to decrease communication frequency at the expense of increased waiting time. Nevertheless, the
local update strategy in federated learning leads to the client drift phenomenon (Karimireddy et al., 2020; Sun
et al., 2023), where local models at each worker tend to deviate from the global model. Therefore, asynchronous
federated learning algorithms typically require either data heterogeneity or function dissimilarity to be bounded,
so that local models remain closely aligned with the global model throughout the training process.

Incremental Aggregated Gradient (IAG)-Type Methods: The algorithmic concept of IA2SGD is rooted in the
well-established IAG methods (Blatt et al., 2007; Gurbuzbalaban et al., 2017; Vanli et al., 2018), which update
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the model parameters by using a combination of new and previously computed gradients. When solving Problem
(1), the iterative formula of IAG can be expressed as:

wt = wt−1 − ηt
n

n∑
i=1

∇Fi(w
t−τi(t)), t = 1, 2, . . . ,

where {ηt}t≥1 are step sizes. IAG is suitable for asynchronous distributed implementations. SAG (Roux et al.,
2012; Schmidt et al., 2017) and SAGA (Defazio et al., 2014) are randomized versions of IAG, where the index i
of the component function to be updated is selected at random in each iteration. Glasgow & Wootters (2022)
developed ADSAGA, an extension of SAGA to the asynchronous setting, assuming a stochastic delay model
and that the server is aware of the delay distribution. Nevertheless, these algorithms all assume that the exact
gradients ∇Fi(·) can be evaluated by each worker. This is a fundamental difference from our IA2SGD, which
relies solely on stochastic gradients ∇fi(·, ξi) for any ξi ∈ Ξi.

Time Complexity Analyses: Recent research has delved into the time complexities of parallel optimization
algorithms, with notable examples including Melania SGD (Tyurin & Richtárik, 2023), Shadowheart SGD Tyurin
et al. (2024b), and Freya PAGE Tyurin et al. (2024a). Melania SGD achieves optimal time complexity under
the fixed-computation-time model, which is theoretically sound while may not fit real-world scenarios where
computational speeds fluctuate. This method requires adherence to a global update criterion, incorporating an
extra hyperparameter, which could lead to less frequent updates. Conversely, our IA2SGD adapts more flexibly
to these fluctuations with its greedy global update approach, updating server parameters as soon as any stochastic
gradient is received, irrespective of delays. Shadowheart SGD Tyurin et al. (2024b) and Freya PAGE Tyurin
et al. (2024a) extend these discussions by incorporating communication delays and shared dataset considerations,
respectively, offering a broader view under both computation and communication heterogeneity.

B PROOFS OF MAIN RESULTS

For random variables P,Q and function h, we denote by

EP [h(P,Q)] := E[h(P,Q) | Q]

the conditional expectation with respect to P while holding Q constant.

B.1 TECHNICAL LEMMAS

Lemma 1. Suppose that Assumptions 3 and 4 hold. Then, it holds for all t ≥ 1 that

E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t))
)∥∥∥∥∥

2

2

≤ σ2

n
.

Proof. Expanding the squared norm gives

E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t))
)∥∥∥∥∥

2

2

=
1

n2

n∑
i=1

E∥∇fi(w
t−τi(t); ξ

t−ρi(t)
i )−∇Fi(w

t−τi(t))∥22

+
1

n2

∑
i ̸=j

E
〈
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t)),∇fj(w
t−τj(t); ξ

t−ρj(t)
j )−∇Fj(w

t−τj(t))
〉

︸ ︷︷ ︸
Yij

(12)

To simplify Yij for i, j ∈ [n] such that i ̸= j, we assume without loss of generality that ρi(t) ≥ ρj(t). Then,
t− τi(t) ≤ t− ρj(t) and thus ξt−ρj(t)

j is independent of wt−τi(t). Hence, using the law of total expectation and
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Assumption 3, we have

