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Abstract

We introduce SAFEMax, a novel method for Ma-
chine Unlearning in diffusion models. Grounded
in information-theoretic principles, SAFEMax
maximizes the entropy in generated images,
causing the model to generate Gaussian noise
when conditioned on impermissible classes by
ultimately halting its denoising process. Also, our
method controls the balance between forgetting
and retention by selectively focusing on the early
diffusion steps, where class-specific information
is prominent. Our results demonstrate the
effectiveness of SAFEMax and highlight its
substantial efficiency gains over state-of-the-art
methods. We will share code upon acceptance.

1. Introduction
Machine Unlearning (MU) for generative AI aims to prevent
the generation of impermissible content, such as samples
from a specific class—referred to as the forget samples
or forget class. The goal of MU is to correct pre-trained
models efficiently, without retraining from scratch, thereby
minimizing computational overhead. Efficiency is crucial
to reducing both the cost and latency of model correction.

Most state-of-the-art methods in generative MU rely heavily
on unlearning strategies originally developed for discrimi-
native tasks, either by directly adapting existing methods to
generative settings or by incorporating techniques, such as
the Fisher Information Matrix (FIM) (Golatkar et al., 2020;
Foster et al., 2024) and weight masking (Jia et al., 2023),
originally introduced for discriminative MU.

For example, Selective Amnesia (Heng & Soh, 2023) uses
FIM to guide unlearning through elastic weight consol-
idation in generative models. Saliency Unlearning (Fan
et al., 2024) applies weight masks on top of discriminative
MU methods—Random Labeling (Graves et al., 2021) and
Gradient Ascent (Thudi et al., 2022)—which have been ex-
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Figure 1. As the diffusion process progresses: (a) the entropy of the
latent states increases due to the growing dominance of Gaussian
noise, and (b) samples from different classes become increasingly
similar. SAFEMax leverages both of these inherent properties of
diffusion models to achieve effective and controlled unlearning.

tended in generative settings. Other works (Wu & Harandi,
2024a;b; Ko et al., 2024; Patel & Qiu, 2025) adapt Gradient
Ascent or NegGrad+ (Kurmanji et al., 2023) to generative
models and apply multi-objective optimization techniques.

Despite progress in bridging discriminative and generative
MU, insights from state-of-the-art approaches in discrimina-
tive tasks remain underexplored. Among recent discrimina-
tive MU methods, LoTUS (Spartalis et al., 2025) stands out
for its strong unlearning performance and computational
efficiency. It is an entropy-based method that increases the
model’s uncertainty on forget samples by smoothing the
corresponding prediction probabilities up to an information-
theoretic bound, thereby controlling the entropy increase.
Motivated by this approach, we investigate the following
research questions in the context of generative MU:

1. Can we efficiently train a generative model to forget spe-
cific samples by increasing the entropy on those samples?

2. Can we control this process to better balance the trade-off
between unlearning and retention of useful knowledge?

To this end, we introduce a Simple And Fast Entropy
Maximization method for efficient MU in diffusion models.
SAFEMax, for short, maximizes the entropy on the forget
samples by training the model to generate Gaussian noise
when conditioned on the forget class, ultimately halting the
denoising process. Also, it leverages the progressive loss of
information in the diffusion process, as shown in Figure 1,
to control unlearning and balance forgetting and retention.
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Specifically, it applies stronger unlearning in early diffusion
steps, where class-specific details are formed and refined,
and weaker unlearning in the later steps, where latent states
across different classes converge due to the dominant influ-
ence of Gaussian noise. SAFEMax significantly improves
efficiency compared to existing unlearning methods while
preserving state-of-the-art performance, establishing a
scalable and cost-effective solution for MU in generative AI.

