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Abstract

In-context learning (ICL) has emerged as a001
powerful paradigm leveraging LLMs for spe-002
cific downstream tasks by utilizing labeled ex-003
amples as demonstrations in the precondition004
prompts. Despite its promising performance,005
ICL suffers from instability with the choice006
and arrangement of examples. Additionally,007
crafted adversarial attacks pose a notable threat008
to the robustness of ICL. However, existing009
attacks are either easy to detect, rely on ex-010
ternal models, or lack specificity towards ICL.011
This work introduces a novel transferable at-012
tack for ICL to address these issues, aiming013
to hijack LLMs to generate the targeted re-014
sponse. The proposed hijacking attack lever-015
ages a gradient-based prompt search method to016
learn and append imperceptible adversarial suf-017
fixes to the in-context demonstrations. Exten-018
sive experimental results on various tasks and019
datasets demonstrate the effectiveness of our hi-020
jacking attack, resulting in distracted attention021
towards adversarial tokens and consequently022
leading to unwanted target outputs. We also023
propose a defense strategy against hijacking at-024
tacks through the use of extra demonstrations,025
which enhances the robustness of LLMs during026
ICL. Broadly, this work reveals the significant027
security vulnerabilities of LLMs and empha-028
sizes the necessity for in-depth studies on the029
robustness of LLMs related to ICL.030

