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Abstract

In-context learning (ICL) has emerged as a
powerful paradigm leveraging LLMs for spe-
cific downstream tasks by utilizing labeled ex-
amples as demonstrations in the precondition
prompts. Despite its promising performance,
ICL suffers from instability with the choice
and arrangement of examples. Additionally,
crafted adversarial attacks pose a notable threat
to the robustness of ICL. However, existing
attacks are either easy to detect, rely on ex-
ternal models, or lack specificity towards ICL.
This work introduces a novel transferable at-
tack for ICL to address these issues, aiming
to hijack LLMs to generate the targeted re-
sponse. The proposed hijacking attack lever-
ages a gradient-based prompt search method to
learn and append imperceptible adversarial suf-
fixes to the in-context demonstrations. Exten-
sive experimental results on various tasks and
datasets demonstrate the effectiveness of our hi-
jacking attack, resulting in distracted attention
towards adversarial tokens and consequently
leading to unwanted target outputs. We also
propose a defense strategy against hijacking at-
tacks through the use of extra demonstrations,
which enhances the robustness of LLMs during
ICL. Broadly, this work reveals the significant
security vulnerabilities of LLMs and empha-
sizes the necessity for in-depth studies on the
robustness of LLMs related to ICL.

1 Introduction

In-context learning (ICL) is an emerging technique
for rapidly adapting large language models (LLMs),
i.e., GPT-4 (Achiam et al., 2023) and LLaMA2
(Touvron et al., 2023), to new tasks without fine-
tuning the pre-trained parameters (Brown et al.,
2020). The key idea behind ICL is to provide LLMs
with labeled examples as in-context demonstrations
(demos) within the prompt context before a test
query. Through learning from the demos, LLMs
are able to generate responses to queries based on
ICL (Dong et al., 2022; Min et al., 2022).

Several existing works, however, have demon-
strated the highly unstable nature of ICL (Zhao
et al., 2021; Chen et al., 2022). Specifically, per-
formance on target tasks using ICL can vary wildly
based on the selection and order of demos, giving
rise to highly volatile outcomes ranging from ran-
dom to near state-of-the-art (SOTA) (Qiang et al.,
2020; Lu et al., 2021; Min et al., 2022; Pezeshkpour
and Hruschka, 2023; Qiang et al., 2024). Corre-
spondingly, several approaches (Liu et al., 2021;
Wu et al., 2022; Nguyen and Wong, 2023) have
been proposed to address the unstable issue of ICL.

Further research has looked at how adversarial
examples can undermine the performance of ICL
(Zhu et al., 2023a; Wang et al., 2023c,b; Shayegani
et al., 2023). These studies show that maliciously
designed examples injected into the prompt in-
structions (Zhu et al., 2023a; Zou et al., 2023; Xu
et al., 2023), demos (Wang et al., 2023c; Mo et al.,
2023a), or queries (Wang et al., 2023b; Kandpal
et al., 2023) can successfully attack LLMs to de-
grade their performance, revealing the significant
vulnerabilities of ICL against adversarial inputs.

While existing adversarial attacks have been ap-
plied to evaluate LLLM robustness, they have some
limitations in practice. Most character-level at-
tacks, e.g., TextAttack (Morris et al., 2020) and
TextBugger (Li et al., 2018), can be easily detected
and evaded through grammar checks, limiting real-
world effectiveness (Qiang et al., 2022; Jain et al.,
2023). Some other attacks like BERTAttack (Li
et al., 2020) require an extra model to generate ad-
versarial examples, which may not be feasible in
real-world applications. Crucially, existing attacks
are not specifically crafted to target techniques
based on LLMs, i.e., ICL. As such, the inherent
security risks of LLMs remain largely unexplored.
There is an urgent need for red teaming tailored to
ICL to expose the substantial risk of LLMs for fur-
ther evaluating their adversarial robustness against
potential real-world threats.
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Figure 1: Illustrations of ICL using clean prompt and adversarial prompt. Given the clean in-context demos, LLMs
can correctly generate the sentiment of the test queries. The previous attacks (Wang et al., 2023c) at the character
level involve minor edits in some words, such as altering ‘so’ to ‘s0’ and ‘film’ to ‘film’, of these in-context
demos, leading to incorrect sentiment generated for the test queries. However, ours learns to append adversarial
suffixes like ‘For’ and ‘Location’ to the in-context demos to efficiently and effectively hijack LLMs to generate the
unwanted target, e.g., the ‘negative’ sentiment, regardless of the test query content.

This work proposes a novel adversarial attack
specifically targeting ICL. We develop a gradient-
based prompt search algorithm to learn adversarial
suffixes in order to efficiently and effectively hi-
jack LLMs via adversarial ICL. (Zhu et al., 2023a;
Wang et al., 2023b) are the closest works to ours
where they ‘search’ adversarial examples to sim-
ply manipulate model outputs. Yet, our attack
method ‘learns’ adversarial tokens that directly hi-
jack LLMs to generate the unwanted target that
disrupts alignment with the desired output. In Fig-
ure 1, we illustrate the major difference between
the previous attack and the proposed attack: ours hi-
jacks LLMs to output the unwanted target response
(e.g.,‘negative’) regardless of the query content.
Furthermore, instead of manipulating the prompt
instructions (Zhu et al., 2023a; Zou et al., 2023),
demos (Wang et al., 2023c; Mo et al., 2023a),
or queries (Wang et al., 2023b; Kandpal et al.,
2023) leveraging standard adversarial examples,
e.g., character-level attacks (Morris et al., 2020; Li
et al., 2018), which are detectable easily, our hi-
jacking attack is imperceptible in that it adds only
1-2 suffixes to the demos, as shown in Figure 1.
Specifically, these suffixes are semantically incon-
gruous but not easily identified as typos or gib-

berish compared to the existing ICL attack (Wang
et al., 2023c). Finally, the backdoor attack during
ICL (Kandpal et al., 2023) requires a trigger, which
is impractical in real-world scenarios, whereas our
attack hijacks the LLM to generate the unwanted
target without triggering the queries.

Our extensive experiments validate the efficacy
of our hijacking attacks. First, the attacks reli-
ably induce LLMs to generate the targeted and
misaligned output from the desired ones. Second,
the adversarial suffixes learned via gradient opti-
mization are transferable, remaining effective on
different demo sets. Third, the suffix transferability
holds even across different datasets for the same
downstream task. Finally, our analysis shows that
the adversarial suffixes distract LLMs’ attention
away from the task-relevant concepts. Our adver-
sarial ICL attack poses a considerable threat to
practical LLM applications due to its robust trans-
ferability and imperceptibility.

