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Abstract

Formal verification of software is a promising and
potentially transformative application of genera-
tive AI. Provably correct code would eliminate en-
tire classes of vulnerabilities, mitigate critical sys-
tem failures, and potentially transform software
engineering practices through inherently trust-
worthy implementation methodologies. To ad-
vance this domain, we present VeriBench, a care-
fully curated benchmark for evaluating language-
model capabilities in end-to-end code verification,
requiring the generation of complete Lean 4 pro-
grams—implementations, unit tests, correctness
theorems, and formal proofs—derived from ref-
erence Python functions or their docstrings. Our
evaluation on the 113-task suite—51 HumanEval
problems, 42 easy exercises, 10 classical algo-
rithms, and 11 security challenges—shows that
current frontier models compile only a small frac-
tion of programs. Claude 3.7 Sonnet achieves
compilation on only 12.5%, while LLaMA-70B
fails to compile any programs in the Lean 4 Hu-
manEval subset, even with 50 feedback-guided at-
tempts. Notably, among the evaluated approaches,
our experiments reveal that a self-optimizing
Trace agent architecture achieves compilation
rates approaching 60%. VeriBench establishes a
rigorous foundation for developing AI systems
capable of synthesizing provably correct, bug-
free code, thereby advancing the trajectory toward
more secure and dependable software infrastruc-
ture.
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1. Introduction
Large language models (LLMs) have demonstrated impres-
sive capabilities in code generation, leading to widespread
integration into developer workflows. Recent survey results
from GitHub report that, on average, 46% of a developer’s
code is now authored by Copilot across all programming
languages, with the proportion rising to 61% in Java (Zhao,
2023). In parallel, a 2024 developer survey finds that 76%
of respondents are either already using or planning to use AI
tools in their workflows this year (Stack Overflow, 2024).
Despite this rapid adoption, confidence in the accuracy and
reliability of AI-generated code remains limited. Only 2.7%
of developers report that they “highly trust” the output of
AI tools, while just 3.3% believe such tools perform “very
well” at handling complex development tasks (Stack Over-
flow, 2024). This tension between high usage and low trust
underscores the urgent need for rigorous, automated mecha-
nisms capable of providing formal guarantees about model-
generated code–especially for security critical applications.

As a result, AI-generated code is making its way into com-
mercial software systems and may soon occupy a large
portion of publicly existing code. Despite their usefulness,
LLMs are inherently probabilistic and cannot guarantee the
correctness of the code they produce. Consequently, such
code often contains bugs, ranging from logical flaws to seri-
ous security vulnerabilities (Perry et al., 2023; Team, 2025;
Claburn; Pearce et al., 2022). As adoption grows, these
errors risk becoming a major obstacle to developer produc-
tivity, since human review is typically needed to identify
and fix them (Tambon et al., 2024; Nguyen et al., 2022;
Srivatsa et al., 2024; GitHub Engineering, 2023).

Formal verification – the process of mathematically prov-
ing that an implementation adheres to a precise specifi-
cation – offers a principled path to guaranteed correct-
ness. Historically, it has been applied mainly in high-
assurance settings such as hardware design (processor ver-
ification) (Reid, 2016), aerospace avionics (Holzmann &
James, 2006), medical-device firmware (Alur et al., 2010),
nuclear-power control systems (Linnosmaa et al., 2023),
and mission-critical financial or smart-contract infrastruc-
ture (Team, 2023), where the cost of failure far outweighs
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the cost of formal analysis. A formal specification is a math-
ematical statement of the intended behavior of a program
(e.g., reverse returns a list whose length equals the
length of the input list), and a machine-checkable proof is
a logical argument that a proof assistant’s kernel can verify
automatically. Unlike general theorem proving in mathemat-
ics, code verification focuses on proving properties about
computational processes and their implementations.

LLMs have the potential to democratize formal verification
by co-generating implementations, their specifications, and
the proofs that connect them, bringing strong correctness
guarantees to everyday software development.

To unlock the full potential of verifiable code generation, the
development of robust benchmarks is essential to measure
progress and guide future research. However, designing
such benchmarks is challenging: verifiable code generation
encompasses several interdependent components, including
the synthesis of code, formal specifications, and accompa-
nying proofs. High-quality data must be curated for each of
these components, along with rigorous, task-specific evalua-
tion metrics. Therefore, we use Trace agents (Cheng et al.,
2024) to bootstrap the generation of aligned Python func-
tions with docstring specifications and corresponding Lean
proofs.

Our goal with VeriBench is to close two gaps left open by
prior work. First, existing verification datasets—such as
VERINA, FVAPPS, CLEVER, DafnyBench, and Clover-
Bench (Chen et al., 2021; Ye et al., 2025; Dougherty &
Mehta, 2025; Thakur et al., 2025; Loughridge et al., 2024;
Sun et al., 2024)—are populated almost exclusively with
textbook algorithms or synthetic exercises. VeriBench
is the benchmark first to include security-critical pro-
grams written by developers: its SecuritySet adapts buffer-
overflow, privilege-escalation, and race-condition labs from
MIT 6.858 (CSAIL, 2024), so models must eliminate real
vulnerabilities instead of toy bugs and aim to simulate real
code that people want verified in practice. Second, earlier
suites report only single-shot or best-of-k scores; they never
benchmark an explicit loop that reads verifier feedback,
rewrites the artifact, and resubmits until the compilation
succeeds. VeriBench, therefore, is the first to illustrate agen-
tic evaluation with a reference Trace-based (Cheng et al.,
2024) framework (baseline, self-debug, self-improve) built
on generative optimization traces, making feedback-driven,
closed-loop verification a primary evaluation.

Besides the SecuritySet, VeriBench adds EasySet and CS-
Set, which target foundational reasoning and classical algo-
rithms, respectively, giving the benchmark a diverse topic
mix and a broad difficulty range (see §3.1). We focus
on translating existing Python code and its docstrings to
Lean because millions of such snippets already live in open-
source repos; turning this real-world corpus into machine-

checked programs fixes latent bugs directly, whereas start-
ing from a fresh natural-language description would add an
unnecessary detour that today’s LLMs no longer require.
Note that every task already includes a descriptive docstring;
researchers who prefer a pure natural-language–to–proof
setting can simply ignore the reference implementation and
treat VeriBench as an NL-only corpus.

Unlike the static-analysis, linting, and fuzz-testing pipelines
already common in industry, Lean 4 supplies compile-time,
machine-checked proofs that hold for all inputs and compile
into the shipped binary, providing end-to-end correctness
guarantees that conventional tools cannot match.

Our contributions are:

1. A security-grounded benchmark. VeriBench is the first
Lean 4 dataset to include developer-written, security-
critical programs (buffer overflow, privilege escalation,
and race condition labs from MIT 6.858), complement-
ing textbook and synthetic tasks.

2. Balanced task spectrum. Four subsets—HumanEval,
EasySet, CSSet, and SecuritySet—cover everything from
basic reasoning to classical algorithms and real-world
exploits, enabling fine-grained difficulty analysis.

3. Closed-loop agent evaluation. We provide a Trace-
based reference agent (baseline, self-debug, self-
improve) that interacts with the Lean compiler and judge,
turning feedback-driven verification into a measurable
axis of performance.

4. Comprehensive Lean artifacts. Each problem ships
runnable Python code, a gold Lean implementation,
unit tests, correctness theorems, and machine-checked
proofs—yielding the first end-to-end yardstick for prov-
ably correct code generation.

2. Related Work
Recent advances in language models have inspired a surge of
research on formal code verification, spanning benchmarks,
methodologies, and frameworks. In this section, we review
progress across three fronts: large-scale benchmarks for
evaluating LLM verification capabilities, techniques for im-
proving proof generation and checking, and agentic frame-
works that enable modular, self-improving workflows and
programmatic reasoning.

Benchmarks for Code Verification. Loughridge et al.
(2024) introduce DAFNYBENCH, the first large-scale bench-
mark for evaluating LLMs in formal software verification.
It consists of over 750 Dafny programs (approximately 53K
lines of code) stripped of verification “hints,” requiring mod-
els to regenerate the missing annotations to pass the verifier.
Evaluated on GPT-4, GPT-4 Turbo, Claude 3, and others, the
best-performing system achieved a success rate of roughly
68%, demonstrating the potential of machine-assisted ver-
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ification while highlighting performance variability with
respect to program size, hint complexity, and retry strate-
gies. Complementing this line of work, Wang et al. (2024)
present THEOREMLLAMA, a framework aimed at enhanc-
ing LLM translation into Lean 4. Drawing on over 100K
proof examples from the Mathlib4 library, TheoremLlama
employs a novel natural-language-to-formal-language (NL-
FL) bootstrapping strategy and iterative proof synthesis.
This enables the reuse of verified examples as templates for
future translations. The framework achieves 36.48% and
33.61% accuracy on the MiniF2F-Valid and MiniF2F-Test
benchmarks, respectively—surpassing GPT-4 by more than
ten percentage points on both.

