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ABSTRACT

Advances in large language models (LLM) have produced text that appears in-
creasingly human-like and difficult to detect with the human eye. In order to
mitigate the impact of misusing LLM-generated texts, e.g., copyright infringement,
fair student assessment, fraud, and other societally harmful LLM usage, a line of
work on detecting human and LLM-written text has been explored. While recent
work has focused on classifying entire text samples (e.g., paragraphs) as human or
LLM-written, this paper investigates a more realistic setting of mixed-text, where
the text’s individual segments (e.g., sentences) could each be written by either
a human or an LLM. A text encountered in practical usage cannot generally be
assumed to be fully human or fully LLM-written; simply predicting whether it
is human or LLM-written is insufficient as it does not provide the user with full
context on its origins, such as the amount of LLM-written text, or locating the
LLM-written parts. Therefore, we study two relevant problems in the mixed-text
setting: (i) estimating the percentage of a text that was LLM-written, and (ii) deter-
mining which segments were LLM-written. To this end, we propose Partial-LLM
Detector (PaLD), a black-box method that leverages the scores of text classifiers.
Experimentally, we demonstrate the effectiveness of PaLD compared to baseline
methods that build on existing LLM text detectors.

1 INTRODUCTION

Large language models (LLMs) have demonstrated capabilities to generate text that convincingly
impersonates humans1 (Achiam et al., 2023; Floridi & Chiriatti, 2020; Chowdhery et al., 2023). In
conjunction with their wide deployment and easy accessibility, these LLMs have posed potential
risks across industries and society. Namely, LLM-generated text may contaminate the development
of next-generation foundation models (Shumailov et al., 2024; 2023), facilitate the spread of fake
or biased content (Bender et al., 2021; Farina & Lavazza, 2023; Li et al., 2023), unintentionally
infringe on copyrights (Mitchell & Krakauer, 2023), and impair education by depriving students of
the effort needed to compose their own articles (Cotton et al., 2024). The potential downsides of
LLMs, particularly in scenarios where humans can be easily deceived by text generated by these
models, underscore the need for reliable methods to audit and detect LLM-generated content.

Given an article, such as a paragraph, existing methods for detecting LLM-generated text are often
cast as a binary classification problem, i.e., assigning a binary label to the article to indicate whether
it was written by a human or generated by an LLM (Gehrmann et al., 2019; Ippolito et al., 2020;
Mitchell et al., 2023; Mao et al., 2024; Verma et al., 2024). However, the binary classification
approach may fail to provide finer-grained information about the extent of LLM involvement in
composing the article, as it may not be entirely written by LLMs. In fact, recent studies have
shown that LLMs are frequently used to edit, refine, or rephrase only parts of an article (Črček
& Patekar, 2023; Levine et al., 2024)—see Fig. 1 for a concrete example. Moreover, when using
existing methods to detect text that is partially written by LLMs, they may either exhibit excessive
confidence in identifying the whole article as LLM-generated content, or be overly conservative

∗Work done while an intern at JPMorganChase.
1Recent works reported that LLM-generated text is difficult to detect with the human eye (Mei et al., 2024;

Gehrmann et al., 2019; Guo et al., 2023), and could conditionally pass the Turing test (Jones & Bergen, 2023).
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The leaves rustled in the wind. 
A squirrel darted up a tree. The 
forest was alive with sounds.

The leaves rustled in the wind. 
Water trickled down a stream. The 
forest was alive with sounds.
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Text 
Identification 

(PaLD-TI)

Existing LLM 
Detectors

The leaves rustled in the wind. 
Water trickled down a stream. 
The sun shone on the trees.
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: sentence 2 is LLM2

: sentence 2, 3 are LLM3

Human LLM

Figure 1: In practice, text encountered may be partially-LLM written. Existing LLM detectors can only predict
whether the text is human- or LLM-written. In contrast, our method (PaLD) enables LLM percentage estimation
and LLM text identification. PaLD-PE provides confidence intervals on the amount of LLM text, and PaLD-TI
provides a likelihood of each sentence being LLM.

towards classifying it as human writing, as empirically demonstrated by text 2 and text 1 in Fig. 2,
respectively. Incorrectly assessing the level of LLM intervention can lead to unjust penalties for
light LLM usage, or encourage unauthorized usage by those who exploit these inaccuracies. These
practical concerns, therefore, motivate the need to refine the detection techniques in existing methods.
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Figure 2: Binary classification of two hu-
man texts progressively overwritten by LLM.
RoBERTa (Verma et al., 2024) predicts the en-
tire text 1 as human-written when up to 75%
of it is LLM-written; only 25% of text 2 is
LLM-written before RoBERTa classifies the
entire text as LLM.

In this paper, we address a more realistic setting of mixed-
text, where a piece of text to be audited consists of both
LLM-generated and human-written content. This mixed-
text setting leads to two primary research goals: (i) per-
centage estimation, which aims to estimate the proportion
of text in an article that was generated by LLMs, and (ii)
LLM text identification, which seeks to identify the spe-
cific text segments in the article that are more likely to
have been generated by LLMs. Existing LLM-text de-
tectors typically design a statistic of the LLMs’ outputs
given the article, which we refer to as the T -score, to de-
tect distribution shifts between texts that are either fully
written by LLMs or by humans, and then threshold the
T -score for a binary decision. However, the mixed-text
setting requires a more sensitive statistic to detect subtle
distribution shifts, such as when the text is composed of 20% human text and 80% LLM text.

To address this technical challenge, we develop a Bayesian framework based on the T -score, termed
the Partial-LLM Detector (PaLD), which provides maximum a posteriori (MAP) estimates of the
percentage of LLM-generated text in an article (Cohen, 2019). Using mixture Gaussian kernel density
estimation (Sharif-Razavian & Zollmann, 2008; Gelman et al., 2004), we further derive credible
intervals that reliably cover the ground-truth percentage. For LLM text identification, the PaLD
framework is statistically more robust, especially when each text segment in an article is relatively
short, where existing LLM detectors lack sensitivity in detecting the distributional shift due to the
short text length. We formulate a set optimization problem that searches for the set of segments that
maximize the discrepancy of the T -scores between the set and its complement. This optimization
problem can either be exactly solved or effectively approximated by a greedy policy, flagging the
set of text segments that are more likely to be LLM-generated. We term the PaLD framework for
solving the two research goals as PaLD-PE (for percentage estimation) and PaLD-TI (for LLM text
identification), respectively. Fig. 1 summarizes the PaLD framework, along with its use cases.

The rest of this paper is organized as follows. In Section 2, we define notations, provide the mathe-
matical background, and survey related work. Section 3 formally introduces the PaLD framework and
demonstrates how to perform PaLD for percentage estimation (PaLD-PE) and LLM text identification
(PaLD-TI) with statistical guarantees. In Section 4, we empirically illustrate that PaLD-PE and
PaLD-TI outperform existing detection methods on two language datasets: WritingPrompts (Fan
et al., 2018) and Yelp Reviews (Yelp, 2014). Finally, we present our concluding remarks, including
limitations and future directions, in Section 5. Code to reproduce our experiments can be accessed at
https://github.com/jpmorganchase/pald.
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2 BACKGROUND AND RELATED WORK

Let X a random variable of text that follows a text-generation distribution P , which can either be
human writing (Phuman) or LLMs (PLLM), and let x ∈ X be a realization from P . Here, X is the
sample space of texts; for example, X = D∗ would contain all finite-length strings drawn from a
dictionary D. The goal of LLM text detection is to design a statistic, referred to as the T -score (short
for text score), that maps a piece of text to a scalar value, i.e., T : X → R. The desired property of
the T -score is that the distributions of T (X) when evaluated with X ∼ Phuman and X ∼ PLLM result
in two statistically separated modes. A text sample x can then be classified as LLM if T (x) > γ,
where γ is a preset threshold.