2. Simple and Fast Entropy Maximization for
Machine Unlearning in Generative AI

The training of Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., 2020) consists of two processes. First,
during the forward diffusion process, the original image
x0 ∼ q(x) is progressively corrupted with Gaussian noise
over T steps, such that xT ∼N (0, I). The noise level at
each step is determined by a schedule αt, and the latent
state xt remains tractable and can be sampled directly:

q(xt | x0) = N (xt;
√
ᾱtx0, (1−ᾱt)I), ᾱt=

t∏
i=1

αi (1)

In the early diffusion steps, the Gaussian noise has lower
variance (indicated by limt→0 ᾱt = 1), making the latent
states xt more similar to the original image x0. These early
states contain rich semantic information, which we refer
to as class-specific information. As diffusion progresses,
the latent states become more entropic (i.e., noisy) because
of the dominance of cumulative Gaussian noise. In later
diffusion steps, the variance of the injected Gaussian noise
approximates its maximum (indicated by limt→T ᾱt = 0)
and the distribution q(xt) becomes increasingly broad.
Consequently, the latent states gradually lose the specific
structure of the data and approach a state of maximum
entropy. Specifically, for large T , the final latent state of the
diffusion process, xT , approximates the mean of the training
data distribution for all inputs x0 (Zhong et al., 2024).

Then, in the denoising process, a denoiser network ϵθ is
trained to predict the noise ϵt at any arbitrary step t:

L = Et∈[1,T ],ϵ∼N (0,1)[|| ϵt − ϵθ(xt, c, t) ||22] (2)

where c denotes the class of the original image x0.

Unlearning with SAFEMax leverages the inherent Gaussian
noise of the diffusion process, particularly the noise ϵT ,
which corresponds to the maximum entropy latent state xT .
To prevent the denoiser from reconstructing samples of an
impermissible class cf , we effectively halt the denoising
process and maximize entropy in the model’s output by
fine-tuning the model with the following forget loss:

Lf = Et∈[1,T ],ϵ∼N (0,1)[ψ(t) || ϵT − ϵθ(xt, cf , t) ||22] (3)

where ϵT is the cumulative Gaussian noise in the final latent
state, cf is the forget class, and ψ(t) = exp(−t/T ) is a

monotonically decaying function within the range [0, 1]
that emphasizes unlearning in the early diffusion steps,
where class-specific information is most prominent. This
design encourages selective model updates, aiming to better
balance unlearning and retention of useful prior knowledge.

Information-Theoretic Analysis of MU via Entropy
Maximization. Consider a training sample x0 and its
reconstruction x̂ generated by a diffusion model g(x). This
process can be viewed as a Markov chain: x 7→ g(x) 7→ x̂.
Let Pe = Pr{x ̸= x̂} denote the probability of reconstruc-
tion error. Within the context of diffusion models, we can de-
fine that the equality x = x̂ applies when the reconstructed
image x̂ contains the same semantic information as the orig-
inal image x (e.g., belonging to the same class). According
to Fano’s inequality (Cover & Thomas, 2006), we have:

Pe ≥
H(x | x̂)− 1

log | X |
(4)

where | X | is the cardinality of the input space. Equa-
tion (4) indicates that as the reconstructed image x̂ becomes
less informative about the original image x (i.e., as the
conditional entropy H(x | x̂) increases), the lower bound
of the error probability Pe increases, implying that the
generated image x̂ does not share the same semantic
information as the original input x.

To prevent generating images from the forget class, we train
the model to generate images similar to the ideal latent state
xT , which contains pure Gaussian noise (as T → ∞ in the
diffusion process) and thus no semantic information from x
(denoted as x0 in the diffusion process). Leveraging the en-
tropy increase that is inherent in the diffusion trajectory, this
design maximizes H(x | x̂), thereby increasing the lower
bound of reconstruction error Pe and guiding unlearning.