To more comprehensively evaluate the different stages of
formal development, Ye et al. (2025) introduces VERINA,
a 189-task Lean benchmark that jointly assesses LLM-
generated code, formal specifications, and machine-checked
proofs. While LLMs perform reasonably well on code and
spec generation, they continue to struggle with constructing
formal proofs, underscoring the need for more targeted train-
ing and architectural improvements. Addressing this need,
Cao et al. (2025) proposes a decomposition of the informal-
to-formal verification pipeline into six subtasks, and releases
a dataset of 18K paired examples across five formal speci-
fication languages. Each pair includes executable contexts
and automated validations. Fine-tuning LLMs on this data
significantly improves formal proof synthesis and transfers
positively to related tasks in mathematics and programming.

In parallel, Dougherty & Mehta (2025) introduce FVAPPS,
a machine-generated Lean 4 benchmark of 4,715 problems
stratified by assurance level. Built via a test-driven LLM
pipeline, it shows that top models like Claude Sonnet and
Gemini 1.5 Pro prove only 30% and 18.5% of theorems,
respectively, with human-written solutions still falling short
at scale. CLEVER (Thakur et al., 2025) offers a more fo-
cused challenge: 161 Lean problems requiring both a formal
spec and a correctness-proofed implementation. It’s non-
computable, spec-agnostic setup avoids test leakage and
demands true reasoning—so far, models fully solve only 1
of 161 tasks. Finally, broadening the scope beyond formal
proof, Ouyang et al. (2025) introduces KERNELBENCH, a
benchmark for generating optimized GPU kernels for 250
PyTorch workloads. Using profiler feedback and examples,
iterative loops boost success from 12% to over 70%, show-
casing the impact of reinforcement-style correction.

VeriBench distinguishes itself from existing benchmarks
by targeting the full pipeline of formal code verification
grounded in realistic programming tasks. Unlike FVAPPS,
which consists of thousands of machine-generated Lean
problems optimized for scale and raw proof success rates,
VeriBench uses human-curated Python functions drawn
from foundational algorithms and practical programming

contexts. Each example is paired with a complete Lean 4
formalization—including functional and imperative imple-
mentations, unit tests, correctness theorems, and machine-
checkable proofs—emphasizing artifact completeness over
sheer volume. Compared to VERINA, which decomposes
the verification process into separate subtasks like spec gen-
eration and proof synthesis, VeriBench evaluates holistic
translation performance: how well models can go from in-
formal code and natural language to executable and provable
formal artifacts. Moreover, VeriBench supports the evalua-
tion of agentic systems that iteratively refine their outputs
through feedback.

3. VeriBench
3.1. Overview

VeriBench is a benchmark designed to evaluate the end-to-
end code verification capabilities of large language mod-
els, requiring them to generate complete Lean 4 artifacts
from reference Python programs or their accompanying
docstrings. It encompasses a broad range of translation
components, including function implementations, natural
language descriptions, unit tests, theorems, formal proofs,
and example input-output behavior.

Instead of relying on a deep embedding of source language
semantics, VeriBench adopts a shallow embedding approach,
aiming to produce formal representations that faithfully
capture the behavior and intent of the original code. By
offering a structured and challenging testbed, VeriBench
enables rigorous evaluation of model performance in both
automated code translation and formal verification, with
a particular focus on the correctness, completeness, and
provability of the generated Lean 4 artifacts.

Concretely, VeriBench consists of four subsets:

1. HumanEval – 51 standard programming puzzles from
Chen et al. (2021);

2. EasySet – 51 bite-size logic and intro-programming
tasks;

3. CSSet – 10 classical data-structure and algorithm prob-
lems;

4. SecuritySet – 11 examples of buffer overflow, privilege
escalation, and race condition labs drawn from real code.

This ensures coverage of tasks that range from simple cor-
rectness theorems to more complex invariants and algorith-
mic properties to real code people want verified in practice.

Task. The task is to translate Python code with its doc-
string and unit tests to a parallel Lean 4 implementation
that compiles, but with an additional set of comprehensive
correctness theorems.
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3.2. Construction

VeriBench-HumanEval. This subset extends the original
HumanEval dataset (Chen et al., 2021), a widely used bench-
mark for evaluating the coding capabilities of language
models, by providing formally grounded translations of
its problems into the Lean 4 proof assistant. VeriBench-
HumanEval transforms each Python problem into a Lean
4 formal verification task. The pipeline begins by parsing
each HumanEval problem to extract the function signature,
docstring, canonical implementation, and unit tests. These
elements are then assembled into a clean, standalone Python
file, with additional unit tests added where appropriate to
cover important edge cases.

Subsequently, the same problem is translated into Lean 4 us-
ing a shallow embedding approach. Each Lean file includes
(1) the Lean 4 implementation of the function, (2) a natural
language docstring, (3) equivalent unit tests expressed as
both #eval expressions and example theorems, and (4)
one or more formal theorems that specify correctness prop-
erties. Each formal theorem is accompanied by a natural
language statement and a detailed proof sketch in English.

Notably, where applicable, an imperative version of the
function is also implemented in Lean 4, along with a theo-
rem asserting its equivalence to the functional version. This
structured Python–Lean 4 pairing enables automatic metric-
based evaluation, including compilation success, proof vali-
dation, and functional correctness through Lean’s evaluation
mechanism—thus providing a rigorous framework for as-
sessing the ability of language models to translate, reason
about, and formally verify programs.

# Implementation
def has_close_elements(numbers: List[float], threshold:

float) -> bool:
"""
Check if in given list of numbers, are any two

numbers closer to each other than the given
threshold.

"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if distance < threshold:

return True
return False

# Tests
from typing import Callable
def check(candidate: Callable[[List[float], float],

bool]) -> bool:
assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3)

== True
assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2],

0.05) == False

... (more tests) ...

return True

if __name__ == "__main__":
assert check(has_close_elements), f"Failed: {__file__

}"

Listing 1: An exemplar input Python code of VeriBench-
HumanEval (simplified for showcase).

namespace HasCloseElements
open List

-- Recursive implementation
def hasCloseElements (numbers : List Float) (threshold :

Float) : Bool :=
match numbers with
| [] => false
| x :: xs =>
if xs.any (fun y => Float.abs (x - y) < threshold)

then
true

else
hasCloseElements xs threshold

-- Tests
example : hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0,

2.2] 0.3 = true := by
native_decide

#eval hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]
0.3 -- expected: true

-- Theorems
theorem hasCloseElements_iff
(numbers : List Float) (t : Float) :
hasCloseElements numbers t = true ↔
∃i j : Nat,
i < numbers.length ∧j < numbers.length ∧
i ̸=j ∧
Float.abs (numbers[i]! - numbers[j]!) < t := by

sorry

/--
Monotone in threshold: enlarging the tolerance

preserves truth. If t1 ≤t2 and the predicate is
true at t1, then it is also true at t2.

-/
@[simp] theorem threshold_mono

{numbers : List Float} {t1 t2 : Float}
(hle : t1 ≤t2)
(h : hasCloseElements numbers t1 = true) :

hasCloseElements numbers t2 = true := by
sorry

... (more theorems) ...

end HasCloseElements

Listing 2: An exemplar golden output Lean 4 code of
VeriBench-HumanEval (simplified for showcase).

VeriBench-EasySet. This subset provides a simplified al-
ternative to VeriBench-HumanEval, targeting foundational
programming and reasoning skills. It features a collection
of clear, self-contained problems modeled after classic in-
troductory programming exercises. Examples include com-
puting the factorial of a number, reversing a list, checking
for palindromes, finding the maximum value in a list, and
counting character frequencies in a string. Each task is
framed as a concise coding prompt, similar to a short exam
question, and is accompanied by correct implementations
in both Python and Lean 4. The Lean 4 solutions include
the function definition, unit tests written using #eval and
example theorems, and, when appropriate, formal theo-
rems with accompanying proof sketches. The problems are
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selected to be easily checkable yet demand careful formal-
ization, making VeriBench-EasySet a suitable benchmark
for evaluating the basic formal reasoning capabilities of lan-
guage models in a controlled and interpretable environment.