T -scores in LLM text detection. Existing LLM detectors design various T -scores to improve
classification performance. Typically, T -scores can either be inferred from pre-trained models, as
demonstrated by Mitchell et al. (2023) with DetectGPT, explicitly learned for binary classification
tasks in models like RoBERTa (Guo et al., 2023) or Ghostbuster (Verma et al., 2024), or through a
combination of both approaches, such as in RAIDAR (Mao et al., 2024). For example, Solaiman
et al. (2019) and Ippolito et al. (2020) utilize the average log-probability of a text as the T -score.
DetectGPT, on the other hand, calculates log-probability curvature, defined as T (x) = logPLLM(x)−
Ex̃[logPLLM(x̃)], where x̃ represents a perturbed version of x generated by Google’s T5 (Raffel et al.,
2020). This method was later extended to conditional log-probability curvature by Bao et al. (2024)
with Fast-DetectGPT, and further explored by Mireshghallah et al. (2024).

T -scores can also be defined using the logits from LLMs, which are typically thresholded at γ = 0
for classification tasks, and then used to train a binary classifier (Sadasivan et al., 2023). For instance,
Guo et al. (2023) and Chen et al. (2023) fine-tune RoBERTa models (Liu et al., 2019) to differentiate
between LLM-generated and human-written texts. Verma et al. (2024) enhances the generalization
performance of their models by employing logistic regression classifiers on selected features from
LLM token probabilities. Conversely, Mao et al. (2024) introduce a new T -score based on the
rewriting Levenshtein score, opting for this over logits in their tree-based classification method.
Finally, Gehrmann et al. (2019) use the ranking of the top-k log probabilities as the T -score, noting
that human-written texts tend to be sampled more frequently from the tail of a LLM’s probability
distribution. Although T -scores are designed for binary classification, our work shows how they can
be leveraged for the percentage estimation and text identification tasks that we propose.

LLM boundary detection. A few recent works have investigated detecting the boundary when text
goes from human-written to LLM-written. The RoFT dataset (Dugan et al., 2020), containing human-
written sentences completed by GPT2, was created to evaluate how humans detect the boundary.
Cutler et al. (2021); Clark et al. (2021); Zeng et al. (2023); Wang et al. (2023) provide RoBERTa
or Transformer-based models for solving the task in an automated fashion, with Wang et al. (2023)
requiring white-box access to the ground-truth LLM. Kushnareva et al. (2024) evaluates several
approaches and finds that perplexity-based approaches are more robust for boundary detection. Our
proposed framework, PaLD, is more general, as it encompasses settings where any segment of a text
could be human or LLM-written, does not require white-box access to a LLM, and can be used with
both supervised T -scores as well zero-shot T -scores.

LLM watermarking and hallucination. Techniques used to detect distribution shifts in language
generation are also applicable in related fields. For instance, LLM watermarking embeds a unique pat-
tern, or signature, within the output distributions of an LLM to safeguard its authorship (Kirchenbauer
et al., 2023; Kamaruddin et al., 2018; Zhao et al., 2024). This signature induces a distinct distribution
shift in the text, making it uniquely identifiable and easily distinguishable from outputs generated by
other LLMs. Despite sharing similar techniques, LLM watermarking serves a fundamentally different
purpose compared to LLM text detection, which is the setting of this paper.

3 PALD: PARTIAL-LLM DETECTOR

We start with the formulation of the mixed-text setting by splitting a piece of text x into a concatenation
of n segments, i.e., x = x1 . . . xn. We assume that each segment xi has either been generated by
LLMs (xi ∼ PLLM), or written by a human (xi ∼ Phuman). For example, consider the following
paragraph x = x1x2x3x4, decomposed into n = 4 segments:
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T -score σ∗
T

RoBERTa-LN 2.599
RoBERTa 2.160
Ghostbuster (Verma et al., 2024) 1.889
FastDetectGPT (Bao et al., 2024) 1.784
DetectGPT (Mitchell et al., 2023) 1.496

Table 1: Normalized quantile slope
in (1) for different T -scores. Higher
is better.
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Figure 4: PaLD-PE for percentage
estimation returns point δ̂ and inter-
val (δ̂L, δ̂R) estimates.
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Figure 5: Distribution shift of various T -scores with mixed-text fraction δ.

It was an excellent decision. The pancakes were fluffy and bursting with blueberries.
They layered the cheese on the sandwich, which to me is a must for a true egg
sandwich. The meal also came with a side of breakfast potatoes.

Black segments (i.e., sentences) x1 and x3 are human-written, while red segments x2 and x4 are
LLM-generated. It is noteworthy that existing LLM text detectors typically operate in the setting
where that all segments {xi}ni=1 are either human-written or LLM-generated.

3.1 ADOPTING T -SCORES FOR MIXED TEXTS

In the binary classification setting, the T -score is used to discriminate fully-human texts Xhuman ∼
Phuman and fully-LLM texts XLLM ∼ PLLM. Here, there are only two distributions of interest, and the
T -score merely has to discriminate their samples. Recent work such as Sadasivan et al. (2023) shows
that the best T -score (in terms of simultaneously reducing the true and false positive rates) is one that
separates T (Xhuman) and T (XLLM) as much as possible. In the mixed-text setting, the ith segment Xi

in a random mixed text X follows the mixed distribution, i.e., Xi ∼ Pmixed ≜ ηPLLM +(1−η)Phuman,
where 0 ≤ η ≤ 1 represents the segment-level LLM fraction. As each segment may not have the
same number of characters, we further define δ ∈ [0, 1] as the character-level2 LLM fraction of X .
The mixed distribution reverts to Phuman when η = 0 (thereby making δ = 0), and recovers PLLM
when δ = 1. As δ increases, the mixed distribution of X shifts from Phuman to PLLM.

Assessing the amount of LLM-generated text within X equates to estimating δ. Ideally, as δ varies, the
distribution shift in T (X) should smoothly transition between T (Xhuman) and T (XLLM). However,
accurate estimation of δ using the T -score becomes challenging if there is significant overlap among
the T -score distributions for different δ values, as multiple δ values could plausibly explain the same
T -score. The degree of overlap can be quantified by the normalized T -score quantile slope, σT (p),
defined as follows:

σT (p) ≜
∫
[0,1]

d
dδQ(δ, p)

Q(δ, 1− ϵ
2 )−Q(δ, ϵ

2 )
dδ, (1)

where Q(δ, p) ≜ argmint Pr(T (X) ≤ t) = p is the quantile function for the T -score distribution at
δ. The target is to get σ∗

T ≜ min ϵ
2≤p≤1− ϵ

2
σT (p) as large as possible. Here, ϵ adjusts the considered

2Using the previous example, η = 0.5 since LLM generates two sentences. However, there are 109 out of
197 LLM-generated characters, and therefore δ = 109/197 ≈ 0.553.

4



Published as a conference paper at ICLR 2025

quantile range. A high value of σ∗
T ensures that δ can be uniquely identified across its entire range.

Conversely, a low σ∗
T indicates substantial overlap in the T -score distributions for different δ values,

complicating the unique identification of δ.

