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Abstract. In this paper we propose a method to segment, classify and
quantitatively analyze bacteria from a given Scanning Electron Micro-
scope (SEM) image of the bacterial sample. Thousands of bacteria lives
in the human gut and recent studies have shown that the quantitative
features of the microbiome, such as co-existence ratio of different bacte-
ria, can be indicative of the health condition in humans. Therefore, to
realize a system to quantitatively analyze the gut bacteria of humans, we
propose a method to segment, classify and calculate the ratio of the bac-
teria contents for a few well-known bacteria types. Our method achieves
more than 90% recall for all of original three datasets. Additionally, we
also introduce a novel image processing based touching object separation
algorithm which is applied within the framework of our system. Subse-
quently, we show the comparison results between another state-of-the-art
segmentation method and the introduced algorithm and we empirically
report that our new algorithm has a better performance.
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1 Introduction

In the recent years there’s mounting evidence [5, 6, 12] that thousands of different
types of bacteria inhabiting all of us, known collectively along with their genetic
material as the microbiome, is crucial to our survival, influencing every aspect
of health from our daily mood to body weight. Therefore, it is utmost necessary
that these bacteria which reside inside the human gut be analyzed for further
investigation. However, there are hardly any effective techniques that comes to
one’s mind for this purpose. The current techniques of counting cells include
naked eye inspection, use of automatic colony counters, viable growth counting
methods or the measurement of the microbial mass.

Therefore, in this research, we propose to identify bacterium by morpho-
logical features in high resolution image taken by Scanning Electron Microscope
(SEM). By this method, we expect that we can analyze bacteria in greater detail
than conventional analysis method.

In the current general observation of bacteria, optical microscope is used.
Also, in the conventional image processing method for counting bacteria, the
target is colony of cultured single type of bacteria. The conventional method
will analyze the size or number of colony, not bacteria type [2]. However, our
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target domain is SEM image which has more high resolution, it include visual
feature of membrane or inside of bacteria. Therefore, we propose a method to
classify and quantitatively analyze bacteria from a given SEM image.

In this research, we verified the usefulness of our method using three original
datasets which consisted 6 bio-cultured bacteria types. The results of this study
suggest that our method may be applied to all human microbiota studies, mainly
gut, skin, etc. in the future.

1.1 Related Works

In the field of computer vision, semantic segmentation is the field of research
where the end goal is to classify each pixel in a given image to its respective object
class. Semantic segmentation is a high-level task that paves the way towards
complete scene understanding. The importance of scene understanding as a core
computer vision problem is highlighted by the fact that an increasing number of
applications nourish from inferring knowledge from imagery.

The most popular way of doing semantic segmentation, using CNN, approach
has been through the fully convolutional approach where instead of a linear
combination learning layer at the end, which predicts the class of each pixel at a
time, we use a convolutional layer at the end which performs a 1x1 convolution
to predict the pixel label at once. Since [9], the SegNet [1] has been a popular
architecture to use the deconvolutional method for up sampling the high-level
features into a class wise map.

In cellular image segmentation, especially the ones that are taken by an
electron microscope has always been a challenging problem because of several
reasons such as irregular shape of cells, tightly pack colonies, shape and textural
similarities between different type of bacterium, etc. In addition, the dataset
sizes in the biomedical domain has always remained an issue. To address some
of the issues mentioned above, the ISBI EM segmentation challenge [8] was
launched which resulted in some developments in the EM media segmentation.
Namely, a system by Ciresan et al. [3] which took the sliding-window approach
won the 2012 competition. However, there were some problems with the system
like huge computational cost, etc. However, the one system that won the 2015
competition and addressed the maximum number of problems was the U-Net
[10]. U-Net is very versatile because it follows the Fully Convolutional concept
making it robust to input sizes, hardware constraints, and high computationally
efficient compared with sliding-window approach. Another noticeable property
of the U-Net is skip connections. Skip connection helps to identify with more
high accuracy using high-level feature which has information from large area and
low-level feature which has specific local information.

1.2 Existing Bottleneck

Although deep learning based segmentation systems perform very well in iden-
tifying the class of an object, they suffer from reconstructing the correct border
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in case the cells are too close or actually having some overlap. This problem is
shown with the help of a representative Fig. 1.