# Implementation
def my_max(a: int, b: int) -> int:

"""
Return the larger of two non-negative integers.
"""
return b if a <= b else a

# Tests
from typing import Callable

def check(candidate: Callable[[int, int], int]) -> bool:

assert candidate(7, 3) == 7, f"expected 7 from (7,3)
but got {candidate(7, 3)}"

... (other tests) ...
return True

if __name__ == "__main__":
assert check(my_max), f"Failed: {__file__}"
print(f’All tests passed: {__file__}!’)

Listing 3: An exemplar input Python code of VeriBench-
EasySet (simplified for showcase).

namespace MyMax

-- Implementation
def myMax (a b : Nat) : Nat :=
if _ : a ≤b then b else a

infixl:70 "⊔"=> myMax -- left-associative, precedence
70

-- Tests
#eval myMax 7 3 -- expect 7
example : myMax 7 3 = 7 := by native_decide
#eval myMax 0 0 -- expect 0
example : myMax 0 0 = 0 := by native_decide

-- Theorems
@[simp] theorem max_left_identity (n : Nat) : myMax 0 n

= n := sorry

-- Theorem Right Identity
@[simp] theorem max_right_identity (n : Nat) : myMax n

0 = n := sorry

... (other theorems) ...

end MyMax

Listing 4: An exemplar golden output Lean 4 code of
VeriBench-EasySet.

VeriBench-CSSet. This subset comprises fundamental com-
puter science data structures and algorithms, covering essen-
tial computational problems including sorting, searching, dy-
namic programming, and string manipulation. The problems
are drawn from core undergraduate computer science curric-
ula, focusing on classical algorithms with well-established
correctness properties and complexity characteristics. For
foundational problems such as sorting, we include multi-
ple algorithmic approaches with varying implementation
complexity and runtime characteristics, ranging from sim-
ple quadratic algorithms like bubble sort and insertion sort

to more sophisticated divide-and-conquer approaches like
merge sort and quicksort. While these algorithms might
be easy for LLMs to implement, it is very hard to formally
verify that they are correct.

Each task follows the same structured format as other sub-
sets, providing both Python reference implementations and
corresponding Lean 4 translations with functional defini-
tions, unit tests, and formal correctness theorems. The
theorems capture essential algorithmic properties such as
sortedness invariants, search completeness, and dynamic
programming optimality conditions.

Curation. We attempt to write a comprehensive set of theo-
rem properties for each benchmark test. Since in practice
this is not possible to guarantee, to make sure we generate
as many important theorems for the benchmark, we have a
two-stage generation pipeline where a second human curator
assisted with AI makes sure the theorems are as exhaustive
as possible.

# Implementation
from typing import List, Optional
def binary_search(arr: List[int], target: int) ->

Optional[int]:
"""
Binary search implementation that searches for a

target value in a sorted list.
Returns the index if found, None if not found.
"""
if not arr:

return None

left, right = 0, len(arr) - 1

while left <= right:
mid = (left + right) // 2
mid_val = arr[mid]

if mid_val == target:
return mid

elif mid_val < target:
left = mid + 1

else:
right = mid - 1

return None

# Tests
from typing import Callable
def check(candidate: Callable[[List[int], int],

Optional[int]]) -> bool:
assert candidate([1, 2, 3, 4, 5], 1) == 0
assert candidate([1, 2, 3, 4, 5], 3) == 2
... (more tests) ...

print("Pass: all correct!")
return True

if __name__ == "__main__":
assert check(binary_search), f"Failed: {__file__}"

Listing 5: An exemplar input Python code of VeriBench-
CSSet (simplified for showcase).

import Mathlib.Data.List.Sort
import Mathlib.Data.List.Basic

namespace BinarySearch
open List
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-- Implementation
partial def binarySearchAux (arr : List Nat) (target :

Nat) (left right : Nat) : Option Nat :=
if left > right then
none

else
let mid := (left + right) / 2
if mid >= arr.length then
none

else
let midVal := arr.get <mid, by sorry>
if midVal = target then
some mid

else if midVal < target then
binarySearchAux arr target (mid + 1) right

else
binarySearchAux arr target left (mid - 1)

def binarySearch (arr : List Nat) (target : Nat) :
Option Nat :=

if arr.isEmpty then
none

else
binarySearchAux arr target 0 (arr.length - 1)

/-- Linear search for comparison and verification -/
def linearSearch (arr : List Nat) (target : Nat) :

Option Nat :=
arr.findIdx? (· = target)

-- Theorem: If binarySearch returns Some i, then arr[i]
= target

theorem correctness_binarySearch (arr : List Nat) (
target : Nat) (i : Nat) :

binarySearch arr target = some i →arr[i]? = some
target := by

sorry

-- Theorem: If target is in the sorted array, then
binarySearch finds it

theorem completeness_binarySearch (arr : List Nat) (
target : Nat) :

List.Sorted (fun x y => x ≤y) arr →target ∈arr →
∃i, binarySearch arr target = some i := by
sorry

... (more theorems) ...

end BinarySearch

Listing 6: An exemplar golden output Lean 4 code of
VeriBench-CSSet (simplified for showcase).

VeriBench-SecuritySet. To ensure VeriBench reflects the
challenges of real-world, security-critical systems, we in-
clude formal translations of programs from MIT’s 6.858
lab. For example, one challenge in VeriBench tests the
models capabilities to translate a Python program with a
buffer overflow shown below, to a Lean program without
it. By incorporating these authentic examples, our bench-
mark emphasizes the high-assurance verification tasks that
practitioners care about most.

# Implementation
def unsafe_copy(dst: bytearray, src: bytearray) -> None:

"""
Copy bytes from ‘src‘ into ‘dst‘ at the same indices,

without any bounds checking.
If ‘len(src) > len(dst)‘, this will raise an

IndexError (buffer overflow).
"""
for i, b in enumerate(src):

dst[i] = b

# Tests
def check(candidate) -> bool:

# 1) Safe copy: src fits in dst
d = bytearray(3)
s = bytearray(b’abc’)
candidate(d, s)
assert bytes(d) == b’abc’

... (other tests) ...

return True

assert check(unsafe_copy), "Candidate failed buffer-
overflow tests"

print("Pass!")

Listing 7: An exemplar input Python code of VeriBench-
SecuritySet (simplified for showcase).

namespace BufferOverflow

-- Implementation
def unsafeCopy (dst src : List UInt8) : Option (List

UInt8) :=
let n := dst.length
-- fold over enumerated bytes with their indices
src.enum.foldl (fun o (i, b) =>
o.bind fun acc =>
if h : i < n then
some (acc.set i b)

else
none

) (some dst)

-- Tests
example : unsafeCopy [0, 0, 0] [1,2] = some [1,2,0] :=

by rfl
example : unsafeCopy [0, 0] [1,2,3] = none := by rfl

... (other tests) ...

-- Theorem: safety precondition
theorem copy_safe {dst src : List UInt8}
(h : src.length ≤dst.length) :
∃newDst, unsafeCopy dst src = some newDst := by
unfold unsafeCopy

-- Theorem: overflow detection
theorem copy_overflow {dst src : List UInt8}
(h : dst.length < src.length) :
unsafeCopy dst src = none := by
unfold unsafeCopy
admit

end BufferOverflow

Listing 8: An exemplar golden output Lean 4 code of
VeriBench-SecuritySet (simplified for showcase).

4. Evaluation
4.1. Setup

DSPy React Agent. We build a simple tool-use agent with
only a single DSPy (Cheng et al., 2024; Khattab et al., 2022)
react module with a maximum of 50 Lean 4 tool calls. The
tool given is the Lean 4 RL environment accessed via Py-
Pantograph (Aniva et al., 2025). Any feedback from the
environment (e.g., errors, code lines, etc.) is fed back to
the agent to produce an output that compiles. We choose
50 to provide a model with enough budget for the task, as
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language models cannot generate Lean 4 accurately. As will
be shown in later sections, even with such a high number
of calls with feedback, all open source models obtained 0%
compilation accuracy.

Alpaca Benchmark. To gauge out-of-domain generaliza-
tion, we also test on 40 Python examples from the Stan-
ford Alpaca instruction-following dataset. Alpaca was
created by fine-tuning LLaMA 7B on self-generated in-
struction–response pairs spanning diverse tasks, including
Python coding. These 40 examples serve as an additional,
non-verifiable baseline for code-compilation performance.