We conclude this subsection with an empirical example. We first prepare the mixed text by a mask-
and-fill approach. Consider a case where n = 5 using human-written text xhuman = x1x2x3x4x5.
Setting η = 0.4, we randomly mask two sentences with the special token [MASK]. This modifies
the text to, for example, xLLM = x1[MASK]x3x4[MASK]. We then prompt GPT-4o to fill in the
[MASK] tokens in xLLM, resulting in a mixed text sample with η = 0.4. Further details on this
approach are provided in Section A.1. With the method to generate the mixed text by η (equivalently
δ), in Tab. 1, we compare the T -scores of several methods using σ∗

T . We find that the logits with
RoBERTa classifier trained with LogitNorm loss (Wei et al., 2022) to classify fully-human/LLM
text yield the best σ∗

T ; we refer to this method as RoBERTa-LN. The T -score distribution shift with
varying δ is reported in Fig. 3 for RoBERTa-LN as well as the other T -scores listed in Fig. 5. It
can be seen that all methods achieve good statistical separation between T (Xhuman), i.e. δ = 0, and
T (XLLM), i.e., δ = 1. As will be shown in an ablation study in Sec. 4, the performance of PaLD for
percentage estimation and text identification highly correlate with the σ∗

T values of the T -scores used.
Next, we demonstrate how the T -score in the mixed-text setting can be used to for PaLD-PE and
PaLD-TI.

3.2 PERCENTAGE ESTIMATION

Given a mixed-text realization x with ground-truth LLM fraction δ, we would like to produce either
a point estimate δ̂ of δ, or a predictive interval (δ̂L, δ̂R) that contains δ with high probability. A
predictive interval provides the user with a measure of confidence on the estimated percentage
value of the mixed text x. PaLD-PE uses a Bayesian approach to estimate δ, and thus assumes it is
random; we denote the random LLM fraction as ∆. At a high-level, PaLD-PE first estimates the joint
statistics between the LLM text percentage and the T -scores, then uses this model to return point
estimates and/or predictive intervals of δ; see Fig. 4. In the first step, mixed texts are generated from
a fully-human dataset to measure the shift in distribution of the text score T as the LLM percentage
ranges from 0 to 1; we then fit a mixture kernel density estimate (KDE) to estimate the likelihood
P (T (X)|∆). In the second step, when we estimate the LLM percentage of an unseen text sample,
we use the posterior P (∆|T (X)) to return maximum a posteriori (MAP) estimates for δ̂ and highest
density intervals (HDI) for (δ̂L, δ̂R).

Measuring the P (T (X)|∆) likelihood. To model P (T (X)|∆), we need to gather pairs of samples
representing ∆ and T (X). For X , we first generate synthetic mixed texts by using an LLM to fill
randomly masked out sentences of fully-human texts (Sec. A.1). These synthetic mixed texts are
generated at K target fraction levels 0 ≤ δ1 < · · · < δK ≤ 1. Let {x(k)

i }
nk
i=1 denote the mixed texts

generated at target fraction δk. We compute the T -score of each such text, yielding {t(k)i }
nk
i=1, where

t
(k)
i = T (x

(k)
i ). Thus, each t

(k)
i is assumed drawn from the P (T (X)|∆ = δk) distribution.

Now, we parameterize a model for the likelihood P (T (X)|∆), using a mixture of KDEs. An individ-
ual KDE is fit for each conditional P (T (X)|∆ = δk). For the full conditional P (T (X)|∆), we take
convex combinations of the nearest two KDEs to ∆. Specifically, let ϕk(t) =

1
nk

∑nk

i=1
1
hK(t−t

(k)
i /h)

be a Gaussian KDE fit to the samples {t(k)i }
nk
i=1. Here, K(z) = 1√

2π
e−

1
2 z

2

, nk is the number of
T -score samples collected at δk, and h is a bandwidth parameter. Then, our mixture KDE computes
the likelihood as

P (T (X) = t|∆ = δ′) = θϕk∗(t) + (1− θ)ϕk∗+1(t), (2)

where k∗ is the index such that δk∗ ≤ δ′ < δk∗+1, and θ =
δk∗+1−δ′

δk∗+1−δk∗ .

Percentage prediction. To predict the LLM fraction, we use the posterior density P (∆|T (X)) ∝
P (T (X)|∆)P (∆), where we assume a prior distribution P (∆) supported on [0, 1]. Let x be the
text sample we would like to estimate the LLM percentage. For the point estimate, we return the
MAP estimate δ̂ = argmaxδ′ P (∆ = δ′|T (X) = T (x)). For the predictive interval, we return the
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𝑥1= The leaves rustled in the wind.

𝑥1𝑥2 = The leaves rustled in the wind. 
      A squirrel darted up a tree.

𝑥1𝑥3 = The leaves rustled in the wind. 
      The forest was alive with sounds.

𝑥2 = A squirrel darted up a tree.

𝑥2𝑥3 = A squirrel darted up a tree. 
      The forest was alive with sounds.

𝑥3 =  The forest was alive with sounds.

𝑥 = 𝑥1𝑥2𝑥3 = The leaves rustled in the wind. A squirrel darted up a tree. The forest was alive with sounds.
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Figure 6: PaLD-TI for LLM text identification. Left: stitched texts x[S] are enumerated, and T -
scores computed. Middle: fx(S), the T -score difference, is computed for all S. We illustrate this
for S = {1}. Right: the maximum fx(S) is computed, and its maximizing set Ŝ is returned as the
segment indices predicted as LLM.

(1− α)-HDI (Chen & Shao, 1999),

δL, δR = argmax
δL,δR

πα

s.t. P (δL ≤ ∆ < δR|T (X) = T (x)) ≥ πα

P (δL ≤ ∆ < δR|T (X) = T (x)) ≥ 1− α,

(3)

where α is a parameter we can set to control the posterior probability that δ is contained in
the interval. In practice, since we do not have the exact posterior density, we use a Markov
Chain Monte Carlo approach (Chen & Shao, 1999) by sampling δ′1, . . . , δ

′
M from the posterior

P (∆|T (X) = T (x)) via Metropolis-Hastings (Gelman et al., 2004). For the MAP estimate, we
return the sample mode δ̂ = argmax1≤i≤M P (∆ = δ′i|T (X) = T (x)). For the (1 − α)-HDI
estimate, we return (δ̂L, δ̂R) = (δ′(i∗), δ

′
(i∗+[(1−α)M ])), where δ′(i) is the i-th smallest sample, and

i∗ = argmin1≤i≤M δ′(i∗+[(1−α)M ]) − δ′(i∗).

3.3 LLM TEXT IDENTIFICATION

The goal is to return an index set Ŝ ⊆ {1, . . . , n} corresponding to a segmentation x = x1 . . . xn

such that {xi : i ∈ Ŝ} contains all the LLM-written segments.

One baseline approach could be to classify each xi individually using one of the binary classification
approaches. However, these methods are designed for longer texts, and are known to perform poorly
on short texts (Verma et al., 2024). Our results in Sec. 4 demonstrate the poor performance of this
approach. Instead, we propose to “stitch” together different segments of x to construct stitched texts,
as shown on the left side of Fig. 6. Concretely, let S ⊆ {1, . . . , n} be an index set which we use to
select a subset of the segments in x. Define x[S] to be the text formed by concatenating the segments
of x indexed by S in the order of the indices. For example, if S = {1, 3, 4}, then x[S] = x1x3x4.
These stitched texts x[S] mostly consist of multiple segments, and should be of sufficient length for
some of the binary classifier methods to be effective. Drawing from observations in Fig. 3, suppose
that S selects all the LLM segments, and S∁ := {1, . . . , n} \ S selects all the human segments. Then
x[S] will be fully-human, and x[S∁] fully-LLM, and this should result in the largest discrepancy
between T (x[S]) and T (x[S∁]). On the other hand, if x[S] contains a mixture of LLM and human
text, then so will x[S∁], and their T -scores should be more similar.