Yij = E
〈
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t)),∇fj(w
t−τj(t); ξ

t−ρj(t)
j )−∇Fj(w

t−τj(t))
〉

= E
[
E
ξ
t−ρj(t)

j ∼Pj

〈
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t)),∇fj(w
t−τj(t); ξ

t−ρj(t)
j )−∇Fj(w

t−τj(t))
〉]

= E
[〈

∇fi(w
t−τi(t); ξ

t−ρi(t)
i )−∇Fi(w

t−τi(t)),E
ξ
t−ρj(t)

j

[
∇fj(w

t−τj(t); ξ
t−ρj(t)
j )−∇Fj(w

t−τj(t))
]〉]

= 0.

Substituting this back into (12) gives

E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t))
)∥∥∥∥∥

2

2

=
1

n2

n∑
i=1

E∥∇fi(w
t−τi(t); ξ

t−ρi(t)
i )−∇Fi(w

t−τi(t))∥22

=
1

n2

n∑
i=1

E
[
E
[
∥∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t))∥22
∣∣∣ wt−τi(t)

]]
≤ σ2

n
. (13)

where the second equality holds due to the law of total expectation and the inequality follows from Assumption
4.

Lemma 2. Suppose that Assumptions 3 and 4 hold. Then, it holds for all i ∈ [n] and t ≥ 1 that

E∥wt −wt−τi(t)∥22 ≤ 2τ2maxη
2σ

2

n
+ 2τmaxη

2
t∑

s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

.

Additionally, we have

E∥wt −w[t−τmax]+∥22 ≤ 2τ2maxη
2σ

2

n
+ 2τmaxη

2
t∑

s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

.

Proof. For all i ∈ [n] and t ≥ 1, it follows from the telescoping sum

t∑
s=1+t−τi(t)

(
ws −ws−1

)
= wt −wt−τi(t)
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and the iterative formula (3) that

E∥wt −wt−τi(t)∥22

= E

∥∥∥∥∥∥
t∑

s=1+t−τi(t)

(
ws −ws−1

)∥∥∥∥∥∥
2

2

= E

∥∥∥∥∥∥
t∑

s=1+t−τi(t)

ηgs

∥∥∥∥∥∥
2

2

= E

∥∥∥∥∥∥
t∑

s=1+t−τi(t)

η

n

n∑
j=1

∇fj(w
s−τj(s); ξ

s−ρj(s)
j )

∥∥∥∥∥∥
2

2

=
η2

n2
E

∥∥∥∥∥∥
t∑

s=1+t−τi(t)

n∑
j=1

(
∇fj(w

s−τj(s); ξ
s−ρj(s)
j )−∇Fj(w

s−τj(s)) +∇Fj(w
s−τj(s))

)∥∥∥∥∥∥
2

2

≤ 2η2

n2
E

∥∥∥∥∥∥
t∑

s=1+t−τi(t)

n∑
j=1

(
∇fj(w

s−τj(s); ξ
s−ρj(s)
j )−∇Fj(w

s−τj(s))
)∥∥∥∥∥∥

2

2︸ ︷︷ ︸
Φ1

+
2η2

n2
E

∥∥∥∥∥∥
t∑

s=1+t−τi(t)

n∑
j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
Φ2

, (14)

where the inequality uses the fact that ∥x+ y∥22 ≤ 2∥x∥22 + 2∥y∥22 for vectors x and y. Subsequently, we upper
bound Φ1 and Φ2, respectively.

Upper bounding Φ1: Expanding Φ1, we have

Φ1 =

t∑
s=1+t−τi(t)

E

∥∥∥∥∥∥
n∑

j=1

(
∇fj(w

s−τj(s); ξ
s−ρj(s)
i )−∇Fj(w

s−τj(s))
)∥∥∥∥∥∥

2

2

+
∑

s,s′:s̸=s′,
1+t−τi(t)≤s,s′≤t

E

〈
n∑

j=1

(
∇fj(w

s−τj(s); ξ
s−ρj(s)
j )−∇Fj(w

s−τj(s))
)
,

n∑
j=1

(
∇fj(w

s′−τj(s
′); ξ

s′−ρj(s
′)

j )−∇Fj(w
s′−τj(s

′))
)〉

︸ ︷︷ ︸
Zss′

.