As this work represents one of the first effi-
cient adversarial demonstration attacks during ICL,
strategies for defending against such attacks have
yet to be thoroughly investigated. Recently, (Mo
et al., 2023b) introduced a method for defending
against back-door attacks at test time, leveraging



few-shot demonstrations to correct the inference
behavior of poisoned LLMs. Similarly, (Wei et al.,
2023b) explored the power of in-context demos in
manipulating the alignment ability of LLMs and
proposed in-context attack and in-context defense
methods for jailbreaking and guarding the aligned
LLMs. Consequently, we explore the potential of
using in-context demos exclusively to rectify the be-
havior of LLMs subjected to our hijacking attacks.
Our defense strategy employs additional clean in-
context demos at test time to safeguard LLMs from
being hijacked by adversarial in-context demos.
The experimental results demonstrate the efficacy
of our proposed defense method against various
adversarial demonstration attacks.

This work makes the following original contri-
butions: (1) We propose a novel stealthy adver-
sarial attack targeting in-context demos to hijack
LLMs to generate unwanted target output during
ICL. (2) We design a novel gradient-based prompt
search algorithm to learn and append adversarial
suffixes to the in-context demos. (3) Our exten-
sive experiments demonstrate the effectiveness and
transferability of the proposed adversarial ICL at-
tack across various demo sets, LLLMs, and tasks.
(4) The proposed test time defense strategy effec-
tively protects LLMs from being compromised by
adversarial demonstration attacks.

2 Related Work
2.1 In-Context Learning

LLMs have shown impressive performance on nu-
merous NLP tasks (Devlin et al., 2018; Lewis et al.,
2019; Radford et al., 2019). Although fine-tuning
has been a common method for adapting models
to new tasks, it is often less feasible to fine-tune
extremely large models with over 10 billion param-
eters. As an alternative, recent work has proposed
ICL, where the model adapts to new tasks solely via
inference conditioned on the provided in-context
demos, without any gradient updates (Brown et al.,
2020). By learning from the prompt context, ICL
allows leveraging massive LLMs’ knowledge with-
out the costly fine-tuning process, showcasing an
exemplar of the LLMs’ emergent abilities (Schaef-
fer et al., 2023; Wei et al., 2022).

Intensive research has been dedicated to ICL.
Initial works attempt to find better ways to se-
lect labeled examples for the demos (Liu et al.,
2021; Rubin et al., 2021). For instance, (Liu
etal., 2021) presents a simple yet effective retrieval-
based method that selects the most semantically

similar examples as demos, leading to improved
accuracy and higher stability. Follow-up works
have been done to understand why ICL works (Xie
et al., 2021; Razeghi et al., 2022; Min et al., 2022;
Wei et al., 2023a; Kossen et al., 2023). (Xie et al.,
2021) provides theoretical analysis that ICL can
be formalized as Bayesian inference that uses the
demos to recover latent concepts. Another line of
research reveals the brittleness and instability of
ICL approaches: small changes to the demo ex-
amples, labels, or order can significantly impact
performance (Lu et al., 2021; Zhao et al., 2021;
Min et al., 2022; Nguyen and Wong, 2023).

2.2 Adversarial Attacks on LLMs

Early adversarial attacks on LLMs apply simple
character or token operations to trigger the LLMs
to generate incorrect predictions, such as TextAt-
tack (Morris et al., 2020) and BERT-Attack (Li
et al., 2020). Since these attacks usually gener-
ate misspelled and/or gibberish prompts that can
be detected using spell checker and perplexity-
based filters, they are easy to block in real-world
applications. Some other attacks struggled with
optimizing over discrete text, leading to the man-
ual or semi-automated discovery of vulnerabilities
through trial-and-error (Li et al., 2021; Perez and
Ribeiro, 2022; Li et al., 2023c; Qiang et al., 2023;
Casper et al., 2023; Kang et al., 2023; Li et al.,
2023a; Shen et al., 2023). For example, jailbreak-
ing prompts are intentionally designed to bypass
an LLM’s built-in safeguard, eliciting it to generate
harmful content that violates the usage policy set
by the LLM vendor (Shen et al., 2023; Zhu et al.,
2023b; Chao et al., 2023; Mehrotra et al., 2023;
Jeong, 2023; Guo et al., 2024; Yu et al., 2024).
These red teaming efforts craft malicious prompts
in order to understand LLM’s attack surface (Gan-
guli et al., 2022). However, the discrete nature of
text has significantly impeded learning more effec-
tive adversarial attacks against LLMs.

Recent work has developed gradient-based opti-
mizers for efficient text modality attacks. For exam-
ple, (Wen et al., 2023) presented a gradient-based
discrete optimizer that is suitable for attacking the
text pipeline of CLIP, efficiently bypassing the safe-
guards in the commercial platform. (Zou et al.,
2023), building on (Shin et al., 2020), described
an optimizer that combines gradient guidance with
random search to craft adversarial strings that in-
duce LLMs to respond to the questions that would
otherwise be banned. More recently, (Zhao et al.,



2024) proposed poisoning demonstration examples
and prompts to make LLLMs behave in alignment
with pre-defined intentions.

Our hijacking attack algorithm falls into this
stream of work, yet we target few-shot ICL instead
of zero-shot queries. We use gradient-based prompt
search to automatically learn effective adversarial
suffixes rather than manually engineered prompts.
Importantly, we show that LLMs can be hijacked
to output the targeted unwanted output by append-
ing optimized adversarial tokens to the ICL demos,
which reveals a new lens of LLM vulnerabilities
that may have been missed by prior approaches.

2.3 Defense Against Attacks on LLMs

The existing literature on the robustness of LLMs
includes various strategies for defense (Goyal et al.,
2023; Studnia et al., 2023; Liu et al., 2023; Xu
et al., 2024; Wu et al., 2024). However, most of
these defenses, such as those involving adversarial
training (Liu et al., 2020; Li et al., 2023b; Formento
et al., 2024; Wang et al., 2024) or data augmenta-
tion (Qiang et al., 2024; Yuan et al., 2024), need
to re-train or fine-tune the models, which is com-
putationally infeasible for LLM users. Moreover,
the restriction of many closed-source LLMs to only
permit query access for candidate defenses intro-
duces new challenges.