1 Introduction031

In-context learning (ICL) is an emerging technique032

for rapidly adapting large language models (LLMs),033

i.e., GPT-4 (Achiam et al., 2023) and LLaMA2034

(Touvron et al., 2023), to new tasks without fine-035

tuning the pre-trained parameters (Brown et al.,036

2020). The key idea behind ICL is to provide LLMs037

with labeled examples as in-context demonstrations038

(demos) within the prompt context before a test039

query. Through learning from the demos, LLMs040

are able to generate responses to queries based on041

ICL (Dong et al., 2022; Min et al., 2022).042

Several existing works, however, have demon- 043

strated the highly unstable nature of ICL (Zhao 044

et al., 2021; Chen et al., 2022). Specifically, per- 045

formance on target tasks using ICL can vary wildly 046

based on the selection and order of demos, giving 047

rise to highly volatile outcomes ranging from ran- 048

dom to near state-of-the-art (SOTA) (Qiang et al., 049

2020; Lu et al., 2021; Min et al., 2022; Pezeshkpour 050

and Hruschka, 2023; Qiang et al., 2024). Corre- 051

spondingly, several approaches (Liu et al., 2021; 052

Wu et al., 2022; Nguyen and Wong, 2023) have 053

been proposed to address the unstable issue of ICL. 054

Further research has looked at how adversarial 055

examples can undermine the performance of ICL 056

(Zhu et al., 2023a; Wang et al., 2023c,b; Shayegani 057

et al., 2023). These studies show that maliciously 058

designed examples injected into the prompt in- 059

structions (Zhu et al., 2023a; Zou et al., 2023; Xu 060

et al., 2023), demos (Wang et al., 2023c; Mo et al., 061

2023a), or queries (Wang et al., 2023b; Kandpal 062

et al., 2023) can successfully attack LLMs to de- 063

grade their performance, revealing the significant 064

vulnerabilities of ICL against adversarial inputs. 065

While existing adversarial attacks have been ap- 066

plied to evaluate LLM robustness, they have some 067

limitations in practice. Most character-level at- 068

tacks, e.g., TextAttack (Morris et al., 2020) and 069

TextBugger (Li et al., 2018), can be easily detected 070

and evaded through grammar checks, limiting real- 071

world effectiveness (Qiang et al., 2022; Jain et al., 072

2023). Some other attacks like BERTAttack (Li 073

et al., 2020) require an extra model to generate ad- 074

versarial examples, which may not be feasible in 075

real-world applications. Crucially, existing attacks 076

are not specifically crafted to target techniques 077

based on LLMs, i.e., ICL. As such, the inherent 078

security risks of LLMs remain largely unexplored. 079

There is an urgent need for red teaming tailored to 080

ICL to expose the substantial risk of LLMs for fur- 081

ther evaluating their adversarial robustness against 082

potential real-world threats. 083
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Figure 1: Illustrations of ICL using clean prompt and adversarial prompt. Given the clean in-context demos, LLMs
can correctly generate the sentiment of the test queries. The previous attacks (Wang et al., 2023c) at the character
level involve minor edits in some words, such as altering ‘so’ to ‘s0’ and ‘film’ to ‘fi1m’, of these in-context
demos, leading to incorrect sentiment generated for the test queries. However, ours learns to append adversarial
suffixes like ‘For’ and ‘Location’ to the in-context demos to efficiently and effectively hijack LLMs to generate the
unwanted target, e.g., the ‘negative’ sentiment, regardless of the test query content.

This work proposes a novel adversarial attack084

specifically targeting ICL. We develop a gradient-085

based prompt search algorithm to learn adversarial086

suffixes in order to efficiently and effectively hi-087

jack LLMs via adversarial ICL. (Zhu et al., 2023a;088

Wang et al., 2023b) are the closest works to ours089

where they ‘search’ adversarial examples to sim-090

ply manipulate model outputs. Yet, our attack091

method ‘learns’ adversarial tokens that directly hi-092

jack LLMs to generate the unwanted target that093

disrupts alignment with the desired output. In Fig-094

ure 1, we illustrate the major difference between095

the previous attack and the proposed attack: ours hi-096

jacks LLMs to output the unwanted target response097

(e.g.,‘negative’) regardless of the query content.098

Furthermore, instead of manipulating the prompt099

instructions (Zhu et al., 2023a; Zou et al., 2023),100

demos (Wang et al., 2023c; Mo et al., 2023a),101

or queries (Wang et al., 2023b; Kandpal et al.,102

2023) leveraging standard adversarial examples,103

e.g., character-level attacks (Morris et al., 2020; Li104

et al., 2018), which are detectable easily, our hi-105

jacking attack is imperceptible in that it adds only106

1-2 suffixes to the demos, as shown in Figure 1.107

Specifically, these suffixes are semantically incon-108

gruous but not easily identified as typos or gib-109

berish compared to the existing ICL attack (Wang 110

et al., 2023c). Finally, the backdoor attack during 111

ICL (Kandpal et al., 2023) requires a trigger, which 112

is impractical in real-world scenarios, whereas our 113

attack hijacks the LLM to generate the unwanted 114

target without triggering the queries. 115

Our extensive experiments validate the efficacy 116

of our hijacking attacks. First, the attacks reli- 117

ably induce LLMs to generate the targeted and 118

misaligned output from the desired ones. Second, 119

the adversarial suffixes learned via gradient opti- 120

mization are transferable, remaining effective on 121

different demo sets. Third, the suffix transferability 122

holds even across different datasets for the same 123

downstream task. Finally, our analysis shows that 124

the adversarial suffixes distract LLMs’ attention 125

away from the task-relevant concepts. Our adver- 126

sarial ICL attack poses a considerable threat to 127

practical LLM applications due to its robust trans- 128

ferability and imperceptibility. 129

As this work represents one of the first effi- 130

cient adversarial demonstration attacks during ICL, 131

strategies for defending against such attacks have 132

yet to be thoroughly investigated. Recently, (Mo 133

et al., 2023b) introduced a method for defending 134

against back-door attacks at test time, leveraging 135
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few-shot demonstrations to correct the inference136