L]

Fig.1. (a) An Example Image of bacteria cells from Bacteria Set 3 where the cells are
actually touching each other. (b) An example of binary segmentation result.

To tackle this problem, the conventional U-Net uses a pixel-wise loss weight
map during the model optimization process to magnify the penalty for higher
loss in pixels situated in the border of the cells. This method requires many situ-
ations of touching cells to learn a considerable distribution accurately. However,
number of bacteria images are limited, and it is difficult to control location of
bacterium in the SEM images. However, in the real-world deployment, such an
assumption might be fatal. Also, in case of our dataset, which already have very
few samples to start with, in addition, there are not enough cases of samples with
touching cells that a good distribution can be learned from. However, the prob-
lem of touching cells still exists in our case (Fig. 1) and can greatly hamper the
classification and counting process. In particular, in some of the cases, the cells
were actually touching each other without any background pixels in between. In
those cases, the model fails to separate the cells completely. However, we want
to separate bacteria region to calculate quantitative information of bacteria (for
example, the number or ratio of each type of bacteria). So, we propose a post
processing method to separate touching object in binary images.

Therefore, the contributions of this paper are the following:

— A framework to segment, classify and quantitatively analyze the gut bacteria
from SEM images

— An image-processing based touching object separation algorithm from binary
mask images.

2 Methodology

To realize our overall target of counting and calculating the ratio in the given
bacterial image sample, we have broken down the process into four distinct
modules — (1) Segmentation module, (2) Separation module, (3) Classification
module, (4) Counting module as shown in Fig. 2.
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Module

Segmentation
SEM Image »[ Module Information

’ Separation ’ Classification
Module Module

Fig. 2. The modules in the proposed method.

‘[ Counting ‘ Quantitative

2.1 Segmentation Module

The segmentation module categorizes the image region into foreground and back-
ground region.

Table 1. List of hyperparameter settings used in our model

[Hyper Parameter | Value |
Base Learning rate 0.0001
Learning Policy RMSProp (7]
Decay 0.99
CNN Kernel Size 3x3
MAX Pool Kernel Size 2x2
Deconvolution Kernel Size 2 %2

The main purpose of the segmentation module is to create regions of interest
in the sample image where the bacterial cells are located. In the segmentation
process, this is done by categorizing the bacterial sample image region into back-
ground region and the foreground region. The segmentation process helps the
classifier to have higher confidence of classification accuracy by providing the
prior knowledge of the classification area. The segmentation is done using a
fully convolutional approach using U-Net [10] which performs a pixel-wise bi-
nary segmentation of the bacterial sample image. The U-Net is trained using the
image-label pair. Where the label is a map containing the correct area of fore-
ground and background region. We used the original U-Net architecture from
the original paper. The hyperparameters used in our model are listed in Table
1.

2.2 Separation Module

The separation unit on the other hand is responsible for separating the touching
cells so that the cells can be represented individually for quantitative analysis.
Though our model can often separate the closely situated cells that have an
actual border between them, it still fails to separate the cells that are touching
(Fig. 1).

Also, the problem of touching cells poses a great amount of threat to our
research objective. Therefore, we wanted to address this problem in a coherent
and a redundant manner which makes the separation as accurate as possible.
Therefore, we developed a method for efficient separation of the touching cells.

Our separation method spans in two parts. The first part is localized wa-
tershed transform method, The second part is shape-wise separation method.
Details will be described later, the localized watershed transform is effective
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when the object is circular and two bacteria are touch with a small area (Fig.
3(a)). On the other hand, since the shape-wise separation focuses only on the
shape features around the touching area, it is possible to separate without de-
pending on the overall shape and touching area size (Fig. 3(b)). However, since
the shape-wise separation is difficult to separate the touching cells on the bor-
der (Fig. 3(c)) because this method needs to shape information both sides of
the touching area. the localized watershed method is more robust to separate
bacteria on the border. So we adopted both method. Green arrows are expected
separation point.