Recent studies focus on developing defenses
against attacks on LLMs that utilize adversarial
prompting. (Jain et al., 2023) and (Alon and Kam-
fonas, 2023) have suggested the use of perplexity
filters to detect adversarial prompts. While the fil-
ters are effective at catching the attack strings that
contain gibberish words or character-level adver-
sarial tokens with high perplexity scores, they fall
short in detecting more subtle adversarial prompts,
like the ones used in our adversarial demonstration
attacks with as low perplexity as clean samples
shown in Figure 2. Recently, (Mo et al., 2023b) in-
troduced a method to mitigate backdoor attacks at
test time by identifying the task and retrieving rele-
vant defensive demonstrations. These demonstra-
tions are combined with user queries to counteract
the adverse effects of triggers present in backdoor
attacks. This defense strategy eliminates the need
for modifications or tuning of LLMs. Its objective
is to re-calibrate and correct the behavior of LLMs
during test-time evaluations. Similarly, (Wei et al.,
2023b) investigated the role of in-context demon-
strations in enhancing the robustness of LLMs and
highlighted their effectiveness in defending against

jailbreaking attacks. The authors developed an
in-context defense strategy that constructs a safe
context to caution the model against generating any
harmful content.

So far, defense mechanisms against adversarial
demonstration attacks have not been extensively
explored. Our approach introduces a test-time de-
fense strategy that uses additional clean in-context
demos to safeguard LLMs from adversarial in-
context manipulations. In line with prior works
(Mo et al., 2023b; Wei et al., 2023b; Wang et al.,
2024), this defense strategy avoids the necessity
for retraining or fine-tuning LLMs. Instead, it fo-
cuses on re-calibrating and correcting the behavior
of LLMs during evaluations at test time.

3 Preliminaries
3.1 ICL Formulation

Formally, ICL is characterized as a problem involv-
ing the conditional generation of text (Liu et al.,
2021), where an LLM M is employed to gen-
erate response g given an optimal task instruc-
tion I, a demo set C, and an input query xg. [
specifies the downstream task that M should per-
form, e.g., “Choose sentiment from positive or
negative” used in our sentiment generation task.
C consists of IV (e.g., 8) concatenated data-label
pairs following a specific template .S, formally:
C = [S(z1,y1); -+ S(zn,yn)], 3 here de-
notes the concatenation operator. Thus, given the
input prompt as p = [I; C; S(zq,_)], M gener-
ates the response as §g = M(p). S(zq,_) here
means using the same template as the demos but
with the label empty.

3.2 Adversarial Attack on LLMs

In typical text-based adversarial attacks, the attack-
ers manipulate the input x with the goal of mis-
leading the model to produce inaccurate output or
bypass safety guardrails (Zou et al., 2023; Maus
et al., 2023). Specifically, given the input-output
pair (z,y), the attackers aim to learn the adversar-
ial perturbation § adding to x by maximizing the
model’s objective function but without misleading
humans by bounding the perturbation within the
“perceptual” region A. The objective function of
the attacking process thus can be formulated as:

maxC(M(zq + ). y). (1)

L here denotes the task-specific loss function, for
instance, cross-entropy loss for classification tasks.



4 The Threat Model
4.1 ICL Hijacking Attack

ICL consists of an instruction I, a demo set C, and
an input query x¢, providing more potential attack
vectors compared to the conventional text-based
adversarial attacks. This work focuses on manip-
ulating C' without changing I and xg. Recently,
(Wang et al., 2023c) applied character-level pertur-
bation techniques (e.g., TextAttack (Morris et al.,
2020) and TextBugger (Li et al., 2018)), such as
character insertion, character deletion, neighbor-
ing character swap, and character substitution, to
reverse the output.

Our hijacking attack learns the adversarial suf-
fix tokens to the in-context demos to manipulate
LLMs’ output via a new greedy gradient-based
prompt injection algorithm. Given a clean demo
set C = [S(z1,v1); -+ ; S(xn,yn)], our hijack-
ing attack automatically produces an adversarial
suffix for each demo in ¢, formally:

C' = [S(z1+01,11); -5 S(an+dn,yn)], (2)

where C’ denotes the perturbed demo set. To make
it clear, the adversarial suffixes appended to each
demo as perturbations are different, respectively.
In this case, the attack or perturbation budget refers
to the number of tokens in each adversarial suffix.

As a result, our hijacking attack induces M to
generate an unwanted target output yr via append-
ing adversarial suffix tokens on the in-context de-
mos as yr = M (p'). In other words, M generates
the same or different responses for the clean and
perturbed prompts depending on the True or False
of M(p) = yr:

{M(p) = M(p),
M(p) # M),

where p = [I; C; S(zg,_)] and p’' =
[I; C'; S(zq,_)], respectively.

True,

False,

4.2 Hijacking Attack Objective

We express the goal of the hijacking attack as a for-
mal objective function. Let us consider the LLM
M as a function that maps a sequence of tokens
Z1m, with z € {1,--- |V} where V denote the
vocabulary size, namely, the number of tokens, to
a probability distribution over the next token x,,1.
Specifically, P(zp+1|z1.,) denotes the probability
that x,,41 is the next token given the previous to-
kens x1.,. In more detail, we formulate ., as

[I; C; S(xzq,_)] and x,,41 as ¢ in the context of
an ICL task, respectively.

Using the notations defined earlier, the hijacking
attack objective we want to optimize is simply the
negative log probability of the target token x4 1.
The generated target output yr is different from
the ground truth label y¢ for the training query
(2@, yq). Formally:

L(zq) = —log P(M(yr|p")), 3)

where y1 # 3¢, demonstrating the attack hijacks
M to generate the target output. p’ denotes the
perturbed prompt as: p’ = [I; C'; S(zg,_)]. In
summary, the problem of optimizing the adversarial
suffix tokens can be formulated as the following
optimization objective:

51.211{1.1.TVI§FN|£($Q)’ “4)
where ¢ denotes the indices of the demos and NV is
the number of demos in the perturbed demos set
(', respectively.

4.3 Greedy Gradient-guided Injection

A primary challenge in optimizing Eq. 4 is opti-
mizing over a discrete set of possible token val-
ues. While there are some methods for discrete
optimization, prior work (Carlini et al., 2023) has
shown that those effective strategies often struggle
to reliably attack the aligned LLMs.

Motivated by prior works (Shin et al., 2020; Zou
et al., 2023; Wen et al., 2024), we propose a simple
yet effective algorithm for LLMs hijacking attacks,
called greedy gradient-guided injection (GGI) al-
gorithm (Algorithm 1 in Appendix). The key idea
comes from greedy coordinate descent: if we could
evaluate all possible suffix token injections, we
could substitute the tokens that maximize the adver-
sarial loss reduction. Since exhaustively evaluating
all tokens is infeasible due to the large candidate
vocabulary size, we instead leverage gradients with
respect to the suffix indicators to find promising
candidate tokens for each position. We then eval-
uate all of these candidate injections with explicit
forward passes to find the one that decreases the
loss the most. This allows an efficient approxima-
tion of the true greedy selection. We can optimize
the discrete adversarial suffixes by iteratively in-
jecting the best tokens.