Balancing forgetting and retention with ψ(t). Inspired
by the strategies of delineating information for targeted
MU in discriminative tasks (Spartalis et al., 2025), and loss
scheduling for transfer learning in diffusion models (Zhong
et al., 2024), we introduce a loss scheduling strategy for
targeted MU in generative tasks. Our strategy is motivated
by the observation that class-specific information is most
prominent in the early diffusion steps and becomes increas-
ingly obscured by Gaussian noise as the diffusion evolves,
as shown in Figure 1. To leverage this, we propose a schedul-
ing function that progressively reduces the influence of the
forget loss throughout the diffusion process, thereby target-
ing unlearning in the semantically richer early stages:

ψ(t) = exp(−λ t
T
), for t ∈ [0, T ] (5)

where λ is a hyperparameter to controls the rate of decay. A
larger λ causes ψ(t) to decay rapidly, concentrating the un-
learning effect more narrowly on the early diffusion steps.
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Unlearning Class 0 (airplanes)

(a)
SA

FID=14.29
UA=98.60%

(b)
SalUn

FID=14.11
UA=99.00%

(c)
SAFEMax (Our)

FID=13.11
UA=100.00%

Unlearning Class 2 (birds)

(d)
SA

18.55
UA=1.80%

(e)
SalUn

FID=18.24
UA=98.80%

(f)
SAFEMax (Our)

FID=17.07
UA=0.00%

Figure 2. Qualitative and quantitative results. SAFEMax generates Gaussian noise for the forget class while preserving high-quality
outputs for the retained classes, as reflected in FID. SAFEMax generates noise that is more consistent across forget samples compared to
SA, whereas SalUn does not increase entropy and instead replaces forget samples with those of a fixed class. The UA drops for SAFEMax
and SA on Class 2 (marked in red) not due to unlearning failure, but because the classifier erroneously identifies noise as birds.

Table 1. Evaluation of Unlearning using a ResNet34 classifier
on images generated by a DDPM for a forgotten CIFAR-10 class.
SAFEMax achieves the highest scores in Unlearning Accuracy
(UA) and average entropy (H). The class highlighted in red indi-
cates a case where the classifier failed to evaluate correctly.

C
la

ss SA (Heng & Soh, 2023) SalUn (Fan et al., 2024) SAFEMax (Our)
H ↑ UA (%) ↑ H ↑ UA (%) ↑ H ↑ UA (%) ↑

0 1.062 98.60 0.051 99.00 1.132 100.00
1 0.987 99.60 0.032 100.00 1.156 100.00
2 0.948 1.80 0.084 98.80 1.156 0.00
3 1.006 100.00 0.068 99.60 1.122 100.00
4 0.926 100.00 0.085 99.60 1.128 100.00
5 0.908 100.00 0.040 99.60 1.118 100.00
6 0.993 100.00 0.045 100.00 1.144 100.00
7 1.007 100.00 0.027 100.00 1.136 100.00
8 0.900 100.00 0.045 99.20 1.152 100.00
9 0.998 100.00 0.057 99.20 1.124 100.00

3. Experiments & Discussion
We follow the experimental setup and evaluation framework
of Selective Amnesia (SA) and Saliency Unlearning (SalUn).
We aim to forget a specific class within a DDPM trained
on CIFAR-10 (Krizhevsky, 2009). We apply SalUn on top
of the Random Labeling strategy using saliency masks that
update 50% of the weights, as proposed by the authors for
DDPMs. For SA, we follow the author’s configuration and
perform unlearning for 20,000 iterations. For SAFEMax,
we adopt the same hyperparameter values as SalUn and per-
form unlearning for 1,000 iterations, consistent with SalUn.

To evaluate unlearning, we use a ResNet34 classifier,
pre-trained on ImageNet (Deng et al., 2009) and fine-tuned
on CIFAR-10 for 20 epochs. We report two key metrics: (i)
Unlearning Accuracy (UA), defined as 100% minus the accu-
racy of the classifier on the forget class, and (ii) the average
entropy (H) of the classifier’s prediction for the forget class,
which captures the uncertainty introduced by the unlearning
method. To evaluate retention (i.e., the model’s perfor-

Table 2. Evaluation of Retention & Efficiency. We report the
mean (µ) and standard deviation (σ) across all CIFAR-10 classes.
SAFEMax achieves the best score in Fréchet Inception Distance
(FID) on generated images from the non-forgotten classes, Run-
time Estimation (RTE) in minutes, and GPU memory usage in GB.