Fig. 3. Examples of touching bacteria. (a) is case of circular bacteria touch with a small
area (both separate methods will separate well.) (b) is case of non-circular bacteria
touch with large area (shape-wise separation is more effective.) (c) is case of touching
bacteria are on border (localized watershed is more effective.)

Therefore, the process of our separation algorithm in the current scenario
works in the following steps:

1. Receive an inference map from the model and perform localized watershed
transform on the foreground region which touched image border.

2. On the output map from step 1, perform the shape-wise separation algorithm
for the foreground region which does not touch the image border.

The Localized Watershed Transform
Watershed algorithm [4] is well known as one of the popular segmentation
method for binary image. It separate touching region by spreading region from
core regions using distance map which is calculated by distance transforma-
tion[11]. In normal watershed algorithm, core regions are extracted by thresh-
olding using distance map and fixed thresholding value. But in our target, it is
difficult to decide the fixed thresholding value because the size of bacteria varies.
So, we normalize distance map by dividing by maximum distance of each
connected region. After that, we extract core regions by thresholding with fixed
value (form 0.0 to 1.0). We call this method as the localized watershed transform.
The localized watershed transformation technique is applied to the regions
shown in regions Fig. 4(a). In this part we first isolate each region separately
and then we perform the localized distance transform of that region. After that,
we perform thresholding to retain the seed area (Fig. 4(b)) in that region. After
that we expand the seed regions until they meet each other. The meeting point
is considered to be the border between them (Fig. 4(c)). This step is especially

184

194

200

210

224



225
226

6 ECCV-20 submission ID 12

useful in the case of peripheral cells which does not have a symmetry in the
touching regions.

(a) ) ()

Fig. 4. A set of representation diagrams showing the local watershed transform method
(a) The region to be separated (b) The seed regions are generated through distance
transform and thresholding (c) The cells are separated using watershed transform of
the seeds.

The Shape-Wise Separation Touching Cells

The shape-wise separation model is the original algorithms developed in this
research. First, we begin with the distance transform of the entire inference map
and get the distance map (not localized.) At this point, the relative brightness
level of all foreground pixels represents the distance to the nearest background
pixel as shown in Fig. 5(b). Our aim is to search for pixels that are situated at
the bridge regions as indicated with p in Fig. 5.

(a)

Fig.5. The image of (a) an inference map of an image and (b) the distance map of
every foreground pixel. The distance to the background is denoted by the brightness
of the pixel. Point p is bridge region.

For each foreground pixel, we perform the Algorithm 1 to find the pixels at
the touching regions (known as the bridge pixels). Where p is target pixel of
this task, axis A is axis rotated by @ from horizontal axis, axis B is axis rotated
by 90 degree from axis A, b, and b; is nearest background pixel from pixel p
with direction of positive and negative side in axis B, f.b, and f;b, is nearest
foreground pixel of b, with direction of positive and negative side in axis A, f,.b;
and f;b; is nearest foreground pixel of b; with direction of negative and positive
side in axis A and « is threshold value for distance of nearest foreground pixel
of b . Sometimes, we simply denote b to represent b, or b;. In same sense, f,.b
represents f.b; or f.b,., and fib represents fib, or f;b, also.
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Algorithm 1 Shape-Wise Separation

Require: Segmentation result and Distance map
Ensure: Segmentation result which separated touching cells
Input Segmentation result copy to O
for each pixel p do
for each rotation 6 do
if pixel p satisfy following conditions:
- Brightness along the axis A of the location p is consistent
- Brightness along the axis B of the location p is consistent and lower than pixel
p then
if b, and b; satisfy following conditions:
- Nearest foreground pixel of b: f,.b within the «
- Nearest foreground pixel of b: f;b within the «
- The pixel along axis B of b is a background pixel with in the a then
join b, and b; with a black line in O
end if
end if
end for
end for
Output O

2.3 The Classification Module

Once the touching regions have been successfully separated using the elaborate
separation mechanism described above, we use a class wise classifier on the fi-
nal foreground region to classify them to their respective bacteria classes. This
classifier is a traditional patch wise classifier. The optimal patch size that was
choses in of size 200 x 200 pixels. Classifier is based on VGG-16.