(15)
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Inspecting the inner product terms in (15), we note that for all s, s′ ∈ [1 + t− τi(t), t] such that s ̸= s′,

Zss′ = E

〈
n∑

j=1

(
∇fj(w

s−τj(s); ξ
s−ρj(s)
j )−∇Fj(w

s−τj(s))
)
,

n∑
j=1

(
∇fj(w

s′−τj(s
′); ξ

s′−ρj(s
′)

j )−∇Fj(w
s′−τj(s

′))
)〉

= E

 n∑
i=1

n∑
j=1

〈
∇fi(w

s−τi(s); ξ
s−ρi(s)
i )−∇Fi(w

s−τi(s)),∇fj(w
s′−τj(s

′); ξ
s′−ρj(s

′)
j )−∇Fj(w

s′−τj(s
′))
〉

=

n∑
i=1

n∑
j=1

E
〈
∇fi(w

s−τi(s); ξ
s−ρi(s)
i )−∇Fi(w

s−τi(s)),∇fj(w
s′−τj(s

′); ξ
s′−ρj(s

′)
j )−∇Fj(w

s′−τj(s
′))
〉

=

n∑
j=1

E
〈
∇fj(w

s−τj(s); ξ
s−ρj(s)
j )−∇Fj(w

s−τj(s)),∇fj(w
s′−τj(s

′); ξ
s′−ρj(s

′)
j )−∇Fj(w

s′−τj(s
′))
〉

+
∑

i,j:i̸=j

E
〈
∇fi(w

s−τi(s); ξ
s−ρi(s)
i )−∇Fi(w

s−τi(s)),∇fj(w
s′−τj(s

′); ξ
s′−ρj(s

′)
j )−∇Fj(w

s′−τj(s
′))
〉

︸ ︷︷ ︸
Zss′

ij

(16)

To simplify Zss′

ij for all i, j ∈ [n] and i ̸= j, we assume with out loss of generality that s− ρi(s) ≥ s′ − ρj(s
′).

This, together with the fact that ρj(s′) ≤ τj(s
′) by (5), implies that s− ρi(s) ≥ s′ − τj(s

′). Thus, ξs−ρi(s)
j is

independent of ws′−ρj(s
′). Further using the law of total expectation and Assumption 3, we have

Zss′

ij = E
[
E
ξ
s−ρi(s)

i

〈
∇fi(w

s−τi(s); ξ
s−ρi(s)
j )−∇Fi(w

s−τi(s)),∇fj(w
s′−τi(s

′); ξ
s′−ρj(s

′)
j )−∇Fj(w

s′−τi(s
′))
〉]

= E
[〈

E
ξ
s−ρi(s)

i

[
∇fi(w

s−τi(s); ξ
s−ρi(s)
i )−∇Fi(w

s−τi(s))
]
,∇fj(w

s′−τi(s
′); ξ

s′−ρj(s
′)

j )−∇Fj(w
s′−τi(s

′))
〉]

= 0

Substituting this back into (16) and using Assumption 4, we have

Zss′ =

n∑
j=1

E
〈
∇fj(w

s−τj(s); ξ
t−ρj(s)
j )−∇Fj(w

s−τj(s)),∇fj(w
s′−τi(s

′); ξ
s′−ρj(s

′)
j )−∇Fj(w

s′−τi(s
′))
〉

≤ 1

2

n∑
j=1

E∥∇fj(w
s−τj(s); ξ

t−ρj(s)
j )−∇Fj(w

s−τj(s))∥22

+
1

2

n∑
j=1

E∥∇fj(w
s′−τi(s

′); ξ
s′−ρj(s

′)
j )−∇Fj(w

s′−τi(s
′))∥22

≤ nσ2.