We compute the linearized approximation of re-
placing the demo x; in C' by evaluating the gra-
dient Ve , L(zq) € RV, where e_; denotes the

K3



vector representing the current value of the j-th
adversarial suffix token. Note that because LLMs
typically form embeddings for each token, they can
be written as functions of e ;, and thus we can
immediately take the gradientlwith respect to this
quantity (Ebrahimi et al., 2017; Shin et al., 2020).

The key aspects of our GGI algorithm (Algo-
rithm 1 in Appendix) are: firstly, it uses gradients
of the selected token candidates to calculate the top
candidates; secondly, it evaluates the top candidates
explicitly to identify the most suitable one; and
lastly, it iteratively injects the best token at each po-
sition to optimize the suffixes. This approximates
an extensive greedy search in a computationally
efficient manner.

5 The Defense Method

Having developed the ICL hijacking attack by in-
corporating adversarial tokens into the in-context
demos, we now present a straightforward yet po-
tent defense strategy to counter this attack. Initially,
we assume that defenders treat LLMs as black-box,
lacking any insight into their training processes
or underlying parameters. The defenders apply
defense on the input prompt p directly during test-
time evaluation. Their goal is to rectify the behav-
ior of LLMs and induce LLMs to generate desired
responses to user queries.

Given an input prompt p’ that includes adver-
sarial tokens within the demos C’, we assume
that LLMs, when presented with demos containing
clean data for the same tasks, can understand the
genuine intent of the user’s query through ICL,
rather than being misled by the adversarial de-
mos. In this context, ‘clean data’ refers to data
without any adversarial tokens and is randomly se-
lected from the training set. More precisely, the
defenders modify the input prompt p’ into p by
appending or inserting more clean demos into the
demo set C, as follows: p = [I;C";C; S(zq,_)].
C = [S(Z1,%); ---; S(Zn,7n)] here denotes
the clean demos selected from the training set.
Through this approach, the defender guarantees
that the in-context demos align with the user’s
query and possess resilience against adversarial at-
tacks. In our experiments, we maintained an equal
number of demos in €’ and C and observed that
this method resulted in effective defense across a
range of datasets and tasks.

6 Experiment Setup
Datasets: We evaluate the performance of our
LLM hijacking algorithm and other baseline al-

gorithms on three classification datasets covering
sentiment analysis and topic generation tasks. SST-
2 (Socher et al., 2013) and Rotten Tomatoes (RT)
(Pang and Lee, 2005) are both binary sentiment
analysis datasets of movie reviews. AG’s News
(Zhang et al., 2015) is a multi-class news topic
classification dataset. These datasets allow us to
evaluate the hijacking attacks on a diverse set of
text classification benchmarks across both binary
and multi-class settings. More details on the dataset
statistics are provided in Table 4 of the Appendix.
Large Language Models: The experiments are
conducted using three different LLMs, GPT2-XL
(Radford et al., 2019), LLaMA-7b/13b (Touvron
et al., 2023), OPT-2.7b/6.7b (Zhang et al., 2022),
and Vicuna-7b (Chiang et al., 2023) allowing us
to evaluate attack effectiveness on both established
and SOTA LLMs. The choice of LLMs covers a di-
verse set of architectures and model sizes, enabling
a comprehensive evaluation of the vulnerability of
LLMs via adversarial ICL.

ICL Settings: For ICL, we follow the setting in
(Wang et al., 2023c) and use their template to in-
corporate the demos for prediction. The detailed
template is provided in Figure 8 of the Appendix.
We evaluate the 2-shot, 4-shot, and 8-shot settings
for the number of demos. Specifically, for each test
example, we randomly select the demos from the
training set and repeat this process 5 times, report-
ing the average accuracy over the repetitions.
Evaluation Metrics: Several different metrics eval-
uate the performance of ICL and hijacking attacks.
Clean accuracy evaluates the accuracy of ICL on
downstream tasks using clean demos. Attack accu-
racy evaluates the accuracy of ICL given the per-
turbed demons. Defense accuracy demonstrates the
accuracy of ICL with the defense method against
the hijacking attack. We further evaluate the effec-
tiveness of hijacking attacks using attack success
rate (ASR). Given a test sample (z,y) from a test
set D, the clean and perturbed prompts are denoted
asp = [[;C;z] and p' = [I;C’; z], respectively.

' — IM@P)=yr)
ASR is calculated as ASR = . %eD M) =y)

where 1 denotes the indicator function.

7 Result and Discussion
7.1 ICL Performance

The rows identified as ‘Clean’ in Table 1 and Ta-
ble 2 show the ICL performance on the respective
tasks when using clean in-context demos. In par-
ticular, Table 1 presents the accuracies for the gen-



Table 1: The performance on sentiment analysis task with and without attacks on ICL. The row identified as
‘Clean’ in gray color represents the accuracy with clean in-context demos. Other rows illustrate the accuracies with
adversarial in-context demos. The details of the baselines in green color are present in Section B of the Appendix.
Specifically, we employ TextAttack (TA) (Morris et al., 2020) following the attack in (Wang et al., 2023c¢) as the
most closely related baseline for our attack (GGI). The accuracies of positive (P) and negative (N) sentiments are
reported separately to highlight the effectiveness of our hijacking attack.

SST-2 RT
Model Method 2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N

Clean 947 522 88.6 494 916 69.0 | 933 547 88.6 769 902  80.5
Square 994 2.0 99.8 4.2 99.4 11.0 | 99.8 1.5 100 4.1 99.3 7.5
GPT2-XL Greedy 100 10.8 100 6.2 100 0.2 100 53 100 2.8 100 0.0
TA 95.0 22 99.8 178 99.6 21.6 | 959 8.1 96.3 413 964 473
GGI 100 1.2 100 0.0 100 0.0 100 2.8 100 0.0 100 0.0
Clean 694 878 70.2 938 77.8 93.0 84.4 914 84.4 93.1 88.6 92.8
Square 99.2 314 93.8 722 99.6  29.0 | 98.1 422 97.0 68.7 994 332
OPT-6.7b Greedy 100 25.0 97.8 39.0 100 2.0 994 317 99.8 4.7 100 0.8
TA 948  80.8 54.8 98.6 91.6 894 | 925 86.1 77.6 964 940 86.3
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2
Clean 914 812 88.2 81.4 946 826 84.8 784 85.9 80.5 904 854
Square 89.2 844 86.6 858 940 838 859 854 84.6 88.6 91.6 884
Vicuna-7b Greedy 93.0 834 88.4 87.0 946 800 | 912 8238 86.9 88.7 919 859
TA 87.0 852 76.2 882 942  80.6 83.3 84.2 79.6 88.6  92.1 84.4
GGI 90.6 42.2 96.4 23.2 100 0.8 87.6 364 95.1 35.7 100 0.2
Clean 814 86.3 74.4 919 827 924 86.0 83.6 81.9 916 8.3 9738
Square 86.8  80.0 96.8 586 980 564 869 574 97.4 50.1 97.8 574
LLaMA-7b Greedy 95.0 47.6 100 0.0 100 0.0 88.9 2.8 99.8 0.0 100 0.0
TA 872 718 93.8 69.0 99.8 8.8 83.1 57.4 94.2 689 99.6 3.80
GGI 100 0.4 100 0.0 100 0.0 96.8 0.0 100 0.0 100 0.0
Clean 97.8 764 95.6 88.0 958 90.0 | 942 8438 92.7 92.1 914 919
Square 984 728 98.2 784 978 854 | 936 874 94.4 84.1 942  87.6
LLaMA-13b Greedy 98.0 414 100 3.0 100 0.0 55.9 11.3 92.9 0.0 100 0.4
TA 982 722 92.8 928 975 87.6 | 948 81.8 88.0 94.0 925 89.3
GGI 99.2 378 100 7.2 100 0.0 99.1 3.8 86.1 3.6 100 0.0