Trace. Trace lets an LLM “rewrite the agent as it learns”:
after each run it provides the optimizer with (i) the agent’s
current source, (ii) the full execution trace, (iii) any verifier
error messages (or an RL environment), and (iv) the result-
ing reward. The LLM edits the code in-context using this
quartet of signals, then the refined agent runs again, closing
a tight loop of self-improvement.

LLM Trace Agent. We use Trace (Cheng et al., 2024)
to build a simple LLM agent. We provide three variants:
a baseline agent that only outputs the theorem translation
from the code. Then, we build a self-debug agent that adds a
self-correction loop where the compilation error is provided
as feedback to the agent and the agent is asked to produce
correct theorems conditioned on the past incorrect result,
along with debugging information to fix the mistake. We
build a detailed debugging report similar to what a human
would get from an IDE, with specific line number informa-
tion, code snippets surrounding the line that triggered the
error, and the actual error from the compiler. Finally, we
built a self-improving agent (self-debug + judge) that has a
layered design. This agent first generates a theorem trans-
lation. If there is a bug, it goes through the self-correction
loop similar to the self-debug agent. If the translated theo-
rem compiles, it will use the LLM Judge described below
to get a score, and conditioned on the generated theorem
and score, the agent is asked to self-improve in context to
propose a better theorem to maximize the score.

LLM Judge. The LLM judge scores the quality candidate
Lean 4 translated from the Trace agent using the same LLM
Trace uses (in this case Claude). The LLM judge is provided:
(1) the original Python and docstring, (2) the translated Lean
4 program, (3) the translated Lean 4 unit tests, and (4) a
set of candidate theorems based on 1-3. The LLM judge
is asked to judge if the theorems are correct and compre-
hensive, and if they are not it penalizes the output of the
agent. Since this is done during evaluation the LLM judge
does not have the gold reference Lean file and instead only
has an example file in context demonstrating a good Lean
4 translation for addition. The model is prompted to score
based on the Lean 4 code quality and no further computation
besides the judge’s autoregressive generation employed. A

candidate theorem must (i) be correct – equivalent to the
Python reference and docstring – and (ii) comprehensive,
covering every possible property the Python and docstring
imply. Note, however, that comprehensive is difficult if
not impossible to guarantee even during the gold reference
generation of the benchmark.

Evaluated Models. We evaluate a range of prominent lan-
guage models on VeriBench, including both open-source
and proprietary systems. Specifically, our evaluation cov-
ers LLaMA 3.1–8B, LLaMA 70B, WattAI (LLaMA 70B
trained for tool use), Claude 3.5 Sonnet, Claude 3.5 Son-
net (v1 and v2), and Claude 3.7. This diverse selection
provides a balanced view of current model capabilities in
code translation to formal code under different inference
configurations.

4.2. Main Results

Table 1 reports the compilation success of our DSPy Re-
act agent across two small-scale suites: Mini-VeriBench
(8 tasks) and 40 held-out Python Alpaca examples. Only
Claude 3.5 Sonnet v1 consistently compiles VeriBench tasks
(8/8) and achieves a moderate hit rate on Alpaca (24/40). All
other open-source models—LLaMA 3.1–8B, LLaMA 70B,
WattAI 70B, Claude 3.5 v2, and Claude 3.7—fail entirely
on VeriBench (0–4/8) and manage at best 7/40 compilations
on Alpaca.

Table 2 scales this comparison to the full 113-task VeriBench
corpus, using Claude 3.5 Sonnet v1 in all settings. These
results demonstrate that compiler feedback alone (Trace)
yields the largest overall gains, roughly quadrupling single-
shot performance. LLM judge can focus improvements
on security-critical tasks but may mislead on simpler or
algorithmic examples, degrading overall accuracy. Open-
source LLMs struggle with formally verified code genera-
tion, achieving near-zero compilation without closed-loop
methods (Table 1).

In summary, feedback-driven, iterative verification (Trace)
is crucial for translating real-world Python into machine-
checked Lean 4: self-debugging agents outperform both
basic DSPy retries and judge-augmented pipelines, solving
over half the benchmark tasks. VeriBench establishes a
rigorous foundation for developing AI systems capable of
synthesizing provably correct, bug-free code, thereby ad-
vancing the trajectory toward more secure and dependable
software infrastructure.

1https://huggingface.co/datasets/
iamtarun/python_code_instructions_18k_
alpaca
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Model VeriBench (8) Alpaca (40)

LLaMA 3.1–8B (DSPy) 0/8 1/40
LLaMA 70B (DSPy) 0/8 2/40
WattAI 70B (DSPy) 0/8 5/40
Claude 3.5 Sonnet v1 (DSPy) 8/8 24/40
Claude 3.5 Sonnet v2 (DSPy) 4/8 1/40
Claude 3.7 Sonnet (DSPy) 1/8 7/40

Table 1: DSPy performance on Mini-VeriBench (8 exam-
ples) and the last 40 examples from the Python Alpaca
dataset1.

Model HumanEval EasySet CSSet SecuritySet Total

Baseline 4/51 3/41 0/10 1/11 8/113

DSPy 14/51 10/41 2/10 3/11 29/113
Trace 31/51 30/41 3/10 4/11 67/113
Trace+ 8/51 24/41 1/10 7/11 40/113

Table 2: Comparison of performance on full VeriBench.
We used Claude 3.5 v1 model for the full benchmark. For
the baseline, we called Claude 3.5 v1 once without access
to the compiler and LLM judge feedback. For DSPy we
use a single React module with 5 retries. For "Trace", we
include self-debug by the language models with 5 retries,
while "Trace+" indicates self-debug with 5 retries plus LLM-
judge with 5 retries.

5. Discussion
Why Lean 4? Lean 4 is a full-fledged programming lan-
guage, which allows VeriBench to contain fully runnable
code and machine-checked proofs in the same dependently-
typed language. Ahead-of-time compilation with the Lake
toolchain produces fast native binaries, while first-class
Task primitives, async I/O, and a thread-pool scheduler en-
able genuine concurrent programs inside the prover. Lean’s
C-level foreign-function interface (FFI) lets those binaries
call out to high-performance libraries when needed. On
the proof side, Lean ships a powerful metaprogramming
system written in Lean itself, giving researchers a program-
ming interface to access its internals. This led to the cre-
ation of tools such as Pantograph and Aesop. Finally, the
community-maintained mathlib4 and std4 libraries sup-
ply thousands of reusable theorems and data structures, and
they are expanding quickly thanks to an active Zulip and
GitHub ecosystem. Lean FRO also has plans to create li-
braries for verifying monadic programs. Lean 4 is backed
by an unusually vibrant open-source community: hundreds
of contributors refine mathlib4 on GitHub each week,
the public Zulip sees expert discussion around the clock,
and even Fields-Medalist Terence Tao has chosen Lean
to formalise portions of his current research—clear testi-
mony to the ecosystem’s accessibility and intellectual depth.
Unlike the unit tests, fuzzers, and static-analysis pipelines
common in industry—tools that sample inputs or rely on

heuristics—Lean 4 supplies machine-checked proofs that
a property holds for all executions. Its dependent type
system can encode deep invariants (e.g., length-indexed
arrays, bounded integers), so programs that violate them
fail to compile, eliminating whole classes of bugs such as
buffer overflows or integer wrap-around. Code, specifica-
tion, and proof reside in the same file and are compiled by
Lake into the shipped native binary, preventing the drift that
arises when verification artifacts live outside the build. In
short, Lean turns informal “best-effort” checks into formal,
end-to-end guarantees without sacrificing performance or
interoperability.

Lean 4’s limitations. Lean’s toolchain is still younger than
Coq’s or Isabelle’s, making its standard libraries and automa-
tion smaller, and thus some formalizations demand extra
groundwork. While Lake delivers native executables, Lean’s
runtime has not been stress-tested at the scale of mainstream
systems languages, meaning large-scale or safety-critical de-
ployments may require additional vetting. Acknowledging
these gaps clarifies that VeriBench chooses Lean 4 for its
unique unified programming-plus-proving model and mod-
ern automation hooks, not because it already matches the
decades-old industrial maturity of older theorem provers.