Thus, our goal is to find the S that the T -score maximally discriminates x[S] and x[S∁]:

Ŝ = argmax
S⊆{1,...,n}

fx(S) := T (x[S])− T (x[S∁]). (4)
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Algorithm 1 Greedy algorithm, PaLD-TI.

Initialize S = { argmax
e∈{1,...,n}

fx({e})}

Initialize A = {1, . . . , n} \ S
while fx(S) increases do
e′ = argmaxe∈A fx(S ∪ e)− fx(S)
S ← S ∪ e
A← A \ e

end while

The overall method, which we call PaLD-TI, is shown
in Fig. 6. In practice, we disregard S = ∅ and S∁ = ∅,
yielding a total of 2n − 2 sets to consider. This is be-
cause those two cases reduce the LLM text identification
problem to whole text classification, which has been
well explored in the previous literature. Thus, Eq. 4 is
a subset selection problem which is combinatorial and
has complexity exponential in n. In our experiments,
we consider texts with at most n = 10 segments which
is feasible to solve Eq. 4 exactly. For texts with more
sentences, one can chunk the text into paragraphs before solving Eq. 4, or use approximate algo-
rithms (e.g., greedy) that trade-off optimality for efficiency. For example, the greedy algorithm will
iteratively build a set by adding a single segment that maximizes the marginal gain of fx(S) at each
iteration; see Alg. 1. This reduces the complexity to O(n2) but solves Eq. 4 approximately rather
than exactly. We also note that PaLD-TI can be used for percentage estimation via the total predicted
LLM length.

4 EMPIRICAL STUDY

Datasets. We evaluate our methods on the WritingPrompts (WP) (Fan et al., 2018) and Yelp Reviews
(Yelp) (Yelp, 2014) datasets which are typically used to benchmark LLM text detection. WP contains
pairs of story prompts and human-written short stories as responses, and Yelp contains human-written
reviews of various businesses. Both datasets come with the fully-human and fully-LLM (GPT3-
rewritten) versions of text; in additional to these, we adopt a sentence-level mask-and-fill approach
with GPT-4o (Achiam et al., 2023) to generate mixed texts at different LLM fractions for both
datasets, described in full in Sec. A.1. In total, for each dataset, we generate 3,600 and 300 mixed
texts for training and test splits, respectively. For the training split, the LLM target fractions are
ranged from 0.1, 0.2, . . . , to 0.9; while the LLM target fractions are set to 0.25, 0.5, 0.75 for the test
split, and the amount of data at each fraction are similar as a balanced dataset. Note that we measure
the LLM fraction at character-level, and the training and testing splits do have a similar distribution
of LLM fractions over [0, 1] (see Tab. 9).

Experimental Setup. For the T -score used in both PaLD-PE and PaLD-TI, we adopt the logits of a
RoBERTa classifier trained on fully-human and fully-LLM text, using the LogitNorm loss (Wei et al.,
2022), as discussed in Sec. 3. Further hyperparameter choices for PaLD are described in Sec. A.2. For
the percentage estimation (point estimate) and LLM text identification baselines, we adopt the existing
LLM text detectors applied segment-wisely to the mixed-text samples, including DetectGPT-Seg
(Mitchell et al., 2023), FastDetectGPT-Seg (Bao et al., 2024), Ghostbuster-Seg (Verma et al., 2024).
DetectGPT and FastDetectGPT’s threshold is set to maximize the difference between true-positive
and false-positive rates when classifying human/LLM segments. In addition, we build another two
baselines by fine-tuning the RoBERTa (Liu et al., 2019) as a binary classifier on fully-human and
full-LLM texts with two different losses. One is trained with cross-entropy loss (RoBERTa) and
another one is trained with LogitNorm (RoBERTa-LN). The predicted percentage is then the total
character length of the predicted model segments divided by the total number of characters of the
text. We use PaLD-TI here in a similar fashion. Moreover, given the generated mixed-text data and
LLM fractions, we include another two baselines by fine-tuning the RoBERTa model with regression
loss (RoBERTa-Reg) and squared loss and quantile loss (RoBERTa-QuantileReg)(Padilla et al., 2022;
Koenker & Bassett, 1978). For RoBERTa-QuantileReg, we use the α

2 , 1
2 , and 1− α

2 quantiles, with
the 1

2 -quantile serving as a point estimate and the other two serving as a 1− α interval estimate.

Evaluation. We report performance averaged across the data with LLM fractions δ = 0.25, 0.5, 0.75.
For the percentage estimation task, we use mean absolute error (MAE), |δ̂ − δ| to evaluate the point
estimates; for interval estimates we report two metrics: coverage (C), the frequency of the interval
covers δ (i.e., EX,δ[1{δ̂L ≤ δ ≤ δ̂R}], where X are mixed texts with LLM fraction δ drawn from
our dataset), and precision (P), the width of the interval (i.e., EX [δ̂R − δ̂L]). In general, one cannot
always increase coverage and minimize precision, as a smaller interval reduces the probability that
δ̂L ≤ δ ≤ δ̂R; we report the trade-off between these two quantities. For the text identification task, we
report segment-wise accuracy (i.e., EX [ 1n

∑n
i=1 1{i ∈ S, Ŝ or i ∈ S∁, Ŝ∁}], where S contains
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Table 2: Percentage estimation results (point estimate); mean absolute error. The best method is bold.

Dataset PaLD-PE
(Ours)

PaLD-TI
(Ours)

RoBERTa-
Reg

RoBERTa-
QuantileReg

DetectGPT-
Seg

FastDetectGPT-
Seg

RoBERTa-
Seg

RoBERTa-
LN-Seg

Ghostbuster-
Seg

WP 0.116 0.122 0.207 0.186 0.370 0.184 0.342 0.434 0.215
Yelp 0.137 0.158 0.181 0.175 0.397 0.190 0.382 0.437 0.282

Table 3: LLM text identification results; segment-wise and top-1 accuracy. The best method is bold.

Dataset PaLD-TI PaLD-TI- DetectGPT- FastDetectGPT- RoBERTa- RoBERTa-LN- Ghostbuster-
(Ours) Greedy (Ours) Seg Seg Seg Seg Seg
Seg Top-1 Seg Top-1 Seg Top-1 Seg Top-1 Seg Top-1 Seg Top-1 Seg Top-1

WP 0.826 0.252 0.741 0.071 0.486 0.001 0.651 0.063 0.635 0.070 0.502 0.000 0.599 0.053
Yelp 0.801 0.247 0.733 0.069 0.452 0.002 0.624 0.054 0.560 0.013 0.506 0.000 0.540 0.027

ground-truth indices of segments of X that were LLM-written), which measures how well each
segment is classified. In addition, we report the top-1 accuracy at the set level (i.e., EX [1{S = Ŝ}]),
which measures how often the ground-truth set S is perfectly recovered, of which there are 2n − 2
possible for each mixed text. To achieve high top-1 accuracy is challenging, as a success requires
every segment of the text to be correctly identified.