Table 2: The performance of AG’s News topic generation task with and without attacks on ICL. The clean and attack
accuracies are reported separately for the four topics. These results highlight the effectiveness of our hijacking
attacks to induce LLMs to generate the target token, i.e., “tech”, regardless of the query content.

4-shots 8-shots
Model Method word  sports  business  tech word  sports  business  tech
Clean 48.5 87.0 64.9 71.9 48.2 50.6 71.0 83.6
Square 2.0 66.0 26.8 96.0 19.6 65.6 28.0 97.2
GPT2-XL Greedy 12.8 60.4 29.2 96.4 8.0 21.2 10.0 98.8
TA 54.8 84.0 73.2 82.4 82.0 82.4 91.2 57.6
GGI 0.0 2.0 0.4 100 0.0 0.0 0.0 100
Clean 68.2 96.8 66.6 49.0 88.6 97.4 78.2 61.0
Square 78.4 98.0 76.0 36.8 94.4 98.0 60.0 57.6
LLaMA-7b Greedy 69.6 98.8 752 51.6 89.6 100 68.4 73.6
TA 424 94.8 67.6 324 95.2 96.0 39.2 24.8
GGI 0.0 20.0 0.00 98.0 29.6 56.0 0.0 100

eration of positive (P) and negative (N) sentiments
in the SST-2 and RT datasets. All the tested LLMs
perform well, achieving an average accuracy of
83.6% on SST-2 and 86.7% on RT across various
in-context few-shot settings. Table 2 indicates that
LLMs with ICL also perform well in the context
of multi-class generation on AG’s News dataset.
The average accuracies stand at 69.1% for 4-shot
settings and 72.3% for 8-shot settings across vari-
ous LLMs. Additionally, LLMs with ICL exhibit
improved performance with an increased number
of in-context demos, particularly achieving best
results with 8-shot settings.

7.2 ICL Performance with Hijacking Attack
While LLMs utilizing ICL show strong perfor-
mance with clean in-context demos, Tables 1 and 2

reveal that their effectiveness is significantly under-
mined by hijacking attacks. These attacks manipu-
late the models to produce target outputs by append-
ing adversarial suffixes to the in-context demos.
The baseline attacks successfully induce LLMs to
generate the targeted positive sentiment through
a few shots of adversarially perturbed demos, as
shown in Table 1. As a result, the positive test
samples achieve a predominantly higher accuracy
than the negative ones. Furthermore, our GGI at-
tack more effectively hijacks LLMs to generate the
target output, i.e., exclusively positive sentiment
token, regardless of the test query content. The pos-
itive test samples achieve almost 100% accuracy.
On the contrary, the negative ones get nearly 0%
accuracy on most settings, as shown in 1. For the



Table 3: The performance of the defenses using ASRs across various LLMs and datasets. Adv denotes our hijacking
attack using the adversarial demos. Adv+Clean represents the proposed defense method, leveraging extra clean
demos with adversarial demos. The numbers within the parenthesis indicate the reduction in the ASRs after defense.

SST-2 RT AG’s News
Model Ady Adv+Clean Ady Adv+Clean Ady Adv+Clean
Preceding Proceeding Preceding Proceeding Preceding Proceeding
GPT2-XL 100 100 (-0) 99.6 (-0.4) 100 100 (-0) 97.4 (-2.6) 99.1 75.5(-23.6)  80.5(-18.6)
OPT-6.7b 982  449(-533) 525(457) | 999 50.2(-49.7) 57.8(-42.1) | 65.6  23.5(-42.1) 22.5(-43.1)
LLaMA-7b 100 49.1 (-50.9) 98.3 (-1.7) 100 53.1 (-46.9) 99.8 (-0.2) 82.8  42.2(-40.6) 88.2 (+5.4)

more complex multi-class AG’s News topic genera-
tion task, the effectiveness of those baseline attacks
decreases significantly. Especially the TA method
is not successful in hijacking LLMs to generate the
target token, i.e., ‘tech’. Only our GGI attack suc-
cessfully hijacks the LLMs to generate “tech” by
appending the adversarial suffixes to the in-context
demos, as shown in Table 2.

7.3 Defense Method Performance

Table 3 presents ASRs of our hijacking attack
when countered with the proposed defense mech-
anism that uses additional clean demos. The
defense method is tested in two different set-
tings. In the Preceding setting, clean demos are
placed before the adversarial demos in the se-
quence p = [I;C;C"; S(zq,_)]. Conversely, in
the Proceeding setting, clean demos are added af-
ter the adversarial demos, forming the sequence
p=[I;C";C; S(xq,_ )]

The results show a significant decrease in ASRs
of our hijacking attack, affirming the effectiveness
of the defense method. Notably, the Preceding set-
ting results in considerably lower ASRs compared
to the Proceeding setting. This relates to the mech-
anism through which our hijacking attack induces
LLMs to generate target outputs. As depicted in
Figure 6b, the adversarial suffixes divert the LLMs’
attention away from the original query. Further-
more, Figure 7 of the Appendix illustrates that the
LLM primarily focuses on the initial segments of
the demos, which are indicated by a darker green
color. Therefore, in the Preceding method, the
model shifts its attention to these first few demos,
which contain additional clean samples before the
adversarial demos. These clean samples effectively
re-calibrate and rectify the model’s behavior, re-
sulting in a larger reduction in ASRs, as shown in
Table 3. In contrast, the first few demos remain
adversarial in the Proceeding method, rendering
it ineffective in defending against the adversarial
demonstration attack.