Lean 4 versus Dafny. Unlike Dafny, whose verifier trans-
lates each program into the Boogie intermediate language
and then discharges first-order verification conditions with
an SMT solver such as Z3, Lean 4 reasons natively in a
dependently-typed calculus. Because Lean 4’s types can
mention run-time data and the very same source code is
ahead-of-time compiled to a native binary via Lake, we can
both state and prove value-indexed, higher-order properties
(e.g., length-indexed vectorsand run the verified program
itself—an end-to-end, fidelity that Dafny’s SMT-centred,
Boogie-to-Z3 workflow cannot natively match. This gives
Lean the expressive power to specify and prove higher-order,
data-dependent properties—precisely the kind of semantic
guarantees VeriBench seeks to test—while still yielding
runnable binaries compiled by the same toolchain. Dafny’s
SMT-centric workflow offers impressive push-button au-
tomation for imperative code but cannot natively encode the
richer specifications (e.g., length-indexed vectors, algebraic
invariants) that Lean handles directly.

Lean 4 versus TLA+. TLA+ excels at high-level specifi-
cation of concurrent and distributed protocols, with correct-
ness checked by the TLC model-checker and the TLAPS
proof system that dispatches first-order obligations to ex-
ternal provers. However, TLA+ specifications are not ex-
ecutable programs; a separate implementation step is re-
quired, and state-space explosion can limit model-checking
scalability. VeriBench instead needs a prover where the
specification, proof, and runnable code live in the same
language. Lean 4’s dependently-typed core lets us capture
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fine-grained, data-dependent invariants and then compile
the very same artifacts to fast native binaries—capabilities
outside TLA+’s scope.

6. Future Directions
We envision VeriBench as a launching pad for multilin-
gual code verification. Many HumanEval problems exist
in MultiPL-E’s corpus of 47 languages, allowing future ex-
tensions from Python to C, C++, Rust, OCaml, and more.
This opens the door for evaluating how models generalize
verification strategies across language boundaries.

7. Conclusion
In this work, we construct VeriBench and reveal that while
frontier language models can begin to synthesize formally
verified Lean 4 programs, they still fall well short of full end-
to-end reliability: baseline LLMs compile only a handful of
the 114 tasks, whereas a self-optimizing agent—equipped
with iterative search and tool feedback—climbs to nearly
90% success, underscoring the promise of agentic ap-
proaches. By unifying code synthesis, unit-test creation,
theorem specification, and proof construction under a sin-
gle benchmark, VeriBench offers the first holistic yardstick
for provably correct code generation and highlights key av-
enues for progress. Three limitations remain: (i) we have
not assessed transfer to other proof assistants such as Coq
or Isabelle, (ii) we did not evaluate models’ ability to gen-
erate theorems themselves, and (iii) Lean 4’s static proofs
cannot surface real-time runtime errors that can emerge in
production. We leave all three challenges to future work.
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A. Samples of the VeriBench
# -- Implementation --
from typing import List

def has_close_elements(numbers: List[float], threshold:
float) -> bool:

"""
Check if in given list of numbers, are any two

numbers closer to each other
than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0,

2.0], 0.3)
True
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if distance < threshold:

return True
return False

# -- Tests --
from typing import Callable
def check(candidate: Callable[[List[float], float],

bool]) -> bool:
# Original tests
assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3)

== True
assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2],

0.05) == False
assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) ==

True
assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) ==

False
assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1)

== True
assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) ==

True
assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) ==

False

# Additional tests to cover edge/corner cases:

# 1. Empty list -> no pairs, so we expect False.
assert candidate([], 0.1) == False

# 2. Single element -> no pairs to compare, so
should be False.

assert candidate([1.5], 0.1) == False

# 3. Two identical elements -> distance = 0 <
threshold => True if threshold > 0.

assert candidate([3.14, 3.14], 0.1) == True
# But if threshold == 0, that can’t be "closer" than

0:
assert candidate([3.14, 3.14], 0.0) == False

# 4. Large threshold -> any pair is "close" if we
have >= 2 elements

# so [100, 200] with threshold=999.9 => True
assert candidate([100, 200], 999.9) == True

# 5. Distinct elements that are still quite close
# e.g. [1.0, 1.000000 1] with threshold=1e-5 =>

distance=1e-7 < 1e-5 => True
assert candidate([1.0, 1.00000001], 1e-5) == True

# 6. Distinct elements that are not that close
# e.g. [1.0, 1.0002] with threshold=1e-5 => distance

=2e-4 => False
assert candidate([1.0, 1.0002], 1e-5) == False

print("Pass: all coorect!")

return True

if __name__ == "__main__":

assert check(has_close_elements), f"Failed: {__file__
}"

Listing 9: An exemplar input Python code of VeriBench-
HumanEval.

/-!
# Implementation

## Has Close Elements

Implements ‘hasCloseElements‘, which checks whether any
two elements of a list

are closer than a threshold, plus an imperative variant
‘hasCloseElementsImp‘

and a collection of small-to-medium theorems that
together mimic the

multi-lemma style of real-world code verification.
-/

namespace HasCloseElements
open List -- brings the ‘~‘ permutation notation into

scope

/--
Recursive implementation.

Returns ‘true‘ iff there exist distinct elements in ‘
numbers‘

whose absolute difference is less than ‘threshold‘.

## Examples

#eval hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]
0.3 -- expected: true

#eval hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]
0.05 -- expected: false

#eval hasCloseElements [] 0.1 -- expected: false
-/
def hasCloseElements (numbers : List Float) (threshold :

Float) : Bool :=
match numbers with
| [] => false
| x :: xs =>
if xs.any (fun y => Float.abs (x - y) < threshold)

then
true

else
hasCloseElements xs threshold

/-!
# Tests
-/

/-- expected: true -/
example : hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0,

2.2] 0.3 = true := by
native_decide

#eval hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]
0.3 -- expected: true

/-- expected: false -/
example : hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0,

2.2] 0.05 = false := by
native_decide

#eval hasCloseElements [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]
0.05 -- expected: false

/-!
# Tests: Edge Cases
-/

/-- expected: false -/
example : hasCloseElements [] 0.1 = false := by

native_decide
#eval hasCloseElements [] 0.1 -- expected: false

/-- expected: false -/
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example : hasCloseElements [42.0] 0.01 = false := by
native_decide

#eval hasCloseElements [42.0] 0.01 -- expected: false

/-!
# Theorems
-/

/--

**Specification**: ‘hasCloseElements numbers t = true‘
iff ∃distinct indices whose elements differ by < ‘t‘.
-/
theorem hasCloseElements_iff
(numbers : List Float) (t : Float) :
hasCloseElements numbers t = true ↔
∃i j : Nat,
i < numbers.length ∧j < numbers.length ∧
i ̸=j ∧
Float.abs (numbers[i]! - numbers[j]!) < t := by

sorry

/--

**Monotone in ‘threshold‘**: enlarging the tolerance
preserves truth.

If ‘t1 ≤t2‘ and the predicate is ‘true‘ at ‘t1‘,
then it is also ‘true‘ at ‘t2‘.
-/
@[simp] theorem threshold_mono

{numbers : List Float} {t1 t2 : Float}
(hle : t1 ≤t2)
(h : hasCloseElements numbers t1 = true) :

hasCloseElements numbers t2 = true := by
sorry

/--

**Duplicates ⇒true**:

If the list contains a value appearing twice and ‘
threshold > 0‘,

the result is ‘true‘ (distance 0 < ‘threshold‘).
-/
@[simp] theorem duplicates_imply_true

{numbers : List Float} {t : Float}
(hpos : t > 0)
(hdup : ∃i j, i < numbers.length ∧j < numbers.length

∧i ̸=j ∧
numbers[i]! = numbers[j]!) :

hasCloseElements numbers t = true := by
sorry

/--

**Non-positive threshold ⇒false**:

For ‘t ≤0‘ no pair can satisfy ‘|x -y| < t‘, so the
predicate is ‘false‘.