4.1 IN-DOMAIN MIXED-TEXT DETECTION

Results on Percentage Estimation. Tab. 2 compares our methods (PaLD-PE and PaLD-TI) with
other methods on the point estimate results. PaLD-PE significantly outperforms the baselines that
adopt a segment-wise strategy, demonstrating the limitations of existing LLM text detectors, likely
due to the shortness of the individual segments. On the other hand, RoBERTa-Reg and RoBERTa-
QuantileReg are the most competitive baselines while our method still surpasses them, showing that
the Bayesian approach provides more precise estimates than direct regression. PaLD-TI is superior to
all baselines, but not as accurate as PaLD-PE, since its precision is limited to segment-level.

For interval predictions, we sweep α’s for both PaLD-PE (corresponding to the (1− α)-HDI) and
RoBERTa-QuantileReg (corresponding to the α

2 and 1 − α
2 quantiles) to get a coverage-precision

trade-off. Fig. 7a shows our method yield a superior coverage-precision trade-off compared to
RoBERTa-QuantileReg. For example, on WP, under similar coverage level, e.g., at around 77%,
PaLD-PE produces tighter interval estimates than RoBERTa-QuantileReg (0.33 v.s. 0.60). We note
that for both methods, the targeted coverage level of 1 − α does not exactly match the achieved
coverage level; but our method provides closer estimate, which allows the users to approximate the
coverage before tuning α. We attribute this to our model of P (T (X)|∆) being an approximation of
the underlying data generation process.

Table 4: PaLD-TI top-p performance.

Dataset Top-0.05 Top-0.20

WP 0.743 0.876
Yelp 0.607 0.830

Results on LLM Text Identification. Tab. 3 shows the
LLM text identification performance. We see that PaLD-
TI outperforms the segment-wise baselines by at least 18%
in terms of segment-wise accuracy. We also implement the
approximate version of PaLD-TI by solving Eq. 4 using
the greedy algorithm in Alg. 1. As expected, it does not
perform as well as solving Eq. 4 exactly, but still outperforms the other baselines by at least 9% in
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Figure 7: Percentage estimation results, in terms of the coverage-precision trade-off. Upper-left
indicates better performance; α sets the desired coverage level.
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terms of segment-wise accuracy. On a single A10 GPU, the exact solver takes≈ 30s for a 10-segment
text on average, whereas greedy takes ≈ 2.1s. On the other hand, PaLD-TI outperforms all other
baselines by over 20% in terms of top-1 accuracy, and no other baseline is able to achieve over
7% top-1 accuracy. To achieve high Top-1 accuracy is a difficult task as it requires all segments to
be successfully identified. Moreover, as PaLD-TI can also rank the predictions, we also report the
top-p accuracy, which measures how often the ground-truth segments lie in the top p fraction of all
fx(S), S ⊆ {1, . . . , n}, in Tab. 4. We see that even if the ground-truth is not recovered by Ŝ, it is in
the top 0.05 fraction of our objective function more than 60% of the time, and in the top 0.2 fraction
over 83% of the time. This further supports the validity of fx(S) in determining the LLM segments.

4.2 CROSS-DOMAIN MIXED-TEXT DETECTION

In this section, we evaluate PaLD when the training/tuning domain and testing domain does not
match. For the PE and TI tasks, we compare with the two best baselines in Tabs. 2, 3, respectively.

Fixed LLM. Here, the LLM used to generated mixed-texts is fixed as GPT-4o.
Table 5: Cross-domain fixed-LLM results for percentage esti-
mation (mean absolute error) and text identification (segment-
wise accuracy). Training dataset: WP; LLM: GPT-4o.

Percentage Estimation (MAE ↓) Text Identification (Seg-Acc. ↑)

Test
Dataset

PaLD-
PE

RoBERTa-
Reg

RoBERTa-
QuantileReg

PaLD-TI FastDetect-
GPT-Seg

RoBERTa-
Seg

Yelp 0.147 0.211 0.231 0.801 0.626 0.592
Abstracts 0.151 0.306 0.223 0.718 0.693 0.656
Wiki 0.224 0.313 0.238 0.623 0.636 0.735

For PaLD-PE, the likelihood fitting
phase is trained on WP, and the point
estimate or predictive interval is esti-
mated on the testing dataset of a dif-
ferent domain; similarly, the baselines
are trained on WP and evaluated on
a different testing domain. The out-
of-domain datasets we evaluate on in-
clude Yelp (Yelp, 2014) and RAID
(Dugan et al., 2024). We use the Ab-
stracts and Wiki domains of RAID, and generate interleaved mixed-texts from GPT-4o (Sec. A.1).
Tab. 5 shows that PaLD-PE remains the best-performing method compared to the baselines. This
demonstrates that PaLD-PE has a superior ability to generalize across domains, and that the T -scores
used do also generalize across domains. For the interval estimates, we illustrate the cross-domain
performance between WP and Yelp in Fig. 7b. Similar to the point estimates, we again see that
PaLD-PE yields a superior coverage-precision tradeoff to RoBERTa-QuantileReg. Moreover, the
α values set for the respective algorithms to control the width of the predicted interval results in
achieved coverage values that more closely align with 1− α.

For TI, PaLD-TI does not require training, but may use a T -score that is fitted to a dataset (e.g.,
RoBERTa-LN trained on WP). The FastDetectGPT baseline (applied segment-wise) has threshold
set to maximize TPR − FPR on WP, and RoBERTa (segment-wise) is trained on WP. We see that
PaLD-TI is superior to baselines on Yelp and Abstracts but not Wiki, where RoBERTa-Seg achieves
high segment-wise accuracy.

Cross-LLM. Here, we evaluate the case when additionally the LLM used to
train/tune may not match the LLM used to generate mixed-texts at test time.

Table 6: Cross-domain cross-LLM results for percentage esti-
mation (MAE) and text identification (segment-wise accuracy).
Training dataset: WP (GPT-4o).

Percentage Estimation (MAE ↓) Text Identification (Seg-Acc. ↑)

Test
Dataset

PaLD-
PE

RoBERTa-
Reg

RoBERTa-
QuantileReg

PaLD-
TI

FastDetect-
GPT-Seg

RoBERTa-
Seg

C
la

ud
e WP 0.114 0.184 0.138 0.751 0.531 0.675

Yelp 0.128 0.193 0.144 0.731 0.628 0.654
Abstracts 0.115 0.204 0.145 0.710 0.633 0.651
Wiki 0.174 0.245 0.185 0.602 0.634 0.683

G
PT

-2 SS 0.227 0.236 0.227 0.555 0.610 0.525
Recipes 0.166 0.209 0.186 0.548 0.520 0.505
NYT 0.236 0.246 0.239 0.477 0.613 0.544

In particular, we evaluated PaLD
and baselines trained/fitted on WP
(GPT-4o-written) with the testing
domains set as WP3, Yelp, and
RAID (Abstracts, Wiki), where the
testing domain mixed-texts are gen-
erated in the interleaved manner fol-
lowing Sec. A.1 using Claude-3.5-
Sonnet (Anthropic, 2024). In ad-
dition, we evaluate RoFT (Dugan
et al., 2020), which was designed
to evaluate human-LLM boundary
detection, so the mixed texts were
generated by prompting GPT2-XL to complete 10−k sentences when prompted with k human-written
sentences; we use the Short Stories (SS), Recipes, and New York Times (NYT) domains.