C
la

ss SA (Heng & Soh, 2023) SalUn (Fan et al., 2024) SAFEMax (Our)
FID ↓ RTE ↓ GPU ↓ FID↓ RTE ↓ GPU ↓ FID↓ RTE ↓ GPU ↓

0 14.29 174.32 17.29 14.11 11.56 23.22 13.11 5.82 9.50
1 18.72 174.37 17.29 16.85 11.96 23.23 18.01 5.79 9.50
2 18.55 174.38 17.29 18.24 11.97 23.24 17.07 5.80 9.50
3 17.66 174.76 17.29 16.84 12.03 23.23 15.64 5.89 9.50
4 17.67 174.87 17.29 16.64 12.03 23.24 16.89 5.80 9.50
5 17.31 174.62 17.29 16.95 11.29 23.23 17.07 5.79 9.50
6 17.71 173.75 17.29 16.78 12.00 23.23 16.80 5.79 9.50
7 18.37 173.76 17.29 16.93 12.00 23.23 17.93 5.90 9.50
8 18.56 174.26 17.29 18.72 11.99 23.24 18.20 5.80 9.50
9 18.28 174.65 17.29 15.55 11.98 23.24 16.66 5.85 9.50
µ 17.71 174.37 17.29 16.76 11.81 23.23 16.74 5.83 9.50
σ 1.29 0.38 0.00 1.27 0.25 0.01 0.32 0.04 0.00

mance on the remaining classes), we compute the Fréchet
Inception Distance on generated images for retained classes.
Finally, we measure efficiency by reporting each method’s
Runtime Estimation (RTE) and peak GPU memory usage.

Effectiveness. SAFEMax demonstrates strong unlearning
performance by excelling in both forgetting and retention
of the respective information. Overall, our method achieves
better unlearning accuracy (UA) and retention quality (FID)
than state-of-the-art approaches, as shown in Tables 1 and 2.

In terms of unlearning, SAFEMax consistently achieves
the maximum UA score (100%) in all-but-one case. The
only exception is Class 2 (birds), where the UA drops to 0%,
indicating that the classifier predicts all generated images
for the unlearned class as birds. However, this anomaly
is not due a failure of our method. Instead, the classifier
mistakenly identifies Gaussian noise as birds, as evidenced
in Figure 2. This observation highlights that UA scores can
be misleading in isolation and underscores the importance
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of examining both quantitative and qualitative results.

Notably, SAFEMax consistently achieves the highest
increase in entropy, directly aligning with its design goal
of maximizing uncertainty for the forget class. As shown in
Figure 2, it generates high-entropy noise more reliably than
SA, leading to greater classifier uncertainty, as reflected
in the entropy scores (H) in Table 1. In contrast, SalUn
undermines the entropy-increase objective of Random
Labeling in discriminative tasks. While Random Labeling
originally assigned random incorrect labels to forget
samples at each unlearning iteration, its adaptation in SalUn
maps the forget class to a fixed alternative class (as shown in
Figure 2). This leads the evaluation model to make incorrect
yet high-confidence predictions, as shown in Table 1.

In terms of retention—preserving high image quality for
the remaining classes as measured by FID—SAFEMax gen-
erally achieves state-of-the-art results as shown in Table 2.
Overall, SAFEMax delivers effective forgetting and reten-
tion while requiring significantly less time and memory.

Efficiency. As shown in Table 2, a key advantage of SAFE-
Max is achieving a strong balance between forgetting and
retention without relying on computationally intensive tech-
niques (e.g., the use of FIM, weight masks, or regularization
terms for multi-objective optimization) that introduce sig-
nificant overhead before or during unlearning. Compared to
SalUn, which runs for the same number of iterations, SAFE-
Max is 2× faster. Against SA, our method achieves a 30×
speed-up due to its ability to unlearn effectively in far fewer
iterations. When also accounting for the time to compute the
FIM for SA (1226.98 minutes, not included in the RTE met-
ric), SAFEMax offers a total 230× improvement in runtime.