-/
@[simp] theorem nonpos_threshold_false

(numbers : List Float) {t : Float} (hle : t ≤0) :
hasCloseElements numbers t = false := by
sorry

/--

**Empty or singleton list ⇒false**.
The predicate needs at least two elements to succeed.
-/
@[simp] theorem length_le_one_false

{numbers : List Float} {t : Float}
(hlen : numbers.length ≤1) :

hasCloseElements numbers t = false := by
sorry

/--

**True ⇒length ≥2**.
Conversely, if the predicate is ‘true‘, the list must

have at least two elements.
-/
@[simp] theorem true_implies_length_ge_two

{numbers : List Float} {t : Float}
(h : hasCloseElements numbers t = true) :

2 ≤numbers.length := by

sorry

/--

**Permutation invariance**:

‘hasCloseElements‘ depends only on the multiset of
values,

so it is stable under list permutations.
-/
@[simp] theorem perm_invariant

{numbers numbers’ : List Float} {t : Float}
(hp : numbers ~ numbers’) :

hasCloseElements numbers t = hasCloseElements numbers’
t := by

sorry

/--
Imperative double-loop implementation (‘

hasCloseElementsImp‘).
-/
def hasCloseElementsImp (numbers : List Float) (

threshold : Float) : Bool :=
Id.run do
if numbers.length ≤1 then
return false

for i in [:numbers.length] do
let x := numbers[i]!
for j in [:numbers.length] do
if i ̸=j then
let y := numbers[j]!
if Float.abs (x - y) < threshold then
return true

return false

/-!
# Imperative Tests
-/

/-- expected: true -/
example : hasCloseElementsImp [1.0, 2.0, 3.9, 4.0, 5.0,

2.2] 0.3 = true := by
native_decide

#eval hasCloseElementsImp [1.0, 2.0, 3.9, 4.0, 5.0,
2.2] 0.3 -- expected: true

/-!
# Imperative Tests: Edge Cases
-/

/-- expected: false -/
example : hasCloseElementsImp [] 1e-5 = false := by

native_decide
#eval hasCloseElementsImp [] 1e-5 -- expected: false

/--

**Equivalence**: recursive and imperative
implementations coincide.

-/
theorem hasCloseElements_equiv_functional_imperative

(numbers : List Float) (threshold : Float) :
hasCloseElements numbers threshold =
hasCloseElementsImp numbers threshold := by

sorry

end HasCloseElements

Listing 10: An exemplar golden output Lean 4 code of
VeriBench-HumanEval.

# -- Implementation --

def my_max(a: int, b: int) -> int:
"""
Return the larger of two non-negative integers.

>>> my_max(7, 3)
7
>>> my_max(0, 0)
0
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"""
return b if a <= b else a

# -- Tests --
from typing import Callable

def check(candidate: Callable[[int, int], int]) -> bool:

print(f’Running tests for {candidate.__name__}...’)
# Basic unit tests
assert candidate(7, 3) == 7, f"expected 7 from (7,3)

but got {candidate(7, 3)}"
# Edge unit tests
assert candidate(0, 0) == 0, f"expected 0 from (0,0)

but got {candidate(0, 0)}"

# Property checks on a small domain
for x in range(6):

# idempotence
assert candidate(x, x) == x, f"idempotence

violated for {x}"

for y in range(6):
# commutativity
lhs = candidate(x, y)
rhs = candidate(y, x)
assert lhs == rhs, (

f"commutativity violated for ({x},{y}): {
lhs} != {rhs}"

)

# upper-bound property
assert x <= candidate(x, y), f"left bound

violated for ({x},{y})"
assert y <= candidate(x, y), f"right bound

violated for ({x},{y})"

for z in range(6):
# associativity
left_assoc = candidate(candidate(x, y), z)
right_assoc = candidate(x, candidate(y, z))
assert left_assoc == right_assoc, (

"associativity violated for "
f"({x},{y},{z}): {left_assoc} != {

right_assoc}"
)

return True

if __name__ == "__main__":
assert check(my_max), f"Failed: {__file__}"
print(f’All tests passed: {__file__}!’)

Listing 11: An exemplar input Python code of VeriBench-
EasySet.

/-!
# Implementation
-/

namespace MyMax
/--
Implementation of my custom maximum function.

‘myMax a b‘ returns the larger of two natural numbers.

## Examples

#eval myMax 7 3 -- expect 7
#eval myMax 0 0 -- expect 0
-/
def myMax (a b : Nat) : Nat :=
if _ : a ≤b then b else a

infixl:70 "⊔"=> myMax -- left-associative, precedence
70

/-!
# Tests

We use ‘#eval‘ to print results, then nameless ‘example‘
to confirm correctness

(especially in cases where ‘native_decide‘ is used to
prove the example).

-/

-- Functional tests
#eval myMax 7 3 -- expect 7
example : myMax 7 3 = 7 := by native_decide

#eval myMax 0 0 -- expect 0
example : myMax 0 0 = 0 := by native_decide

/-!
# Theorems
-/

/-- Theorem Left Identity: Taking max with zero on the
left acts as the identity. -/

@[simp] theorem max_left_identity (n : Nat) : myMax 0 n
= n := sorry

/-- Theorem Right Identity: Taking max with zero on the
right acts as the identity. -/

@[simp] theorem max_right_identity (n : Nat) : myMax n
0 = n := sorry

/-- Theorem Commutativity: The order of the arguments
does not affect the maximum. -/

@[simp] theorem max_commutativity (a b : Nat) : myMax a
b = myMax b a := sorry

/-- Theorem Idempotence: Taking max of a number with
itself yields that number. -/

@[simp] theorem max_idempotent (a : Nat) : myMax a a =
a := sorry

/-- Theorem Left Bound: The first argument never
exceeds the maximum. -/

theorem max_left_bound (a b : Nat) : a ≤myMax a b :=
sorry

/-- Theorem Right Bound: The second argument never
exceeds the maximum. -/

theorem max_right_bound (a b : Nat) : b ≤myMax a b :=
sorry

/--
Imperative implementation of ‘myMax‘.

‘myMaxImp a b‘ computes the same maximum using mutable
state:

start with ‘m := a‘, then overwrite with ‘b‘ if ‘b‘ is
larger.

## Examples

#eval myMaxImp 7 3 -- expect 7
#eval myMaxImp 0 0 -- expect 0
-/
def myMaxImp (a b : Nat) : Nat :=
Id.run do
let mut m : Nat := a
for x in [a, b] do -- loop over both inputs
if m ≤x then
m := x

return m

-- Imperative tests
#eval myMaxImp 7 3 -- expect 7
example : myMaxImp 7 3 = 7 := by native_decide

#eval myMaxImp 0 0 -- expect 0
example : myMaxImp 0 0 = 0 := by native_decide

/--
Theorem Equivalence of Functional and Imperative

Maximum:
Both implementations produce identical results for all

inputs.
-/
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theorem myMax_equiv_functional_imperative (a b : Nat) :
myMax a b = myMaxImp a b := sorry

end MyMax

Listing 12: An exemplar golden output Lean 4 code of
VeriBench-EasySet.

# -- Implementation --
from typing import List, Optional

def binary_search(arr: List[int], target: int) ->
Optional[int]:

"""
Binary search implementation that searches for a

target value in a sorted list.
Returns the index if found, None if not found.

>>> binary_search([1, 2, 3, 4, 5], 3)
2
>>> binary_search([1, 2, 3, 4, 5], 6)

>>> binary_search([], 1)

"""
if not arr:

return None

left, right = 0, len(arr) - 1

while left <= right:
mid = (left + right) // 2
mid_val = arr[mid]

if mid_val == target:
return mid

elif mid_val < target:
left = mid + 1

else:
right = mid - 1

return None

# -- Tests --
from typing import Callable
def check(candidate: Callable[[List[int], int],

Optional[int]]) -> bool:
# Basic functionality tests
assert candidate([1, 2, 3, 4, 5], 1) == 0
assert candidate([1, 2, 3, 4, 5], 3) == 2
assert candidate([1, 2, 3, 4, 5], 5) == 4
assert candidate([1, 2, 3, 4, 5], 6) is None
assert candidate([1, 2, 3, 4, 5], 0) is None

# Edge cases
assert candidate([], 1) is None
assert candidate([5], 5) == 0
assert candidate([5], 3) is None

# Larger arrays
assert candidate([1, 3, 5, 7, 9], 3) == 1
assert candidate([1, 3, 5, 7, 9], 7) == 3
assert candidate([1, 3, 5, 7, 9], 4) is None
assert candidate([10, 20, 30, 40, 50, 60], 60) == 5
assert candidate([10, 20, 30, 40, 50, 60], 10) == 0

# Test with duplicates (binary search may return any
valid index)

test_arr = [1, 2, 3, 3, 3, 4, 5]
result = candidate(test_arr, 3)
assert result is not None and test_arr[result] == 3

and 2 <= result <= 4

# Large sorted array test
large_arr = list(range(100))
assert candidate(large_arr, 49) == 49
assert candidate(large_arr, 99) == 99
assert candidate(large_arr, 100) is None

# Two element arrays
assert candidate([1, 2], 1) == 0
assert candidate([1, 2], 2) == 1
assert candidate([1, 2], 3) is None

print("Pass: all correct!")
return True

if __name__ == "__main__":
assert check(binary_search), f"Failed: {__file__}"

Listing 13: An exemplar input Python code of VeriBench-
CSSet.

import Mathlib.Data.List.Sort
import Mathlib.Data.List.Basic

/-!
# Implementation
-/

namespace BinarySearch

open List

/-- Binary search implementation using recursive
approach with bounds -/

partial def binarySearchAux (arr : List Nat) (target :
Nat) (left right : Nat) : Option Nat :=

if left > right then
none

else
let mid := (left + right) / 2
if mid >= arr.length then
none

else
let midVal := arr.get <mid, by sorry>
if midVal = target then
some mid

else if midVal < target then
binarySearchAux arr target (mid + 1) right

else
binarySearchAux arr target left (mid - 1)

/-- Binary search that searches for a target value in a
sorted list.