3In Tab. 6, all rows are cross-LLM and cross-domain, except for WP which is only cross-LLM.
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Shown in Tab. 6, on Claude, PaLD-PE outperforms all baselines despite the domain and LLM shift.
PaLD-TI is superior on all domains except Wiki, where RoBERTa-Seg again achieves high accuracy.
For GPT-2 (i.e., RoFT data), PaLD-PE performs similar or better. However, for the TI task, both
PaLD-TI and RoBERTa-Seg result in a significant performance decrease compared to FastDetectGPT;
this may be due to poor generalization to GPT-2 of the RoBERTa-based classifiers that is used for
both RoBERTa-Seg and the T -score for PaLD-TI. The better generalization to Claude from GPT-4o
compared to GPT-2 may be expected, as the parameter count of GPT-2 is orders of magnitude lower
compared to Claude and GPT-4o.

4.3 PARAPHRASING ATTACKS

In the binary classification setting, recent work has shown that LLM detectors such as Detect-
GPT are easily attacked by paraphrasing attacks (Sadasivan et al., 2023; Krishna et al., 2024).

Table 7: Percentage estimation (MAE) and text identification
(segment-wise accuracy) under paraphrase attacks on LLM-
written segments in WP.

Percentage Estimation (MAE ↓) Text Identification (Seg-Acc. ↑)

Fraction
Chosen

PaLD-
PE

RoBERTa-
Reg

RoBERTa-
QuantileReg

PaLD-TI FastDetect-
GPT-Seg

RoBERTa-
Seg

0.25 0.117 0.204 0.193 0.811 0.633 0.701
0.50 0.122 0.204 0.193 0.786 0.624 0.691
1.00 0.134 0.207 0.195 0.730 0.584 0.679

Following (Sadasivan et al., 2023), we
use the T5-based Parrot paraphraser
(Damodaran, 2021) to randomly para-
phrase the LLM-written segments of
the mixed texts. We randomly para-
phrase 25%, 50% and 100% of the
LLM-written segments of the WP
dataset, and evaluate the PE and TI
tasks in Tab. 7. We observe that all
methods suffer performance decreases
with increasing attack strength. However, even when all LLM segments are attacked, PaLD still
maintains superior performance compared to baselines. We leave further analysis of mixed-text
detector attacks for future work.

4.4 ABLATION STUDY

We investigate several critical components of PaLD on the WP dataset, namely T -score. In Ap-
pendix A.3, we further show how in PaLD-PE modelling ϕk in Eq. 2 as a KDE is superior to simpler
assumptions such as Gaussian (Tab. 14), and the effect of choosing the Beta prior’s parameters
(Tab. 15) and the KDE bandwidth (Tab. 13). We also show the effect of baselines finetuned on
segment-level text (Tab. 10, 11, 19, 20), the F1-scores in text identification (Tab. 12), the effect of
segmentation mismatch (Tab. 18), and how PaLD performs on all- or no- LLM segments (Tab. 16, 17).

Table 8: T -score ablation on the WP dataset.

T-score σ∗
T

Percentage Estimation Text Identification
MAE C ↑ P ↓ Top-1 Acc Seg Acc

RoBERTa-LN 2.599 0.116 84% 0.385 0.252 0.826
RoBERTa 2.160 0.163 86% 0.526 0.205 0.798
Ghostbuster 1.889 0.151 86% 0.553 0.044 0.619
FastDetectGPT 1.784 0.235 85% 0.671 0.110 0.653
DetectGPT 1.496 0.169 84% 0.547 0.101 0.690

T -score. In Sec. 3, we analyze the characteris-
tics of different T -scores by σ∗

T in Tab. 1, here
we further evaluate them on both percentage es-
timation and LLM text identification on the WP
dataset. Shown in Tab. 8, we see that RoBERTa-
LN yields the best performance for both per-
centage estimation and LLM text identification.
Moreover, the performance of both tasks correlates with the magnitude of the average quantile slope
σ∗
T defined in Eq. 1. This lends support to our observation that a larger σ∗

T indicates increased
separation of the T -score distribution as it varies with δ. This provides increased statistical power to
predict δ from a text T -score, and yields improved precision of the predicted interval. Similarly, in
text identification, it provides a fx(S) that is more strongly indicative of LLM text, yielding better
segment-accuracy and top-1 accuracy with increased σ∗

T .

5 FINAL REMARKS

PaLD-TI is NP-hard and does not scale well with the number of segments. While we demonstrate the
greedy algorithm as a low-complexity solution that can scale with many segments, better performance
at low complexity may be desirable, which we leave for future work. Additionally, PaLD-TI requires
a fixed segmentation. A chosen segmentation may not align perfectly with ground-truth segmentation.
Future work can investigate the effect of segment misalignment, extend to hallucination detection,
and settings such as humans mimicking LLM styles.
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of JPMorgan Chase & Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its affiliates
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A APPENDIX

A.1 MIXED TEXT GENERATION

We use a mask-and-fill approach to generate synthetic mixed texts. This process is used for both
generating the histograms in Fig. 3 and fitting the mixture KDE model in Sec. 3. Specifically, if we
denote xH as a text from our human-written dataset (e.g. WritingPrompts or Yelp Reviews), then
xH = xH

1 . . . xH
n is segmented at the sentence level. Then, segments are randomly masked, to form a

masked text xM . For example, a 5-segment human text xH = xH
1 xH

2 xH
3 xH

4 xH
5 , masked at sentences

2 and 5, would become xM = xH
1 [MASK]x

H
3 xH

4 [MASK]. The LLM is then prompted with the
following prepended to xM :

“What sentences should go in the nreplace [MASK] locations of the
following text? Only provide exactly one sentence per [MASK]
location. Only provide the sentences as a numbered list with
nreplace sentences total.”

Here, nreplace is the number of [MASK] symbols in xM . We found that when prompted in this way,
GPT-4o successfully returns a numbered list containing exactly nreplace sentences corresponding to
the [MASK] symbols, with a failure rate of 1-2%. When successful, the sentences in the numbered
list are inserted into the [MASK] positions of the masked text, to form the mixed text. We show a
few examples of these mixed texts in Tab. 21.

Since this process does not control the length of the segments returned by GPT-4o, it is not easy to
exactly control the fraction of LLM text δ at the character level. As a result, we target δ approximately
by masking and filling a δ fraction of the human sentences. This is done for both the training
split (targeting δ approximately at 0.1, 0.2, . . . , 0.9) and testing splits (targeting δ approximately at
0.25, 0.5, 0.75). The true δ (at the character level), which can be computed post-hoc, is used for (i)
the binning step in PaLD-PE collect the T -score samples for the P (T (X)|∆ = δk) distributions,
and (ii) to benchmark the performance metrics (mean absolute error, coverage, and prediction) for
percentage estimation.

We apply this method using both GPT-4o and Claude-3.5-Sonnet (Anthropic, 2024).

A note on the training and testing split. Note that the target fractions for the testing split are 0.25,
0.5, and 0.75, but as described above, these are not actually the true LLM text percentages measured
at the character-level, but rather the target fractions, which determine the number of masked sentences
for the mask-and-fill procedure. Approximately 0.25, 0.5, and 0.75 of the sentences are masked out,
then the true LLM fraction δ values are computed post-hoc. The true fractions depend on the text
content and thus vary. We found that this procedure yielded similar distributions of δ over [0, 1]
compared to setting the target fractions to 0.1, 0.2, ..., 0.9 as done for the training split. To provide
concrete evidence for this, we compute a histogram of the δ values on the Yelp dataset for both train
and test splits in Tab. 9. Thus, despite the “target” fractions differing between the train and test split,

Table 9: Histogram of δ values in [0, 1] for train and test splits of Yelp.