Plugging this back into (15) and using Lemma 1 yield

Φ1 ≤
t∑

s=1+t−τi(t)

nσ2 +
∑

s,s′:s̸=s′,
1+t−τi(t)≤s,s′≤t

nσ2

= τi(t)nσ
2 + (τi(t)

2 − τi(t))nσ
2

= τi(t)
2nσ2

≤ nτ2maxσ
2. (17)
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Upper bounding Φ2: Following the fact that ∥
∑m

i=1 xi∥22 ≤ m
∑m

i=1 ∥xi∥22 for vectors x1, . . . ,xm, we have

Φ2 = E

∥∥∥∥∥∥
t∑

s=1+t−τi(t)

n∑
j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

≤ τi(t)

t∑
s=1+t−τi(t)

E

∥∥∥∥∥∥
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

.

≤ τmax

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

. (18)

Substituting (17) and (18) back into (14) gives

E∥wt −wt−τi(t)∥22 ≤ 2σ2

n
τ2maxη

2 + 2τmaxη
2

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

,

as desired.

Lemma 3. Suppose that Assumptions 2–4 hold. Then, it holds for all i ∈ [n] and t ≥ 1 that

E∥gt∥22 ≤
(
2 + 8L2τ2maxη

2
) σ2

n
+ 4E∥∇F (wt−1)∥22

+ 8L2τmaxη
2

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

.

Proof. Following the fact that ∥x+ y∥22 ≤ 2∥x∥22 + 2∥y∥22 for vectors x and y, we have

E∥gt∥22

= E

∥∥∥∥∥ 1n
n∑

i=1

∇fi(w
t−τi(t); ξ

t−ρi(t)
i )

∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t))
)
+

1

n

n∑
i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

≤ 2E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(w

t−τi(t); ξ
t−ρi(t)
i )−∇Fi(w

t−τi(t))
)∥∥∥∥∥

2

2

+ 2E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

≤ 2σ2

n
+ 2E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2︸ ︷︷ ︸
Ψ

. (19)
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where the last inequality holds due to Lemma 1. It suffices to upper bound Ψ. We observe that

Ψ = E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1n
n∑

i=1

(
∇Fi(w

t−τi(t))−∇Fi(w
t)
)
+

1

n

n∑
i=1

∇Fi(w
t−1)

∥∥∥∥∥
2

2

≤ 2E

∥∥∥∥∥ 1n
n∑

i=1

(
∇Fi(w

t−τi(t))−∇Fi(w
t)
)∥∥∥∥∥

2

2

+ 2E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−1)

∥∥∥∥∥
2

2

≤ 2

n

n∑
i=1

E∥∇Fi(w
t−τi(t))−∇Fi(w

t)∥22 + 2E∥∇F (wt−1)∥22

≤ 2L2

n

n∑
i=1

E∥wt−τi(t) −wt∥22 + 2E∥∇F (wt−1)∥22, (20)

where the second inequality uses the fact that ∥
∑m

i=1 xi∥22 ≤ m
∑m

i=1 ∥xi∥22 for vectors x1, . . . ,xm. Substitut-
ing Lemma 2 into (20) gives

Ψ ≤ 2L2

2σ2

n
τ2maxη

2 + 2τmaxη
2

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

+ 2E∥∇F (wt−1)∥22

=
4σ2

n
L2τ2maxη

2 + 4L2τmaxη
2

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

+ 2E∥∇F (wt−1)∥22. (21)

Plugging (21) back into (19) gives

E∥gt∥22 ≤
(
2 + 8L2τ2maxη

2
) σ2

n
+ 4E∥∇F (wt−1)∥22

+ 8L2τmaxη
2

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

,

as desired.