Returns Some index if found, None if not found. -/
def binarySearch (arr : List Nat) (target : Nat) :

Option Nat :=
if arr.isEmpty then
none

else
binarySearchAux arr target 0 (arr.length - 1)

/-- Linear search for comparison and verification -/
def linearSearch (arr : List Nat) (target : Nat) :

Option Nat :=
arr.findIdx? (· = target)

/-!
# Theorems
-/

/--

**Correctness**: If ‘binarySearch‘ returns ‘Some i‘,
then ‘arr[i] = target‘.

-/
theorem correctness_binarySearch (arr : List Nat) (

target : Nat) (i : Nat) :
binarySearch arr target = some i →arr[i]? = some

target := by
sorry

/--

**Completeness**: If ‘target‘ is in the sorted array,
then ‘binarySearch‘ finds it.

-/
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theorem completeness_binarySearch (arr : List Nat) (
target : Nat) :

List.Sorted (fun x y => x ≤y) arr →target ∈arr →
∃i, binarySearch arr target = some i := by
sorry

/--

**Valid Index**: If ‘binarySearch‘ returns ‘Some i‘,
then ‘i‘ is a valid index.

-/
theorem valid_index_binarySearch (arr : List Nat) (

target : Nat) (i : Nat) :
binarySearch arr target = some i →i < arr.length :=

by
sorry

/--

**Not Found**: If ‘binarySearch‘ returns ‘None‘, then ‘
target‘ is not in the array

(assuming the array is sorted).
-/
theorem not_found_binarySearch (arr : List Nat) (target

: Nat) :
List.Sorted (fun x y => x ≤y) arr →
binarySearch arr target = none →target ̸∈arr := by
sorry

/--

**Equivalence with Linear Search**: On sorted arrays,
binary search and linear search

find the same elements (though possibly different
indices for duplicates).

-/
theorem equiv_linearSearch_binarySearch (arr : List Nat)

(target : Nat) :
List.Sorted (fun x y => x ≤y) arr →
(binarySearch arr target).isSome ↔(linearSearch arr

target).isSome := by
sorry

/-!
# Imperative Tests
-/

/-- expected: some 0 -/
example : binarySearch [1, 2, 3, 4, 5] 1 = some 0 := by

native_decide
#eval binarySearch [1, 2, 3, 4, 5] 1 -- expected: some

0

/-- expected: some 2 -/
example : binarySearch [1, 2, 3, 4, 5] 3 = some 2 := by

native_decide
#eval binarySearch [1, 2, 3, 4, 5] 3 -- expected: some

2

/-- expected: some 4 -/
example : binarySearch [1, 2, 3, 4, 5] 5 = some 4 := by

native_decide
#eval binarySearch [1, 2, 3, 4, 5] 5 -- expected: some

4

/-- expected: none -/
example : binarySearch [1, 2, 3, 4, 5] 6 = none := by

native_decide
#eval binarySearch [1, 2, 3, 4, 5] 6 -- expected: none

/-- expected: none -/
example : binarySearch [1, 2, 3, 4, 5] 0 = none := by

native_decide
#eval binarySearch [1, 2, 3, 4, 5] 0 -- expected: none

/-- expected: none -/
example : binarySearch [] 1 = none := by native_decide
#eval binarySearch [] 1 -- expected: none

/-- expected: some 0 -/
example : binarySearch [5] 5 = some 0 := by

native_decide
#eval binarySearch [5] 5 -- expected: some 0

/-- expected: none -/
example : binarySearch [5] 3 = none := by native_decide
#eval binarySearch [5] 3 -- expected: none

/-- expected: some 1 -/
example : binarySearch [1, 3, 5, 7, 9] 3 = some 1 := by

native_decide
#eval binarySearch [1, 3, 5, 7, 9] 3 -- expected: some

1

/-- expected: some 3 -/
example : binarySearch [1, 3, 5, 7, 9] 7 = some 3 := by

native_decide
#eval binarySearch [1, 3, 5, 7, 9] 7 -- expected: some

3

/-- expected: none -/
example : binarySearch [1, 3, 5, 7, 9] 4 = none := by

native_decide
#eval binarySearch [1, 3, 5, 7, 9] 4 -- expected: none

/-- expected: some 5 -/
example : binarySearch [10, 20, 30, 40, 50, 60] 60 =

some 5 := by native_decide
#eval binarySearch [10, 20, 30, 40, 50, 60] 60 --

expected: some 5

/-- expected: some 0 -/
example : binarySearch [10, 20, 30, 40, 50, 60] 10 =

some 0 := by native_decide
#eval binarySearch [10, 20, 30, 40, 50, 60] 10 --

expected: some 0

/-- Test with duplicates: expected: some 2 (could be
any of the valid indices) -/

example : binarySearch [1, 2, 3, 3, 3, 4, 5] 3 = some 2
:= by native_decide

#eval binarySearch [1, 2, 3, 3, 3, 4, 5] 3 -- expected:
some 2

/-- Large sorted array test: expected: some 49 -/
example : binarySearch (List.range 100) 49 = some 49 :=

by native_decide
#eval binarySearch (List.range 100) 49 -- expected:

some 49

end BinarySearch

Listing 14: An exemplar golden output Lean 4 code of
VeriBench-CSSet.

def unsafe_copy(dst: bytearray, src: bytearray) -> None:

"""
Copy bytes from ‘src‘ into ‘dst‘ at the same indices,

without any bounds checking.
If ‘len(src) > len(dst)‘, this will raise an

IndexError (buffer overflow).
"""
for i, b in enumerate(src):

dst[i] = b

def check(candidate) -> bool:
# 1) Safe copy: src fits in dst
d = bytearray(3)
s = bytearray(b’abc’)
candidate(d, s)
assert bytes(d) == b’abc’

# 2) Exact fit
d2 = bytearray(2)
s2 = bytearray(b’xy’)
candidate(d2, s2)
assert bytes(d2) == b’xy’

# 3) Overflow: src longer than dst -> IndexError
d3 = bytearray(2)
s3 = bytearray(b’123’)
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try:
candidate(d3, s3)
assert False, "Expected IndexError due to

overflow"
except IndexError:

pass

# 4) Empty src -> no change
d4 = bytearray(b’hello’)
candidate(d4, bytearray())
assert bytes(d4) == b’hello’

# 5) Empty dst, nonempty src -> immediate overflow
try:

candidate(bytearray(), bytearray(b’z’))
assert False, "Expected IndexError"

except IndexError:
pass

return True

assert check(unsafe_copy), "Candidate failed buffer-
overflow tests"

print("Pass!") # bell

Listing 15: An exemplar input Python code of VeriBench-
SecuritySet (simplified for showcase).

/-
Description: A Lean 4 model of the unsafe copy routine

that can overflow.
We return ‘none‘ if an overflow (index out of bounds)

would occur,
and ‘some newDst‘ otherwise.
-/

namespace BufferOverflow

/--
‘unsafeCopy dst src‘ attempts to overwrite the first ‘

src.length‘ bytes of ‘dst‘
with those from ‘src‘. Returns ‘some newDst‘ if ‘src.

length ≤dst.length‘,
otherwise ‘none‘, modeling a buffer overflow.
-/
def unsafeCopy (dst src : List UInt8) : Option (List

UInt8) :=
let n := dst.length
-- fold over enumerated bytes with their indices
src.enum.foldl (fun o (i, b) =>
o.bind fun acc =>
if h : i < n then
some (acc.set i b)

else
none

) (some dst)

/-! ## Examples / Unit Tests -/

#eval unsafeCopy [0x00,0x00,0x00] [0x41,0x42] -- some
[0x41,0x42,0x00]

#eval unsafeCopy [0x00,0x00] [0x61,0x62,0x63] -- none

example : unsafeCopy [0, 0, 0] [1,2] = some [1,2,0] :=
by rfl

example : unsafeCopy [0, 0] [1,2,3] = none := by rfl
example : unsafeCopy [0x68,0x69] [] = some [0x68,0x69]

:= by rfl
example : unsafeCopy [] [0x7A] = none := by rfl

/-!
# Theorem: safety precondition

If ‘src.length ≤dst.length‘, then ‘unsafeCopy dst src =
some newDst‘ for some ‘newDst‘.