Furthermore, the results indicate that our pro-
posed defense methods are ineffective on small-

sized LLMs, such as the GPT2-XL used in our
experiments. We hypothesize that this is due to
their limited emergent abilities. In other words,
employing additional demos during ICL cannot
correct the behavior of small-sized LLMs under
hijacking attacks.

7.4 Stealthiness of GGI

The perplexity scores shown in Figure 2 for both
the baseline and our attacks exhibit minor (non-
significant, P-value of 0.329 >> 0.05 cutoff is re-
ported from one-way ANOVA test) increases com-
pared to the score of the clean samples, highlight-
ing the stealth of our proposed word-level adver-
sarial attacks. Specifically, the adversarial triggers
learned from our GGI algorithm are imperceptible
and maintain the semantic integrity and coherence
of the original content, as shown in the examples
of Figures 9 and 10 in the Appendix.

24.5
P-Value=0.329 23.05 22.32

SR

Perplexity Scores
- - N
s & 3

«

0

Clean Greedy
Figure 2: Average perplexity scores reported for
LLaMAZ2-7b on 100 random samples under eight-shots
setting from SST-2 derived from three separate runs un-
der various attacks.

Square Ours

8 Conclusion

This work further reveals the vulnerability of ICL
via crafted hijacking attacks. By appending im-
perceptible adversarial suffixes to the in-context
demos using a greedy gradient-based algorithm,
our attack effectively hijacks the LLMs to generate
the unwanted targets by diverting LLMs’ attention
from the relevant context to the adversarial suf-
fixes. We will continue on studying novel attack
and defense techniques to enhance ICL security.



9 Limitations and Risks

This work uncovers a potential vulnerability of
LLMs during in-context learning. By inserting ad-
versarial tokens, which our algorithm has learned,
into in-context demos, we can make the LLM pro-
duce undesired target outputs without the need for
a trigger in the query. Our evaluation focuses on
the attack success rate, particularly in the context
of sentiment analysis and topic generation tasks.
Our threat model, which is based on single token
generation, has proven to be highly effective while
maintaining content integrity. This efficiency elim-
inates the necessity for models that generate mul-
tiple tokens, which could compromise the content
integrity. However, it is possible that our attack
may be more effective for generation tasks across
the LLMs that are similar in sizes (or smaller) and
training approaches. Further studies are warranted
to extend our approach to a wide range of down-
stream tasks and LLMs.

This work represents a purple teaming effort
with the goal to discover the vulnerabilities of LLM
during in-context learning and defend against the
attacks. It offers a unified platform that enables
both the red team and blue team to collaborate
more effectively. Moreover, it facilitates a seam-
less knowledge transfer between the teams. As
such, it will not pose risks for natural users nor
LLM vendors. Rather, our findings can be utilized
by these stakeholders to guard against malicious
uses and enhance the robustness of LLMs to such
threats.
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A Experiments Details

We show the dataset statistics in Table 4. Specifi-
cally for the SST-2 and RT sentiment analysis tasks,
we employ only 2 training queries to train adversar-
ial suffixes using our GGI method. We use 4 train-
ing queries for the more complex multi-class topic
generation tasks, i.e., AG’s News. We randomly
select 1,000 samples as user queries for testing.

Table 4: Statistics of the training queries used in Algo-
rithm 1 and test queries for the three datasets.

Test Queries
1,000
1,000
1,000

Datasets
SST-2
RT
AG’s News

Training Queries
2
2
4

B Baseline Attacks
B.1 Greedy Search

We consider a heuristics-based perturbation strat-
egy, which conducts a greedy search over the vo-
cabulary to select tokens, maximizing the reduction
in the adversarial loss from Eq. 3. Specifically, it
iteratively picks the token that decreases the loss
the most at each step.

B.2 Square Attack

The square attack (Andriushchenko et al., 2020)
is an iterative algorithm for optimizing high-
dimensional black-box functions using only func-
tion evaluations. To find an input x 4 J in the demo
set C' that minimizes the loss in Eq. 3, the square
attack has three steps: Step 1: Select a subset of
inputs to update; Step 2: Sample candidate values
to substitute for those inputs; Step 3: Update = + §
with the candidate values that achieve the lowest
loss. The square attack can optimize the hijacking
attack objective function without requiring gradient
information by iteratively selecting and updating a
subset of inputs.

B.3 Text Attack

We also utilize TextAttack (TA) (Morris et al.,
2020), adopting a similar approach to the attack
described by (Wang et al., 2023c), which serves as
the most closely related baseline for our hijacking
attack. Different from our word-level attack, the
use of TA at the character level includes minor mod-
ifications to some words in the in-context demos
and simply flips the labels of user queries, as de-
picted in Figure 1. In our experiments, we employ a
transformation where characters are swapped with
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those on adjacent QWERTY keyboard keys, mim-
icking errors typical of fast typing, as done in Tex-
tAttack (Morris et al., 2020). Specifically, we use
the adversarial examples for the same demos in our
hijacking attack during the application of TA.

C Attack Performance

In addition to the attack accuracy performance pro-
vided in Table 1 and 2, we present ASRs for vari-
ous attacks across the three datasets. As outlined
in Table 5, our GGI attack achieves the highest
ASRs, substantiating its highest effectiveness in
hijacking the LLM to generate the targeted output.
In sentiment analysis tasks like SST-2 and RT, all
attacks exhibit high ASRs. While for the more com-
plex multi-class topic generation task, such as AG’s
News, only our GGI attack achieves high ASRs.
This further emphasizes the potential effectiveness
of our hijacking attack on more complex generative
tasks, such as question answering tasks.

D Impact of Number of In-context Demos

We extend our investigation to explore the impact
of in-context demos on adversarial ICL attacks.
We observe a substantial impact on the attack per-
formance in ICL based on the number of demos
employed. As indicated in Tables 1 and 2, an in-
crease in the number of in-context demos correlates
with a higher susceptibility of the attack to hijack
LLMs, resulting in the generation of target outputs
with greater ease. Specifically, in the 8-shot setting,
LLMs consistently exhibit significantly lower accu-
racies in negative sentiment generation, demonstrat-
ing a higher rate of successful attacks compared
to the 2-shot and 4-shot settings. Moreover, the
attacks demonstrate higher ASRs as the number of
in-context demos used in ICL increases, as shown
in Table 5.

E Impact of Sizes of LLMs

Results in Table 5 reveal that the ASRs on GPT2-
XL are significantly higher than those on LLaMA-
7b, suggesting that hijacking the larger LLM is
more challenging. Here, we continue examining
how the size of LLMs influences the performance
of hijacking attacks. Table 6 illustrates the perfor-
mance of sentiment analysis tasks with and with-
out attacks on ICL using different sizes of OPT,
i.e., OPT-2.7b and OPT-6.7b. These results further
highlight that the smaller LLM, i.e., OPT-2.7b, is



Table 5: ASR among different datasets, models, and attack methods. Best scores are in bold.