This network basically takes an image and based on the foreground identi-
fied by segmentation module and separation module, spatially slides the model
in a sliding window fashion to classify each patch in the image. The network fi-
nally outputs the probabilities of the class according to the patches. After that,
we adopt majority class in each bacteria region identified by segmentation and
separation module as final classification result.

2.4 Cell Counting

After classifying the bacteria into their respective classes, the counting was con-
ducted which is essential to the end goal of this research and also required for
ratio calculation. The count was done by selecting each foreground region and
by examining the color code of that region as shown in Fig. 6. We count each
isolated foreground region as one bacteria region.

3 Experimental Result

3.1 Dataset Preparation

We have developed following three bacteria datasets. Each No. indicate a kind
of bacteria.
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Fig. 6. A representation diagram showing the detection for counting of cells belonging
to the class corresponding to red color.

— Bacteria Set 1: Consists of two kinds of Bacteria — No.1 and No.2. These
bacteria are distinguishable comparatively in our bacteria datasets.

— Bacteria Set 2: Consists of another two kinds of Bacteria — No.4 and No.7.
No.4 and No.7 are similar and more difficult to distinguish than Bacteria Set
1

— Bacteria Set 3: Consists of six kinds of Bacteria (Setl, Set2 along with
two new kinds) — No.1, No.2, No.4, No.5, No.7 and No.8. This variant of
our dataset is the most challenging one because it has a larger number of
bacteria types, and among them, many of the bacteria types share similar
visual features like shape, texture, etc.

These datasets have been specifically prepared through bio-culture of the
bacteria found in the human gut. Each dataset had around 100 SEM images with
resolution of 960 x 1280 pixels and gray scale. We had made pixel wise annotation
data manually. For training of U-Net, we have generated patches of the images
of size 400 x 400 pixels. For training of classifier, we also used some basic data
augmentation techniques such as rotation and flipping. The classification was
performed on the foreground region of the data with a sliding window approach
of patch size 200 x 200 pixels where the ground truth label of the center pixel
was used as the training label for the patch. Table 2 shows number of bacteria
which are included each dataset and mean size of each bacteria type in training
data. However, note that the mean size of bacteria is smaller than the actual
bacteria size because bacteria on the image boundary are also included in the
mean size calculation.

3.2 Evaluation Criteria

We adopt as final evaluation criteria, pixel accuracy for segmentation result.
The detailed formula for the pixel accuracy for class c is given in equation 1.
For overall evaluation, we use mean pixel accuracy and total pixel accuracy as
well. These are given in equation 2 and 3. In the pixel accuracy for evaluation of
segmentation, T'P stands for true foreground, TN stands for true background,
FP stands for false foreground and F'N stands for false background. Suffix ¢
indicates class index and C' indicates number of classes.
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Table 2. Number and Size of cells

Number of Bacteria Mean Size of
Bacteria Set1[Bacteria Set2[Bacteria Set3|Bacteria [pixel]
Nol 236 - 286 49971
No2 290 - 542 29874
No4 - 46 52 42926
Nob5 - - 201 45054
No7 - 292 123 45439
No8 - - 208 48118
Total 526 338 1412 (ave)43563
. (TP.+ TN,)
Pizel Accuracy(c) = 1
) = TB. T TN, FP, + FN.) (1)
Mean Pixel Accuracy = Z(PixelAccuracy(c))/C (2)

(&

> o(TP.+TN,.) 3)
> (TP.+TN.+ FP.+ FN,.)

Total Pixel Accuracy =

For classification evaluation, we adopt recall and average Absolute Difference
of bacteria Ratio (ADR). Recall is given in equation 4. In the recall, TP stands
for true positive, F'P stands for false positive and F'N stands for false negative for
each class. The false positive in this case was calculated based on the distance
of the center of the prediction and the ground truth. We first compute the
prediction of the central region of every cell and compare it with foreground
label of the ground truth. If there is no specific type of bacteria situated in the
prediction in 100-pixel radius from the center pixel as the ground truth label, we
consider it as false negative (F'N). Likewise, if there is a specific type of bacteria
in the prediction and the same does not appear within 100-pixels center radius
in the ground truth label, we consider it as false positive (FP).