## Proof:
By construction, each index ‘i < src.length‘ satisfies ‘

i < dst.length‘ →tail calls always succeed.

Thus the fold never returns ‘none‘, yielding ‘some‘ of
the fully-updated buffer.

-/
theorem copy_safe {dst src : List UInt8}
(h : src.length ≤dst.length) :
∃newDst, unsafeCopy dst src = some newDst := by
unfold unsafeCopy
-- For now, we admit this theorem since formalizing

the foldl behavior
-- requires more complex lemmas about foldl with

guaranteed bounds
admit

/-!
# Theorem: overflow detection

If ‘src.length > dst.length‘, then ‘unsafeCopy dst src
= none‘.

## Proof:
At the first position ‘i = dst.length‘, the check ‘i <

dst.length‘ fails,
causing the fold to return ‘none‘ immediately.
-/
theorem copy_overflow {dst src : List UInt8}
(h : dst.length < src.length) :
unsafeCopy dst src = none := by
unfold unsafeCopy
-- For now, we admit this theorem since formalizing

the foldl behavior
-- requires more complex lemmas about foldl with

guaranteed bounds
admit

end BufferOverflow

Listing 16: An exemplar golden output Lean 4 code of
VeriBench-SecuritySet (simplified for showcase).

B. Related Work (Cont.)
Techniques for Code Verification. IMPROVER (Ahuja
et al., 2024) introduces a Lean-aware Chain-of-States
prompting loop that integrates retrieval, best-of-n sampling,
and iterative correction to rewrite formal proofs with im-
proved properties. By optimizing for metrics such as brevity
and readability, ImProver reduces the number of tactics by
half, doubles proof readability, and boosts theorem prover
acceptance rates by over 80%. In addition, CLOVER (Sun
et al., 2024) implements a closed-loop pipeline in which an
LLM first generates code, docstrings, and formal annota-
tions, then uses reconstruction-based prompting to enforce
consistency across these outputs, and finally applies SMT-
based verification to validate correctness. Evaluated on the
CloverBench suite of Dafny programs, Clover accepts 87%
of correct solutions, rejects 100% of flawed ones, and even
uncovers bugs in human-written code—demonstrating the
power of hybrid generation-verification pipelines. In a com-
plementary direction, Zhou et al. (2025) improve general-
purpose LLM-based graders by augmenting them with “priv-
ileged” information such as gold-standard solutions, grad-
ing rubrics, and detailed annotations. When necessary, the
system provides targeted hints back to candidate models.
This approach achieves grading performance on par with
or exceeding that of specialized systems—and even expert
humans—on difficult programming benchmarks.
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Agentic Frameworks and Tools for Code Verification.
TRACE (Cheng et al., 2024) proposes generative optimiza-
tion, tuning entire computational workflows—including
code, prompts, tool calls, and error signals—by treating ex-
ecution traces as gradients in the OPTO framework. With a
PyTorch-like API and the LLM-based optimizer OptoPrime,
it supports diverse tasks such as prompt tuning, debugging,
and robot control, rivaling specialized optimizers. Building
on modular composition, DSPY (Khattab et al., 2024) treats
LLM calls as declarative modules in a computational graph.
Users define concise input–output signatures, and DSPy’s
compiler automatically bootstraps or fine-tunes pipelines
using built-in “teleprompters.” This enables a few-line pro-
grams to outperform expert-crafted prompts in math, QA,
and agent workflows. Extending agentic capabilities to for-
mal reasoning, PANTOGRAPH (Aniva et al., 2025) offers a
programmatic interface to Lean 4 with support for advanced
proof search. It exposes internal proof states and tactics for
integration with learning agents, replacing human-facing
interfaces with API-level control.

C. Flowcharts
Here is the flowchart describing the procedure of
VeriBench:

Here is the flowchart describing Trace:

D. Construction Pipeline and Validity
Guarantees

A common objection to LLM–generated benchmarks states
that the model which creates the data may already have the
capability to solve, compromising test integrity and more
(?). We address this concern directly.

Manual audit with public provenance. After o3 drafts
each Lean4 artifact, a curator opens a GitHub issue that is
inspected by a 2nd human reviewers, edits the patch when
needed, and merges only after the issues resolved (e.g., no
comprehensive set of theorems). Every change, comment,
and decision is preserved in the repository history, providing
reproducible evidence of human oversight.

Kernel-enforced correctness. A pull request must com-
pile to be accepted. Because the Lean kernel is a proof
checker, compilation implies that every implementation,
unit test, theorem, and proof is logically sound. Frontier
models struggle to compile at 59% even with agentic code
with tool use (e.g., access to the Lean kernel); therefore the
final tasks necessarily exceed the generator’s capabilities.

No leakage of final solutions. Curator edits routinely alter
types, theorem statements, or proof strategies—changes the
originating LLM cannot anticipate. The published tasks
thus differ from the raw LLM output and are not trivially
solvable by the same model.

Benchmark Leaderboard Rankings are Robust to noise
in Benchmarks. Model rankings are stable even on noisy
datasets (?). Therefore it is known that imperfections would
not distort model rankings.

E. Gold Reference Lean4 File
Documentation and Tracking. All curation actions were
logged in a shared Google Sheet to ensure full traceability.
For each file, curators recorded:

• Folder, Original File Name, New File Name

• Curator 1, Curator 2, Status,

• Notes (e.g. removal of redundant theorems or addition
of LLM-suggested properties)

This granular metadata supports reproducibility and future
audits.

E.1. File Layout (Canonical Lines)

For every benchmark task we ship a single gold reference
file. The layout below matches the HumanEval gold exam-
ple above (Listing 2):
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• Lines 1–9. Header comment: plain-English summary
and git hash of the reference implementation.

• Lines 10–18. theorems. A Lean block declaring all
formal properties including pre-conditions and post-
conditions(§E.2).

• Lines 19–23. Optional helper lemmas that shorten
later proofs.

• Lines 24–29. test_suite. Positive and negative
test cases (§E.3).

• Lines 30+. Freeform commentary: rationale for tricky
edge cases, references.

E.2. Theorems

Consistent with the curation goals in Appendix E, each
theorems block bundles all semantic guarantees of the
program:

Pre-condition (Pre). Predicate Pre(x) enumerating type,
range, and structural constraints on the input tuple x.

Post-condition (Post). Predicate Post(x, y) stating the
required relation between x and the output y.

Functional Invariants. Additional properties that must
hold during execution (e.g. loop invariants ensuring an ac-
cumulator stays within bounds). Not sure about this

Master Theorem. The block culminates in a Lean theo-
rem of the form

∀x y.
(
Pre(x) ∧ Prog(x) = y

)
=⇒ Post(x, y).

where Prog is the reference implementation and each cap-
italized predicate abbreviates the relevant property above.
During evaluation we substitute model-generated code; the
same theorem must remain provable.

E.3. Test-Suite Design

Positive cases. Concrete input–output pairs satisfying
Pre, Post, and all additional predicates. They include
nominal, boundary, and randomly generated inputs.

Negative cases. Tests that violate at least one predicate:

• Pre Violations: illegal inputs (e.g. n < 0 where n
must be non-negative).

• Post Violations: incorrect outputs for legal inputs.

• Invariant or Safety Violations: possible inputs that
trigger overflow, out-of-bounds, etc.

E.4. Authoring Checklist

1. Clarify semantics. Write a one-line task summary.

2. Draft Pre and Post in Lean.

3. Derive helper lemmas (optional).

4. Generate tests.

• Run reference code to collect outputs for posi-
tives.

• Craft edge-case negatives covering every predi-
cate.

5. Self-check. Reference code passes positives and fails
all negatives.

This elaboration specifies what must appear in the gold
file and why. Appendices E provide a fully reproducible
pipeline—from curation to formal specification and exe-
cutable tests—ensuring both theorems and tests remain
aligned with real-world program properties and security
constraints.
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