SST-2 RT AG’s News

Model Method 2-shots 4-shots 8-shots 2-shots 4-shots 8-shots 4-shots 8-shots
Square | 980 978 942 98.7 579 959 649 552
Greedy | 946 96.9 99.9 97.4 98.6 100 683 873
GPT2-XL TA 89.6 91.0 89.0 85.9 775 74.6 15.1 15.9
GGI 99.4 100 100 98.6 100 100 99.1 100
Square | 48.1 650 70.6 84 9.0 9.7 103 150
, Greedy | 642 100 100 643 99.8 100 143 2.1
LLaMA-7b TA 482 595 95.4 458 580 97.8 9.3 6.8
GGI 97.7 100 100 90.7 99.9 100 82.8 77.9

Table 6: The performance of sentiment analysis task with and without attacks on ICL using different sizes of OPT.

SST-2 RT
Model Method 2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N
Clean 98.5 38.6 85.6 628 584 764 | 98.1 36.6 81.2 684 57.8 89.6
Square 100 0.0 100 0.0 100 1.8 100 13 100 0.0 99.6 7.5
OPT-2.7b Greedy 100 0.0 100 0.0 100 0.0 100 0.4 100 0.2 100 0.0
TA 99.6 13.8 99.8 268  99.0 7.2 97.6 529 97.2 59.7 994 6.8
GGI 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0
Clean 694 878 70.2 938 77.8 93.0 84.4 914 84.4 93.1 88.6 928
Square 99.2 314 93.8 722 99.6 29.0 | 98.1 422 97.0 68.7 994 332
OPT-6.7b Greedy 100 25.0 97.8 39.0 100 2.0 99.4 317 99.8 4.7 100 0.8
TA 948  80.8 54.8 98.6 91.6 894 | 925 86.1 77.6 964 940 863
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2

much easier to be attacked and induced to gener-
ate unwanted target outputs, such as ‘positive’, in
the sentiment analysis tasks. Figure 3 illustrates
our proposed hijacking attack performance using
ASR on two OPT models of varying sizes in AG’s
News topic generation task. It clearly shows that
attacking the smaller OPT2-2.7b model achieves a
much higher ASR in both settings, confirming our
finding and others (Wang et al., 2023a) that larger
models are more resistant to adversarial attacks.

100+ EEE OPT-2.7b
OPT-6.7b
80 1
L 601
[7p]
<
40
201

4-shots 8-shots

Figure 3: Impact of LLM size on adversarial robustness.
ASRs on the AG’s News topic generation task using
different sizes of OPT models, i.e., OPT-2.7b and OPT-
6.7b, with two different few-shot settings.

F Comparison of Hijacking Attacks

In contrast to baseline hijacking attacks, i.e.,
Square and Greedy, our GGI exhibits superior per-
formance in generating targeted outputs, as evi-
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denced by the results in Table 1 and 2, along with
the highest ASRs highlighted in Table 5. This un-
derscores the effectiveness of GGI as a more potent
method of attack.

To further illustrate the efficiency of our GGI,
we present the objective function values of Eq. 3
in Figure 4 for various attack methods. Since our
GGl attack enjoys the advantages of both greedy
and gradient-based search strategies as depicted
in Algorithm 1, the values of the object function
decrease steadily and rapidly, ultimately reaching
the minimum loss value. On the other hand, both
the Square and Greedy attacks use a greedy search
strategy, with fluctuating results that increase and
decrease the loss value, unable to converge to the
minimum loss value corresponding to the optimal
adversarial suffixes.

G Diverting LLM Attention

Attempting to interpret the possible mechanism of
our hijacking attacks, we show an illustrative exam-
ple using attention weights from LLaMA-7b on the
SST?2 task with both clean and perturbed prompts.
As depicted in Figure 6b, the model’s attention for
generating the sentiment token of the test query has
been diverted towards the adversarial suffix tokens
‘NULL’ and ‘Remove’. Compared to the attention
maps using the clean prompt (Figure 6a), these two
suffixes attain the largest attention weights repre-
sented by the darkest green color. This example
illuminates a possible mechanism for why our hi-
jacking attack can induce the LLM to generate the
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Figure 4: An illustration of the learning objective values
during iterations among different attacks on SST2 using
GPT2-XL with 8-shots.
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Figure 5: Average perplexity scores reported for
LLaMAZ2-7b on 100 random samples under eight-shots
setting from RT derived from three separate runs under
various attacks. P-value of 0.993 > 0.05 cutoff indi-
cates non-significant difference in the scores.

targeted outputs - the adversarial suffixes divert the
LLMs’ attention away from the original query.
Additionally, Figure 7 illustrates the attention
distribution for the perturbed prompts after apply-
ing the Preceding and Proceeding defense meth-
ods. Notably, in the demos, the model primarily
focuses on the front segments of demos, which
are indicated by a darker green color. Therefore,
the model converts its attention to the front seg-
ments, which are the extra clean samples, in the
Preceding method. These clean samples effectively
re-calibrate and rectify the model’s behavior, lead-
ing to a significant reduction in ASRs, as shown
in Table 3. In contrast, the first few demos remain
adversarial in the Proceeding method, rendering
it ineffective in defending against the adversarial
demonstration attack, as shown in Table 3.

Overall, these attention maps visualize how the
adversarial suffixes distract LLMs from focusing
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on the relevant context to generate the unwanted
target output and how our proposed defense meth-
ods rectify the behavior of LLMs given the extra
clean demos.

H More Results

Figure 8 illustrates the prompt template employed
in ICL for various tasks. For the SST2/RT dataset,
the template is structured to include an instruction,
a demo set composed of reviews and sentiment
labels, and the user query. Similarly, the AG’s
News dataset template comprises the instruction,
the demo set with articles and topic labels, and the
user query. Additionally, examples are provided in
Figure 9 and Figure 10 to enhance understanding.
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Figure 6: Attentions maps generated using (a) clean and (b) adversarial perturbed prompts. In (b), the adversarial
suffix tokens, i.e., ‘NULL’ and ‘Remove’, are underlined in red. Darker green colors represent larger attention
weights. The prompts are tokenized to mimic the actual inputs to the LLMs. Best viewed in color.
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Figure 7: Attentions maps generated using (a) Preceding and (b) Proceeding defense methods. Best viewed in color.