TP,

Recall(c) = TP+ FN) (4)

ADR is calculated from bacteria ratio of ground truth and detection result.
Bacteria ratio of ground truth is calculated by equation 5 and bacteria ratio of
detection result is calculated by equation 6. Where T P., FFN. and F'P. indicate
TP, FN and FP of class C. TP, FN and F P are same as case of recall explained
above.

(TP.+ FN,)

Bacteria Ratio of Ground Truth = m

(5)

(TP.+ FP,)

Bacteria Ratio of Detection Result = m

(6)
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3.3 Experiments

To test our methods and hypotheses, we conducted experiments extensively on
the different datasets described in Section 3.1. Fig. 7 shows an example that
input and each output of module in our proposed method. In Fig. 7(c), each
detected bacteria region colored according to classified result. As you can see,
our method can detect each bacteria region separately, and has classified each
bacteria region into it respective classes encoded in different colors.

{a) {b) (c)

Fig.7. The overall processing pipeline starting with (a) The input image (b) the
foreground-background segmented and separated region (c¢) The final output from the
classifier which has successfully classified each foreground region into its respective
classes encoded in different colors.

Table 3 shows that pixel accuracy for Bacteria Set 1, 2 and 3 respectively. In
Table 3, 1st and 2nd column indicate pixel accuracy for background and bacteria
region, 3rd column indicate mean pixel accuracy of background and bacteria
region, and 4th column indicate pixel accuracy for all pixels in the evaluation
image. We have achieved more than 90% pixel accuracy and mean accuracy.

Table 3. The evaluation result of segmentation

Bacteria| Pixel Accuracy of Pixel Accuracy of Mean Pixel
Set | Background region [%] | Bacteria region [%] | Accuracy [%] | Accuracy [%)
1 96.16 96.41 96.29 96.23
89.54 97.29 93.42 92.52
3 88.84 98.40 93.62 91.91

Table 4, 5 and 6 show that confusion matrix and recall of each dataset. And
table 7, 8 and 9 show that ADR of each dataset. Recall and ADR are already
introduced in Section 3.2.

4 Considerations

4.1 Comparison with the Conventional Method

Let us now consider the comparison of our results with result of conventional
U-Net method using Bacteria Set 3. In Section 1.2 we have talked about the
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Table 4. Confusion Matrix of the Bacteria Table 5. Confusion Matrix of the Bacteria

Set 1 Set 2
Detected Detected
Nol[NoQ[missing[total Recall[%] No4[N07[missing[total Recall[%]
< Nol | 64 1| 65| 98.5 = No4 14| 1 2| 17| 824
=[No2 56 56/ 100 <(No7 146 4| 150| 97.3
H|Total| 64| 56 1| 121 99.2 —|Total| 14| 147 6| 167| 95.8

Table 6. Confusion Matrix of the Bacteria Set 3

Detected

Nol [No2[N04[N05[No?[NoB[miSSing[total Recall[%]
Nol | 51 4 55 92.7
No2 1| 58 1 4 64 92.2
~|Nod 1 1 2| 50.0
<|Nob 9 9| 100
—[No7 1] 11 1| 13| 84.6
No8 2 1 23 2| 28] 82.1
Total| 53| 60| 5| 12| 11| 27 3| 171] 90.1

conventional U-Net model which use weight map for learning the border regions.
In this section we perform experiments to show how the conventional U-Net
compare with our proposed method. Table 10 and Table 11 shows the result
of pixel accuracy and recall of conventional U-Net on the Bacteria Set 3. By
comparison of Table 3 and Table 10, you can see that both of pixel accuracy and
mean accuracy of proposed method are higher than conventional method. Table
11 clearly show accuracy of the proposed method is higher than accuracy of the
conventional U-Net. We also found that in the conventional U-Net model, there
were more than usual holes (Fig. 8(a) (b)) being generated in the foreground
region which may be due to the fact that many border areas which has higher
penalties due to the weight map share similar features with a lot of foreground
region as well. Also, we found that there were cases where in spite of weight
map, the touching cells could not be separated (Fig. 8(c) (d)).