In terms of GPU memory usage, SAFEMax is 59% more ef-
ficient than SalUn and 45% more efficient than SA. The high
memory demands of SalUn and SA result from their reliance
on storing the saliency masks and FIM, respectively. In con-
trast, SAFEMax does not require complex auxiliary struc-
tures to balance forgetting and retention, and instead uses
a simple, predefined scheduler. This simple yet effective de-
sign makes SAFEMax not only faster but also more practical
for large-scale or resource-constrained applications.

Ablation Study. To assess the role of our scheduling func-
tion ψ(t), we conducted an ablation study, presented in
Figure 3. The results show that SAFEMax achieves strong
unlearning performance even without the scheduler, under-
scoring the robustness of our core method. However, intro-
ducing the decaying scheduler ψ(t) improves the trade-off
between unlearning and retention, as evidenced by improved
image quality in the generated outputs. We further analyze
the impact of the decay parameter λ and verify that a faster
decay (i.e., larger λ) improves retention—even for the forget
class. In our experiments, we used a moderate value of λ=1,

(a) Effect of decaying
scheduler (λ = 1) vs.
no scheduler (λ = 0).
SAFEMax improves the
image quality for retained
classes (see 5.62% im-
provement in FID), while
still unlearning perfectly.

λ UA (%) ↑ FID ↓
0 100.00 13.89
1 100.00 13.11

1 50 100

80

90

100
100

98.8

83.8

λ

UA (%)

(b) As λ increases, more informa-
tion is retained—even for the forget
class, as show by the drop in UA.

(c) λ=0 (d) λ=1 (e) λ=50 (f) λ=100

Figure 3. Ablation study: Increasing λ enhances information
retention. Quantitative and qualitative results from unlearning
Class 0 (airplane) support our hypothesis behind the decaying
scheduler ψ(t): Faster decay (i.e., larger λ) results in greater infor-
mation retention, as shown in (b), (e), and (f) and ψ(t) can enhance
the quality of generated images from the remaining classes, while
still enabling perfect unlearning, as shown in (a), (c), and (d).

without additional tuning. Tuning λ may yield better results.

4. Conclusion
In this paper, we introduced SAFEMax, an effective and
significantly more efficient Machine Unlearning strategy for
diffusion models. Motivated by the information-theoretic
analysis of LoTUS (Spartalis et al., 2025) in discriminative
tasks, we maximized the entropy of the forget samples
by leveraging the natural entropy increase inherent to
diffusion models. We further proposed a simple scheduling
mechanism that targets class-specific information, enhanc-
ing the balance between unlearning and the retention of
useful knowledge. We compared SAFEMax against the
most prominent state-of-the-art approaches for DDPM
unlearning and showed that our method not only achieves
strong unlearning performance but also offers substantial
improvements in computational efficiency. These findings
suggest that SAFEMax is a promising, scalable, and
cost-effective unlearning strategy.

Limitations & Future Work. A more comprehensive
evaluation could further strengthen the validity and applica-
bility of our approach, even though SAFEMax has already
demonstrated strong performance across key benchmarks.
We plan to compare against more recent DDPM unlearning
methods, such as (Patel & Qiu, 2025), once their code is
publicly released, and to extend our evaluation to additional
datasets and Stable Diffusion models.
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A. Broader Social Impact
Methods like SAFEMax align machine learning models with privacy regulations and ethical standards, by particularly pre-
venting the generation of impermissible or sensitive content. However, they can also be misused by adversaries to deliberately
degrade the performance of otherwise well-functioning models, suggesting careful consideration of deployment practices.

B. More Visualizations

Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

SAFEMax (λ = 0) SAFEMax (λ = 50) SAFEMax (λ = 100)

Figure 4. Unlearning Class 0 (airplanes).

Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 5. Unlearning Class 1 (cars).
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Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 6. Unlearning Class 2 (birds).

Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 7. Unlearning Class 3 (cats).

Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 8. Unlearning Class 4 (deer).
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Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 9. Unlearning Class 5 (dogs).

Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 10. Unlearning Class 6 (frogs).

Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 11. Unlearning Class 7 (horses).
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Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 12. Unlearning Class 8 (ships).

Selective Amnesia Saliency Unlearning SAFEMax (λ = 1)

Figure 13. Unlearning Class 9 (trucks).
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