behavior of poisoned LLMs. Similarly, (Wei et al.,137

2023b) explored the power of in-context demos in138

manipulating the alignment ability of LLMs and139

proposed in-context attack and in-context defense140

methods for jailbreaking and guarding the aligned141

LLMs. Consequently, we explore the potential of142

using in-context demos exclusively to rectify the be-143

havior of LLMs subjected to our hijacking attacks.144

Our defense strategy employs additional clean in-145

context demos at test time to safeguard LLMs from146

being hijacked by adversarial in-context demos.147

The experimental results demonstrate the efficacy148

of our proposed defense method against various149

adversarial demonstration attacks.150

This work makes the following original contri-151

butions: (1) We propose a novel stealthy adver-152

sarial attack targeting in-context demos to hijack153

LLMs to generate unwanted target output during154

ICL. (2) We design a novel gradient-based prompt155

search algorithm to learn and append adversarial156

suffixes to the in-context demos. (3) Our exten-157

sive experiments demonstrate the effectiveness and158

transferability of the proposed adversarial ICL at-159

tack across various demo sets, LLMs, and tasks.160

(4) The proposed test time defense strategy effec-161

tively protects LLMs from being compromised by162

adversarial demonstration attacks.163

2 Related Work164

2.1 In-Context Learning165

LLMs have shown impressive performance on nu-166

merous NLP tasks (Devlin et al., 2018; Lewis et al.,167

2019; Radford et al., 2019). Although fine-tuning168

has been a common method for adapting models169

to new tasks, it is often less feasible to fine-tune170

extremely large models with over 10 billion param-171

eters. As an alternative, recent work has proposed172

ICL, where the model adapts to new tasks solely via173

inference conditioned on the provided in-context174

demos, without any gradient updates (Brown et al.,175

2020). By learning from the prompt context, ICL176

allows leveraging massive LLMs’ knowledge with-177

out the costly fine-tuning process, showcasing an178

exemplar of the LLMs’ emergent abilities (Schaef-179

fer et al., 2023; Wei et al., 2022).180

Intensive research has been dedicated to ICL.181

Initial works attempt to find better ways to se-182

lect labeled examples for the demos (Liu et al.,183

2021; Rubin et al., 2021). For instance, (Liu184

et al., 2021) presents a simple yet effective retrieval-185

based method that selects the most semantically186

similar examples as demos, leading to improved 187

accuracy and higher stability. Follow-up works 188

have been done to understand why ICL works (Xie 189

et al., 2021; Razeghi et al., 2022; Min et al., 2022; 190

Wei et al., 2023a; Kossen et al., 2023). (Xie et al., 191

2021) provides theoretical analysis that ICL can 192

be formalized as Bayesian inference that uses the 193

demos to recover latent concepts. Another line of 194

research reveals the brittleness and instability of 195

ICL approaches: small changes to the demo ex- 196

amples, labels, or order can significantly impact 197

performance (Lu et al., 2021; Zhao et al., 2021; 198

Min et al., 2022; Nguyen and Wong, 2023). 199

2.2 Adversarial Attacks on LLMs 200

Early adversarial attacks on LLMs apply simple 201

character or token operations to trigger the LLMs 202

to generate incorrect predictions, such as TextAt- 203

tack (Morris et al., 2020) and BERT-Attack (Li 204

et al., 2020). Since these attacks usually gener- 205

ate misspelled and/or gibberish prompts that can 206

be detected using spell checker and perplexity- 207

based filters, they are easy to block in real-world 208

applications. Some other attacks struggled with 209

optimizing over discrete text, leading to the man- 210

ual or semi-automated discovery of vulnerabilities 211

through trial-and-error (Li et al., 2021; Perez and 212

Ribeiro, 2022; Li et al., 2023c; Qiang et al., 2023; 213

Casper et al., 2023; Kang et al., 2023; Li et al., 214

2023a; Shen et al., 2023). For example, jailbreak- 215

ing prompts are intentionally designed to bypass 216

an LLM’s built-in safeguard, eliciting it to generate 217

harmful content that violates the usage policy set 218

by the LLM vendor (Shen et al., 2023; Zhu et al., 219

2023b; Chao et al., 2023; Mehrotra et al., 2023; 220