4.2 Evaluation of Separation Module

We evaluate effect of both of separation method: localized watershed transform
and shape-wise separation method. Table 12 shows the relationship between the
presence or absence of each method and the recall. In Table 12, localize watershed
transform is denoted as WS and shape-wise separation denoted as SW-sep. The
both of separation method improved total recall by 20% or more compared to
the case without them.
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Table 7. The result of detection and ratio Table 8. The result of detection and ratio

on the Bacteria Set 1 on the Bacteria Set 2
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Bacteria Ratio[%)]

Ground Truth[Detected[ ADR

Bacteria Ratio[%)]

Ground Truth[Detected[ ADR

Nol 53.7 85.2 4.5 No4 10.2 9.7 0.5
No2 46.3 41.8 4.5 No7 89.8 90.3 0.5
Total 100 100 |(ave)4.5 Total 100 100 |(ave)0.5

Table 9. The result of detection and ratio on the Bacteria Set 3

Bacteria Ratio|%]
Ground Truth[Detected[ ADR
Nol 32.2 41.9 9.7
No2 37.4 27.5 9.9
No4 1.2 2.3 1.2
Nob 5.3 7.0 1.7
No7 7.6 7.0 0.6
No8 16.4 14.3 2.0
Total 100 100 |(ave)4.2

5 Conclusion

We have proposed a technique for efficiently identifying and counting and calcu-
lating the ratio of gut bacteria from a given SEM image. In this context, we have
considered a state-of-the-art method known as the U-Net for object segmenta-
tion in a given SEM image. We have outlined the problems of the conventional
U-Net model.

We have conducted experiments with three datasets — Bacteria Set 1, Bacte-
ria Set 2 and Bacteria Set 3 and we have achieved total recall accuracy of 99.2%,
95.8% and 90.1% on the given datasets respectively. We have also achieved ab-
solute difference of ratio between ground truth and detection result less than 5%
for all datasets we prepared.

In this research, we used the kinds of bacteria sample that was bio-cultured
in the lab. However, our goal of this research is applying to bacterial sample
from the human gut in the future. We would like to address the challenge of
miss-classification and miss-separation in our method to increase the precision
as well. We will improve our method to apply to all human microbiota, mainly
gut, skin, etc.
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Table 10. The evaluation result of segmentation by conventional U-Net

Bacteria Pixel Accuracy of Pixel Accuracy of Mean Pixel
Set | Background region [%)] | Bacteria region [%] | Accuracy [%] | Accuracy [%)]
3 95.46 72.84 84.15 88.19

Table 11. The result of detection and ratio by the conventional U-Net on the Bacteria

Set 3

Bacteria Ratio[%

Recall[%] Ground Truth‘Detecte[d‘] ADR
Nol | 83.6(46/55) 32.2 176 | 155
No2 | 87.5(56,/64) 374 234 | 14.0
Nod | 50.0(1/2) 1.2 2.6 1.4
No5 | 100(9/9) 5.3 5.9 0.6
No7 | 84.6(11/13) 76 73 | 03
No8 | 57.1(16/28) 16.4 132 | 32
Total|90.1(154/171) 100 100 |(ave)5.8

Fig.8. (a) and (b) is a case which have a lot of holes generated in the foreground

region. (c) and (d) is a case which include non-separation of touching cells in spite of

using weight map. (a) and (c¢) The input image and (b) and (d) The generated inference

map of the image by the conventional U-Net model.
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Table 12. The evaluation result of Watershed and Shape-wise separation
\ |w/o WS and SW-sep[%]| SW-sep | WS WS and SW-sep|
Nol 63.6(35/55) 87.3(48/55) | 92.7(51/55) 96.4(53/55)
No2 81.3(52/64) 87.5(56/64) | 90.6(58/64) 90.6(58,/64)
No4 50(1/2) 50(1/2) 50(1/2) 50(1/2)
Nob5 88.9(8/9) 100(9/9) 100(9/9) 100(9/9)
No7 69.2(9/13) 76.9(10/13) | 84.6(11/13) 84.6(11/13)
No8 53.6(15/28) 78.6(22/28) | 78.6(22/28) | 82.1(23/28)
Total 70.2(120/171) 85.4(146,/171)|88.9(152/171)| 90.6(155/171)
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