B.2 PROOF OF PROPOSITION 1

Proof. We first decompose the inner product into two terms:

E⟨∇F (wt−1), gt⟩ = E
〈
∇F (w[t−τmax]+), gt

〉
︸ ︷︷ ︸

A

+E
〈
∇F (wt−1)−∇F (w[t−τmax]+), gt

〉
︸ ︷︷ ︸

B

. (22)

Subsequently, we lower bound A and B, respectively.
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Lower bounding A: Since ρi(t) ≤ τi(t) ≤ τmax for all i ∈ [n], then t− ρi(t) ≥ t− τmax for all i ∈ [n], which

implies that ξt−ρ1(t)
1 , . . . , ξ

t−ρn(t)
n are independent of w[t−τmax]+ . Then, we have

A = E
[〈

∇F (w[t−τmax]+), gt
〉]

(a)
= E

[
E
ξ
t−ρ1(t)
1 ,...,ξ

t−ρn(t)
n

[〈
∇F (w[t−τmax]+), gt

〉]]
= E

〈
∇F (w[t−τmax]+),E

ξ
t−ρi(t)

i

[
1

n

n∑
i=1

∇fi(w
t−τi(t); ξ

t−ρi(t)
i )

]〉
(b)
= E

〈
∇F (w[t−τmax]+),

1

n

n∑
i=1

∇Fi(w
t−τi(t))

〉

= E

〈
∇F (w[t−τmax]+)−∇F (wt−1),

1

n

n∑
i=1

∇Fi(w
t−τi(t))

〉
︸ ︷︷ ︸

A1

+ E

〈
∇F (wt−1),

1

n

n∑
i=1

∇Fi(w
t−τi(t))

〉
︸ ︷︷ ︸

A2

, (23)

where (a) use the law of total expectation, and (b) holds due to Assumption 3. Then, we lower bound A1 as
follows:

A1 = E

〈
∇F (w[t−τmax]+)−∇F (wt−1),

1

n

n∑
i=1

(
∇Fi(w

t−τi(t))−∇Fi(w
t−1)

)〉
+ E

〈
∇F (w[t−τmax]+)−∇F (wt−1),∇F (wt−1)

〉
≥− 1

2
E∥∇F (w[t−τmax]+)−∇F (wt−1)∥22 −

1

2
E

∥∥∥∥∥ 1n
n∑

i=1

(
∇Fi(w

t−τi(t))−∇Fi(w
t−1)

)∥∥∥∥∥
2

2

− E∥∇F (w[t−τmax]+)−∇F (wt−1)∥22 −
1

4
E∥∇F (wt−1)∥22

=− 1

4
E∥∇F (wt−1)∥22 −

3

2
E∥∇F (w[t−τmax]+)−∇F (wt−1)∥22

− 1

2
E

∥∥∥∥∥ 1n
n∑

i=1

(
∇Fi(w

t−τi(t))−∇Fi(w
t−1)

)∥∥∥∥∥
2

2

, (24)

where the inequality uses the fact that ⟨x,y⟩ ≥ − 1
2∥x∥

2
2 − 1

2∥y∥
2
2 and ⟨x,y⟩ ≥ −∥x∥22 − 1

4∥y∥
2
2 for vectors x

and y. Using the identity ⟨x,y⟩ = 1
2∥x∥

2
2 +

1
2∥y∥

2
2 − 1

2∥x− y∥22 for vectors x and y, we can express A2 as

A2 =
1

2
E∥∇F (wt−1)∥22 +

1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

− 1

2
E

∥∥∥∥∥∇F (wt−1)− 1

n

n∑
i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

. (25)
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Putting (24) and (25) back into (23) gives

A ≥ 1

4
E∥∇F (wt−1)∥22 −

3

2
E∥∇F (wt−1)−∇F (w[t−τmax]+)∥22

− E

∥∥∥∥∥ 1n
n∑

i=1

(
∇Fi(w

t−1)−∇Fi(w
t−τi(t))

)∥∥∥∥∥
2

2

+
1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

(a)

≥ 1

4
E∥∇F (wt−1)∥22 −

3L2

2
E∥wt −w[t−τmax]+∥22

− L2

n

n∑
i=1

E∥wt −wt−τi(t)∥22 +
1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

(b)

≥ 1

4
E∥∇F (wt−1)∥22 +

1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

− 5L2

2

2τ2maxη
2σ

2

n
+ 2τmaxη

2
t∑

s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2


=

1

4
E∥∇F (wt−1)∥22 − 5L2τ2maxη

2σ
2

n
+

1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

− 5L2τmaxη
2

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

, (26)

where (a) uses Assumption 2 and (b) uses Lemma 2.