Split [0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1.0]

Train 0.062 0.155 0.140 0.132 0.0972 0.0988 0.0957 0.106 0.0819 0.0315
Test 0.030 0.1367 0.170 0.1630 0.130 0.090 0.107 0.110 0.05330 0.01

the true fractions mostly match.

A.2 PALD IMPLEMENTATION DETAILS

During the distribution-fitting stage of PaLD-PE, the entire training split of a dataset is masked
and filled using the above procedure, where the fraction of sentences masked is approximately
δ1 = 0.1, δ2 = 0.2, . . . , δ9 = 0.9. We then we compute T -scores across all the text samples using the
logits of a RoBERTa model trained with the LogitNorm loss Wei et al. (2022). We found this T -score
to work the best for percentage estimation, as the LogitNorm improves calibration of the model
which is necessary for the T -score to smoothly interpolate between fully-human and fully-LLM. We
use LogitNorm with temperature τ = 0.005, and train the RoBERTa model on the training split for
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Table 10: Percentage estimation (MAE);
RoBERTa classifiers trained on segment-level
data.

Dataset RoBERTa-Seg RoBERTa-LN-Seg

WP 0.566 0.434
Yelp 0.563 0.563

Table 11: LLM text identification (segment-
wise accuracy); RoBERTa classifiers trained
on segment-level data.

Dataset RoBERTa-Seg RoBERTa-LN-Seg

WP 0.498 0.502
Yelp 0.496 0.496

Table 12: LLM text identification (segment-
wise F1-score).

Dataset PaLD-TI FastDetectGPT-Seg

WP 0.798 0.480
Yelp 0.776 0.476

Table 13: Effect of KDE bandwidth.

Bandwidth h PaLD-PE (MAE)

0.01 0.129
0.1 0.118
1 0.124
0.312± 0.025 (Scott) 0.116

the respective datasets. These T -scores and then binned to δ = 0.125, 0.25, 0.375, . . . , 0.875, using
the character-level fraction of LLM text in the mixed text. Then, a KDE with Gaussian kernel, with
bandwidth chosen using Scott’s rule Scott (1992), is fit to the T -scores at each level of δk to form the
likelihood model P (T |δ) as described in the main text. For the posterior, we choose the prior P (δ)
to be the Beta(2, 2) distribution. During the inference stage, we sample 5000 samples, discarding the
first 1000 due to burn-in, using Metropolis-Hastings (Gelman et al., 2004) with a proposal distribution
as the truncated normal centered at the previous sample, truncated to [0, 1]. The predicted percentage
and interval are given by the MAP estimate and (1− α)-HDI interval, respectively.

A.3 ADDITIONAL RESULTS AND ABLATIONS

Baseline RoBERTa classifiers applied to segments. The baseline RoBERTa classifiers applied
segment-wise, for both the PE and TI tasks, were trained on paragraph-level fully human or fully-
LLM texts. As this may incur a distribution shift when applied to segments, we train the RoBERTa
classifiers to sentence-length data gathered from the mixed-text training splits (Sec. A.1).

Similar to Sec. 4, for PE, these baselines return the ratio of predicted LLM characters to total
characters, and for TI, classify each segment individually. Shown in Tabs. 10, 11, the performance is
significantly worse than the RoBERTa classifiers trained on paragraph-level texts, reported in Tab. 2
and Tab. 3 for PE and TI. This is likely due to the texts being too short, as RoBERTa is pretrained
on longer texts, and short texts do not offer enough context, making it difficult to extract statistical
dependence with its origin.

F1-score of LLM text identification. To measure the impacts of both the false-negative rate
(FNR) and false-positive rate (FPR) of the LLM text identification task, we further report the
segment-wise F1-score for the text identification task in Tab. 12. We also report the F1-score of
FastDetectGPT applied segment-wise, which was the strongest baseline in terms of accuracy in Tab. 3.
As shown, PaLD-TI significantly outperforms it in terms of F1-score as well, demonstrating a good
balance between precision and recall compared to baselines. In summary, the PaLD-TI outperforms
FastDetectGPT not only in its accuracy (Tab. 3), but also in the F1-score (Tab. 12).

Table 14: Likelihood model
ablation on the WP dataset.

ϕk(t)
Percentage Estimation
MAE C ↑ P ↓

KDE 0.116 84% 0.385
Normal 0.200 85% 0.630
Cauchy 0.227 85% 0.710

Distributional assumptions for PaLD-PE. For PaLD-PE, we
choose a mixture KDE for the likelihood and a Beta distribution
for the prior. Here, we analyze how the choice of how we model
the likelihood affects the performance of PaLD-PE. We compare
the mixture KDE with a mixture Gaussian and mixture Cauchy.
Namely, we fit ϕk(t) in Eq. 2, to the samples {t(k)i }

nk
i=1 using Gaus-

sian and Cauchy distributions with RoBERTa-LN T -scores. Shown
in Tab. 14, using a KDE performs significantly better, demonstrating
that the higher expressivity of the distribution has a large influence
on percentage estimation performance. We also varied the a, b parameters of the Beta(a, b) prior
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Table 15: Beta(a, b) prior ablation on the WP dataset with KDE likelihood model.

a, b
Percentage Estimation
MAE C ↑ P ↓

1, 1 0.155 84% 0.450
2, 2 0.116 84% 0.385
3, 3 0.122 84% 0.395

Table 16: Percentage estimation on all or no
LLM segments; mean absolute error.

Dataset PaLD-PE FastDetectGPT

No LLM 0.137 0.261
All LLM 0.220 0.366

Table 17: Text identification on all or no LLM
segments; segment accuracy.

Dataset PaLD-TI FastDetectGPT

No LLM 0.900 0.829
All LLM 0.728 0.718

between 1 ≤ a, b ≤ 3 in Tab. 15, and a = b = 2 perform best, but this may be dependent on the
distribution of δ encountered at test time.

Ablation study on KDE bandwidth selection. Below, we report the effect of the bandwidth (h)
on PaLD-PE’s performance on the WP dataset. As mentioned in the appendix, we use Scott’s rule to
automatically set the bandwidth for results in the main text. In Tab. 13, we additionally report the
average bandwidths chosen by Scott’s rule over all the ϕk’s in Eq. 2, with one standard deviation. As
shown, PaLD-PE is not too sensitive to the choice of bandwidth, and Scott’s rule is able to determine
a bandwidth resulting in accurate estimates of the LLM fraction.

All or No LLM Segments As the setting of this paper aims for mixed-text, we did not include
the No LLM and the All LLM cases, as these two cases reduce to the classic setting of existing
LLM text detection frameworks such as (Fast)DetectGPT and Ghostbuster. On the WP dataset, we
evaluate the PaLD framework on the No LLM and the All LLM (GPT-4o) cases (Tabs. 16, 17) and
compare it with the FastDetectGPT, which outperforms DetectGPT and Ghostbuster in Tab 2. Note
that FastDetectGPT is initially designed for the binary classification between No LLM and the All
LLM.

The results further suggest that even on the classic setting, PaLD still provides competitive estimations.
Note that PaLD-TI cannot pick all segments to be LLM or not LLM, and therefore only considers
2n − 2 of the 2n possibilities. Thus, it will always make at least one mistake. This means the 0.900
segment accuracy for No LLM segments is the best it can achieve, since there are 10 segments per
text in this dataset, and PaLD-TI will misclassify at least one segment incorrectly. Additionally, we
would like to reiterate our response to Q3 that the testing datasets contain texts that are nearly all
LLM or no LLM segments.