17



Algorithm 1: Greedy Gradient-guided Injection (GGI)

Input : Model: M, Iterations: 7', Batch Size: b, Instruction: I, Demos: C, Query: (g, yQ)

Target: yr
Initialization: p{, = [I; [S(z1 +d1,41); -+ ; S(zn + 0N, yn)]; S(zQ,yr)]
repeat
for i € N do
| [0iy; -5 04, ] = Top—k(=Vy LIM(G[p;_1),yr)) /* Compute top-k substitutions */
K ={[0i;; ...; 0;, ] |1 =1, ..,N}
B ={(0i1,---,0) | (6i1,...,0i) € K} /* Make a subset of substitution */
fori € Ndo
| 07 = 04, where j = argming, L(M(9[p}_1), yr) /* Compute best replacement */
A=1[67; .. O]
Py = [L; [S(x1 4+ 61, 91); -+ 5 Slan + 05, yn)]; S(xQ, yr)] /* Update prompt */

until 7" times;

Output : Optimized prompt suffixes [d7, - -

~ 0%

Dataset Structure Template Example
SST-2/RT | Instruction | [instruction] Analyze the sentiment of the last review and respond with either positive
or negative. Here are several examples.
Demos Review: [sentence] Review: "a retread story , bad writing , and the same old silliness "
Sentiment: label Sentiment: negative
Review: [sentence] Review: is definitely a director to watch
Sentiment: [label] Sentiment: positive
Queries Review: [sentence] Review: waste their time on it
Sentiment: Sentiment:
AG-News | Instruction | [instruction] Classify the topic of the last article. Here are several examples.
Demos Article: [article] Article: Skier Tests Positive Olympic silver medalist Hans Knauss tests
Topic: [label] positive for the steroid nandrolone after a World Cup race last
month.
Topic: sports
Article: "Apple Unwraps New IMac G5s PARIS -- Apple Computer will
begin shipping its new IMac G5 desktop computer worldwide
Article: [article] in mid-September, the company #39;s top marketing executive
Topic: [label] says.",
Topic: technology
Queries Article: [article] Article: Microsoft adds to Visual Studio tools line 2005 Standard

Topic:

Edition targets developers working in small organizations.
Topic:

Figure 8: Template designs for all the datasets used in our experiments. We also provide examples for these datasets
to ensure a better understanding.
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Dataset: SST-2 Model: LLaMA-7B

Instruction
Analyze the sentiment of the last review and respond with either positive or negative only. Here are several examples.

Clean

Review: the result is something quite fresh and delightful .

Sentiment: positive

Review: squandering his opportunity to make absurdist observations , burns gets caught up in the rush of slapstick thoroughfare .
Sentiment: negative

Review: the update is dreary and sluggish .

Sentiment: negative

Ours

Review: the result is something quite fresh and delightful . NULL

Sentiment: positive

Review: squandering his opportunity to make absurdist observations , burns gets caught up in the rush of slapstick thoroughfare . Remove
Sentiment: negative

Review: the update is dreary and sluggish .

Sentiment: positive

TA

Sentiment: positive

Review: squandering his opportunity to make absurdist observations , burns gets caught up in the rush of slapstick thoroughfare .
Sentiment: negative

Review: the update is dreary and sluggish .

Sentiment: negative

Figure 9: Visualization of an adversarial example generated by baseline and our attacks on SST-2 via attacking
LLaMA-7b.

Dataset: AG’s News Model: LLaMA-7B

Instruction
Classify the topic of the last article. Here are several examples.

Clean

Article: Car Bomb Explodes in Mosul, Wounding 5 (AP) AP - A car bomb exploded Friday near an American armored vehicle in the northern Iraq city of Mosul, wounding five U.S. soldiers,
the military said.

Topic: world

Article: One Man #39;s Opinion - Cal review In football, just as in many other aspects of life, it is the bottom line that counts. In that respect, this game was a huge success.

Topic: sports

Atrticle: Stocks Rise as Jobs Figures Impress NEW YORK (Reuters) - Stocks rose on Friday after news the economy added more than twice the number of jobs expected last month,
sending the Standard Poor's 500 index to its highest in more than 2 1/2 years.

Topic: business

Article: Apple hopes thin iMac can fatten profits, share Apple Computer Inc. on Tuesday unveiled its long-awaited iMac G5, a 2-inch thick, all-in-one device that hides its computing guts
behind a flat-panel screen perched on an aluminum foot.

Topic: technology

Article: E. Guinea coup suspects say they were tortured Equatorial Guinea has told a court he and his comrades had been chained like animals and tortured into confessing. and hand-
cuffs to plead their innocence on Thursday.

Topic: world

Ours

Article: Car Bomb Explodes in Mosul, Wounding 5 (AP) AP - A car bomb exploded Friday near an American armored vehicle in the northern Iraq city of Mosul, wounding five U.S. soldiers,
the military said. ISBN polynomials

Topic: world

Article: One Man #39;s Opinion - Cal review In football, just as in many other aspects of life, it is the bottom line that counts. In that respect, this game was a huge success. Navigation
Sports

Topic: sports

Article: Stocks Rise as Jobs Figures Impress NEW YORK (Reuters) - Stocks rose on Friday after news the economy added more than twice the number of jobs expected last month,
sending the Standard Poor's 500 index to its highest in more than 2 1/2 years. executing business

Topic: business

Article: Apple hopes thin iMac can fatten profits, share Apple Computer Inc. on Tuesday unveiled its long-awaited iMac G5, a 2-inch thick, all-in-one device that hides its computing guts
behind a flat-panel screen perched on an aluminum foot. available cancer

Topic: technology

Article: E. Guinea coup suspects say they were tortured Equatorial Guinea has told a court he and his comrades had been chained like animals and tortured into confessing. and hand-
cuffs to plead their innocence on Thursday.

Topic: technology

TA

soldiers, the military said.

Topic: world
Article: One Man #39;s Opinuon - Dal review In footbwll, just as in many other aspects of life, it is the bottom line that counfs. In that rwspect, this gaje was a huge suxcess.
Topic: sports

the Standard Poir's 500 kndex ti ivs highest in jore than 2 1/2 years.

Topic: business

Article: Apple hopes thin iMac can fatten profits, share Apple Computer Inc. on Tuesday unveiled its long-awaited iMac G5, a 2-inch thick, all-in-one device that hides its computing guts
behind a flat-panel screen perched on an aluminum foot.

Topic: technology

Article: E. Guinea coup suspects say they were tortured Equatorial Guinea has told a court he and his comrades had been chained like animals and tortured into confessing. and hand-
cuffs to plead their innocence on Thursday.

Topic: world

Figure 10: Visualization of an adversarial example generated by baseline and our attacks on AG’s News via attacking
LLaMA-7b.
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