Lower bounding B: We observe that

B = E
〈
∇F (wt−1)−∇F (w[t−τmax]+), gt

〉
(a)

≥ −E
[
∥∇F (wt−1)−∇F (w[t−τmax]+)∥2∥gt∥2

]
(b)

≥ −LE
[
∥wt −w[t−τmax]+∥2∥gt∥2

]
(c)
= −LE

∥∥∥∥∥∥
t∑

s=1+[t−τmax]+

ηgs

∥∥∥∥∥∥
2

∥gt∥2


(d)

≥ −LE

 t∑
s=1+[t−τmax]+

η∥gs∥2∥gt∥2


(e)

≥ −Lη

t∑
s=1+[t−τmax]+

1

2

(
E∥gs∥22 + E∥gt∥22

)
= −Lη

2

t∑
s=1+[t−τmax]+

E∥gs∥22 −
Lη

2
τmaxE∥gt∥22, (27)

where (a) follows from the Cauchy-Schwartz inequality, (b) follows from Assumption 2, (c) uses the tele-
scoping sum wt −w[t−τmax]+ =

∑t
s=1+[t−τmax]+

(
ws −ws−1

)
=
∑t

s=1+[t−τmax]+
ηgs, (d) uses the triangle

22



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Under review as a conference paper at ICLR 2025

inequality, and (e) is due to the Young’s inequality. Combining (27) with Lemma 3, we have

B ≥− Lη

2

t∑
s=1+[t−τmax]+

((
2 + 8L2τ2maxη

2
) σ2

n
+ 4E∥∇F (ws−1)∥22

+8L2τmaxη
2

s∑
s′=1+[s−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s′−τi(s

′))

∥∥∥∥∥∥
2

2


− Lη

2
τmax

((
2 + 8L2τ2maxη

2
) σ2

n
+ 4E∥∇F (wt−1)∥22

+8L2τmaxη
2

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2


=− (2Lτmaxη + 8L3τ3maxη

3)
σ2

n
− 2Lη

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22 − 2LτmaxηE∥∇F (wt−1)∥22

− 4L3τmaxη
3

t∑
s=1+[t−τmax]+

s∑
s′=1+[s−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s′−τi(s

′))

∥∥∥∥∥∥
2

2

− 4L3τ2maxη
3

t∑
s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

≥− (2Lτmaxη + 8L3τ3maxη
3)
σ2

n
− 2Lη

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22 − 2LτmaxηE∥∇F (wt−1)∥22

− 8L3τ2maxη
3

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

, (28)

where the last inequality uses the fact that
∑t

s=1+[t−K]+

∑s
s′=1+[s−K]+

as′ ≤ K
∑t

s=1+[t−2K]+
as for

a1, . . . , at ≥ 0 and K ≥ 1.

Substituting (26) and (28) into (22) and simplifying it, we have

E⟨∇F (wt−1), gt⟩

≥
(
1

4
− 2Lτmaxη

)
E∥∇F (wt−1)∥22 − 2Lη

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22

− (2Lτmaxη + 5L2τ2maxη
2 + 8L3τ3maxη

3)
σ2

n
+

1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

− (5L2τmaxη
2 + 8L3τ2maxη

3)

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

≥ 1

8
E∥∇F (wt−1)∥22 − 2Lη

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22 − 3Lτmaxη
σ2

n

+
1

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

− 6L2τmaxη
2

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

,

23
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where the last inequality holds because the stepsize condition η ≤ 1/(16Lτmax) implies the following:
1

4
− 2Lτmaxη ≥ 1

8
,

2Lτmaxη + 5L2τ2maxη
2 + 8L3τ3maxη

3 ≤ 2Lτmaxη + 6L2τ2maxη
2 ≤ 3Lτmaxη,

5L2τmaxη
2 + 8L3τ2maxη

3 ≤ 6L2τmaxη
2.