Effect of segmentation mismatch in PaLD-TI. PaLD-TI, as well as the segment-wise baselines,
assumes a chosen segmentation, which we assume to be sentences. Here, we investigate the effect of
a mismatched segmentation. In other words, the case when the ground-truth segmentation (i.e., the
actual segments where the text is fully LLM or fully human) does not perfectly align with the chosen
segmentation of PaLD-TI. To do so, we use the same sentence-level mixed text, so the ground-truth
segmentation is at the sentence-level. However, the chosen segmentation is now at every 2 sentences.
This means that PaLD-TI (and segment baselines) can only assign prediction to pairs of sentences,
and thus a misclassification (at the sentence-level) will occur whenever the two sentence within a pair
differ in class (i.e., one is human and the other is LLM), no matter what the prediction is. We show
how PaLD-TI and the FastDetectGPT-Seg perform in Tab 18.

As shown, there is a performance decrease in both PaLD-TI and FastDetectGPT-Seg, as expected,
since perfect classification is no longer possible and mistakes are inevitable. We note that PaLD-TI
still outperforms FastDetectGPT-Seg at the 2-sentence segmentation, and leave methods to mitigate
mismatched segmentation for future work.
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Table 18: Text identification under mismatched segmentation. Dataset: WP. Ground-truth segmenta-
tion is at the sentence-level. Report sentence-wise accuracy.

Chosen Segmentation PaLD-TI FastDetectGPT-Seg

Every Sentence 0.826 0.651
Every 2 Sentences 0.706 0.613

Table 19: Percentage estimation (MAE ↓)

Dataset DetectGPT (para.) DetectGPT (sent.) FastDetectGPT (para.) FastDetectGPT (sent.) PaLD-PE (ours)

WP 0.381 0.370 0.212 0.184 0.116
Yelp 0.407 0.397 0.218 0.190 0.137

Table 20: Text identification (segment accuracy ↑)

Dataset DetectGPT (para.) DetectGPT (sent.) FastDetectGPT (para.) FastDetectGPT (sent.) PaLD-TI (ours)

WP 0.486 0.488 0.650 0.651 0.826
Yelp 0.452 0.460 0.622 0.624 0.801

Baseline DetectGPT and FastDetectGPT methods applied to segments. We compare the Detect-
GPT and FastDetectGPT segment-wise baselines by setting the threshold to maximize the difference
between TPR and FPR on a segment-level validation set, versus on a paragrpah-level dataset. We
show the difference by setting threshold at the paragraph level vs. sentence level in Tab. 19, 20.
There is an improvement in the performance by using sentence-level validation data, albeit around
< 0.03 in MAE for the percentage estimation task, and < 1% for the segment-accuracy in the text
identification task.
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Table 21: Examples of synthetic mixed text generation using the mask-and-fill approach with GPT-4o.
Text highlighted in red were originally segments masked in the human text and filled by GPT-4o.

Human Text Mixed Text

Thank you for a lovely morning! I was in NJ
early and decided to stop in for a delicious
diner breakfast. I got a taylor ham, egg,
and cheese and a short stack of blueberry
pancakes (I simply couldn’t decide between
sweet or savory, plus leftovers are never a
bad thing). The egg sandwich was fantastic.
I was nervous when they said they didn’t have
kaiser rolls so I went with a hamburger roll.
It was an excellent decision. The roll
was excellent - not just an average cheap
hamburger roll. They layered the cheese on
the sandwich, which to me is a must for a
true egg sandwich. It was served with home
fries, which were sauteed with large slices
of peppers and onions.

This morning, I decided to treat myself to
breakfast at a local diner. I got a taylor
ham, egg, and cheese and a short stack of
blueberry pancakes (I simply couldn’t decide
between sweet or savory, plus leftovers are
never a bad thing). The egg sandwich was
fantastic. I was nervous when they said they
didn’t have kaiser rolls so I went with a
hamburger roll. It was an excellent decision.
The pancakes were fluffy and bursting with
blueberries. They layered the cheese on the
sandwich, which to me is a must for a true
egg sandwich. The meal also came with a side
of breakfast potatoes.

This was a very busy place. Was told I had
to try this place while I was in St Louis. I
was not disappointed. I got a peach shake
that was amazing. The rest of my group
tried a number of different options that
they all enjoyed. The wait was a little long
especially on a very hot date. The prices
were very reasonable. The ordering at the
window was confusing. Multiple windows with
not a lot of direction of which line to get
in and where to wait for the food. It’s a
great place to stop if you are in the area.

I recently visited a local ice cream shop.
The place had a charming, old-fashioned vibe.
I was not disappointed. I got a peach shake
that was amazing. The staff was friendly
and helpful. The menu had a wide variety
of flavors and treats. The prices were very
reasonable. The ordering at the window was
confusing. Multiple windows with not a lot
of direction of which line to get in and
where to wait for the food. It’s a great
place to stop if you are in the area.

A man is banished to the wilderness for 20
years. Write his diary entries for his first
and last days of exile. I was born to fire.
It flowed over my skin, danced upon my face,
and stripped me of what little humanity I had
left. Within the ruined cavity of my left
eye I held the final images of my family as
they were fed to the same fires I was pulled
from. My death would not be so quick and so
I was allowed to burn with them, but live.
As soon as I was able to walk, I was ushered
out into the wilderness. The final piece of
society I was allowed to keep was in the ink
buried in my chest that had once formed my
son’s hand print, now twisted with my burned
skin into a misshapen claw. They promised
twenty years, but swore under their breath

A man is banished to the wilderness for 20
years. Write his diary entries for his first
and last days of exile. Today marks the
beginning of my exile, a punishment I must
endure for the next two decades. The pain of
separation from my loved ones is unbearable,
but I must find the strength to survive.
Within the ruined cavity of my left eye I
held the final images of my family as they
were fed to the same fires I was pulled from.
My death would not be so quick and so I was
allowed to burn with them, but live. As soon
as I was able to walk, I was ushered out into
the wilderness. The years have been long and
arduous, but I have learned to find solace
in the solitude of the wilderness. As I take
my final steps back to civilization, I carry
with me the scars and wisdom of my exile

Describe an object within five feet of you in
as much detail as possible. A pair of simple
black converse lie on the floor of the baby
blue Honda fit my girlfriend is kind enough
to let me drive. They are a far cry from the
crisp kicks I’d received in the mail only a
year ago. This has been a hard 12 months for
them. The once crisp white inner lining has
degraded into something a generous person
might call "cream" or "off-white" to me
they’re just brown. The forces of time have
transmuted the laces into a soft grey, like
clouds in fall which promise a gentle patter
of rain to listen to as you while away the
hours. The rubber has had it particularly
bad, time and constant use has worn down the
bottom edges. Scuff marks cover the once
pristine expanse. When they were new I’d
taken, so much care to keep them scuff free I
waited until the wedding to wear them.

Describe an object within five feet of you
in as much detail as possible. A pair of
simple black converse lie on the floor of
the baby blue Honda fit my girlfriend is kind
enough to let me drive. They are a far cry
from the crisp kicks I’d received in the mail
only a year ago. The laces are frayed and
stained, no longer the bright white they once
were. The once crisp white inner lining has
degraded into something a generous person
might call "cream" or "off-white" to me
they’re just brown. The rubber soles are
worn down, evidence of countless steps taken.
The black canvas is faded, showing signs of
wear and tear from daily use. Scuff marks
cover the once pristine expanse. When they
were new I’d taken, so much care to keep them
scuff free I waited until the wedding to wear
them.
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