This completes the proof.

B.3 PROOF OF THEOREM 1

Proof. Since F is L-smooth, it follows from the descent lemma that

E[F (wt)]− E[F (wt−1)] ≤ E[⟨∇F (wt−1),wt −wt−1⟩] + L

2
E∥wt −wt−1∥22

=− ηE⟨∇F (wt−1), gt⟩+ Lη2

2
E∥gt∥22.

Applying Lemma 3 and Proposition 1, we obtain

E[F (wt)]− E[F (wt−1)]

≤− 1

8
ηE∥∇F (wt−1)∥22 + 2Lη2

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22 + 3Lτmaxη
2σ

2

n

− 1

2
ηE

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

+ 6L2τmaxη
3

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

+
(
Lη2 + 4L3τ2maxη

4
) σ2

n
+ 4L3τmaxη

4
t∑

s=1+[t−τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

+ 2Lη2E∥∇F (wt−1)∥22

≤−
(
1

8
η − 2Lη2

)
E∥∇F (wt−1)∥22 + 2Lη2

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22

+ (Lη2 + 3Lτmaxη
2 + 4L3τ2maxη

4)
σ2

n
− 1

2
ηE

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

+ (6L2τmaxη
3 + 4L3τmaxη

4)

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

≤− 1

16
ηE∥∇F (wt−1)∥22 + 2Lη2

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22

+ (4Lτmaxη
2 + 4L3τ2maxη

4)
σ2

n

− 1

2
ηE

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(w
t−τi(t))

∥∥∥∥∥
2

2

+ 7L2τmaxη
3

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

, (29)

where the last inequality holds because τmax ≥ 1 ⇒ Lη2 + 3Lτmaxη
2 ≤ 4Lτmaxη and by requiring the

following stepsize conditions:

η ≤ 1

32L
⇐⇒ 1

8
η − 2Lη2 ≥ 1

16
η, (30)

η ≤ 1

4L
=⇒ 6L2τmaxη

3 + 4L3τmaxη
4 ≤ 7L2τmaxη

3. (31)
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Summing up both sides of inequality (29) for t = 1, . . . , T yields

E[F (wT )]− F (w0)

≤− 1

16
η

T∑
t=1

E∥∇F (wt−1)∥22 + 2Lη2
T∑

t=1

t∑
s=1+[t−τmax]+

E∥∇F (ws−1)∥22

+

T∑
t=1

(4Lτmaxη
2 + 4L3τ2maxη

4)
σ2

n

− 1

2
η

T∑
t=1

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
t−τj(t))

∥∥∥∥∥∥
2

2

+ 7L2τmaxη
3

T∑
t=1

t∑
s=1+[t−2τmax]+

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
s−τj(s))

∥∥∥∥∥∥
2

2

≤− 1

16
η

T∑
t=1

E∥∇F (wt−1)∥22 + 2Lτmaxη
2

T∑
t=1

E∥∇F (wt−1)∥22

+

T∑
t=1

(4Lτmaxη
2 + 4L3τ2maxη

4)
σ2

n

− 1

2
η

T∑
t=1

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
t−τj(t))

∥∥∥∥∥∥
2

2

+ 14L2τ2maxη
3

T∑
t=1

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
t−τj(t))

∥∥∥∥∥∥
2

2

=−
(

1

16
η − 2Lτmaxη

2

) T∑
t=1

E∥∇F (wt−1)∥22 +
T∑

t=1

(4Lτmaxη
2 + 4L3τ2maxη

4)
σ2

n

−
(
1

2
η − 14L2τ2maxη

3

) T∑
t=1

E

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fj(w
t−τj(t))

∥∥∥∥∥∥
2

2

≤− 1

32
η

T∑
t=1

E∥∇F (wt−1)∥22 +
T∑

t=1

(4Lτmaxη
2 + 4L3τ2maxη

4)
σ2

n
, (32)

where the second inequality uses the fact that
∑T

t=1

∑t
s=1+[t−K]+

as ≤ K
∑T

t=1 at for a1, . . . , aT ≥ 0 and
K ≥ 1, and the last inequality holds by requiring the following stepsize conditions:

η ≤ 1

64Lτmax
⇐⇒ 1

16
η − 2Lτmaxη

2 ≥ 1

32
η, (33)

η ≤ 1√
28Lτmax

⇐⇒ 1

2
η − 14L2τ2maxη

3 ≥ 0. (34)

Note that the stepsize conditions (30), (31), (33), and (34) are uniformly implied by η ≤ 1
64Lτmax

. Rearranging
(32) and using Assumption 1, we obtain

1

T

T∑
t=1

E∥∇F (wt−1)∥22 ≤ 32(F (w0)− F ∗)

Tη
+ 128Lτmaxη

σ2

n
+ 128L3τ2maxη

3σ
2

n
. (35)

which completes the proof of Theorem 1.

B.4 PROOF OF COROLLARY 1

Proof. Taking η = 1
2

√
n(F (w0)−F∗)

LτmaxT
in the right-hand-side of (11) in Theorem 1, we obtain

1

T

T∑
t=1

E∥∇F (wt−1)∥22 ≤ 64(1 + σ2)

√
Lτmax(F (w0)− F ∗)

nT
+

16Lσ2((F (w0)− F ∗))3/2
√
nτmax

T 3/2
.
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Figure 4: Convergence curves displaying training losses and test accuracies over time with n = 30 workers. (1st
column: α = 0.05,std = 1; 2nd column: α = 0.05,std = 5; 3rd column: α = 0.1,std = 1; 4th column:
α = 0.1,std = 5)

Note that Theorem 1 holds under the stepsize condition η ≤ 1
64Lτmax

. If we take η = 1
2

√
n(F (w0)−F∗)

LτmaxT
, then the

stepsize conditions can be satisfied when

1

2

√
n(F (w0)− F ∗)

LτmaxT
≤ 1

64Lτmax
⇐⇒ T ≥ 1024L(F (w0)− F ∗)nτmax,

which completes the proof.

C ADDITIONAL EXPERIMENTAL DETAILS AND NUMERICAL RESULTS

Data Partitioning. Following the approaches adopted in many works (Yurochkin et al., 2019; Hsu et al., 2019;
Li et al., 2022), we use Dirichlet distribution to split the CIFAR-10 dataset into S subsets. The training set in
CIFAR-10 consists of 50,000 images with 10 different classes. For each class k ∈ [10], we generate a generate a
vector pk ∈ RS from the S-dimensional Dirichlet distribution with concentration parameter α, whose probability
density is given by

DirS(pk;α) :=
1

B(α)

S∏
i=1

pα−1
k,i .

Here, B(α) :=
∏S

i=1 Γ(α)

Γ(Sα) is the Beta function, Γ(·) is the Gamma function, and pk satisfies pk,i ∈ [0, 1] and∑S
i=1 pk,i = 1. After generating p1, . . . ,p10, each instance of class k is assigned to worker i with probability

pk,i.

Numerical Results for n = 30 Workers. We conduct experiments with a configuration of n = 30 workers.
Increasing the number of workers n in the Dirichlet distribution with a given concentration parameter α tends to
result in more balanced data partitioning. For our experiments, we select α = 0.05 and 0.1 to observe the effects
with n = 30. Each experiment is independently conducted three times using different random seeds. We report
the mean and standard deviation of the numerical performance for this configuration in Figure 4. We observe
that IA2SGD and other algorithms display similar performance patterns, as previously shown in Figure 3, across
different levels of data heterogeneity.
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