Jeong, 2023; Guo et al., 2024; Yu et al., 2024). 221

These red teaming efforts craft malicious prompts 222

in order to understand LLM’s attack surface (Gan- 223

guli et al., 2022). However, the discrete nature of 224

text has significantly impeded learning more effec- 225

tive adversarial attacks against LLMs. 226

Recent work has developed gradient-based opti- 227

mizers for efficient text modality attacks. For exam- 228

ple, (Wen et al., 2023) presented a gradient-based 229

discrete optimizer that is suitable for attacking the 230

text pipeline of CLIP, efficiently bypassing the safe- 231

guards in the commercial platform. (Zou et al., 232

2023), building on (Shin et al., 2020), described 233

an optimizer that combines gradient guidance with 234

random search to craft adversarial strings that in- 235

duce LLMs to respond to the questions that would 236

otherwise be banned. More recently, (Zhao et al., 237
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2024) proposed poisoning demonstration examples238

and prompts to make LLMs behave in alignment239

with pre-defined intentions.240

Our hijacking attack algorithm falls into this241

stream of work, yet we target few-shot ICL instead242

of zero-shot queries. We use gradient-based prompt243

search to automatically learn effective adversarial244

suffixes rather than manually engineered prompts.245

Importantly, we show that LLMs can be hijacked246

to output the targeted unwanted output by append-247

ing optimized adversarial tokens to the ICL demos,248

which reveals a new lens of LLM vulnerabilities249

that may have been missed by prior approaches.250

2.3 Defense Against Attacks on LLMs251

The existing literature on the robustness of LLMs252

includes various strategies for defense (Goyal et al.,253

2023; Studnia et al., 2023; Liu et al., 2023; Xu254

et al., 2024; Wu et al., 2024). However, most of255

these defenses, such as those involving adversarial256

training (Liu et al., 2020; Li et al., 2023b; Formento257

et al., 2024; Wang et al., 2024) or data augmenta-258

tion (Qiang et al., 2024; Yuan et al., 2024), need259

to re-train or fine-tune the models, which is com-260

putationally infeasible for LLM users. Moreover,261

the restriction of many closed-source LLMs to only262

permit query access for candidate defenses intro-263

duces new challenges.264

Recent studies focus on developing defenses265

against attacks on LLMs that utilize adversarial266

prompting. (Jain et al., 2023) and (Alon and Kam-267

fonas, 2023) have suggested the use of perplexity268

filters to detect adversarial prompts. While the fil-269

ters are effective at catching the attack strings that270

contain gibberish words or character-level adver-271

sarial tokens with high perplexity scores, they fall272

short in detecting more subtle adversarial prompts,273

like the ones used in our adversarial demonstration274

attacks with as low perplexity as clean samples275

shown in Figure 2. Recently, (Mo et al., 2023b) in-276

troduced a method to mitigate backdoor attacks at277

test time by identifying the task and retrieving rele-278

vant defensive demonstrations. These demonstra-279

tions are combined with user queries to counteract280

the adverse effects of triggers present in backdoor281

attacks. This defense strategy eliminates the need282

for modifications or tuning of LLMs. Its objective283

is to re-calibrate and correct the behavior of LLMs284

during test-time evaluations. Similarly, (Wei et al.,285

2023b) investigated the role of in-context demon-286

strations in enhancing the robustness of LLMs and287

highlighted their effectiveness in defending against288

jailbreaking attacks. The authors developed an 289

in-context defense strategy that constructs a safe 290

context to caution the model against generating any 291

harmful content. 292

So far, defense mechanisms against adversarial 293

demonstration attacks have not been extensively 294

explored. Our approach introduces a test-time de- 295

fense strategy that uses additional clean in-context 296

demos to safeguard LLMs from adversarial in- 297

context manipulations. In line with prior works 298

(Mo et al., 2023b; Wei et al., 2023b; Wang et al., 299

2024), this defense strategy avoids the necessity 300

for retraining or fine-tuning LLMs. Instead, it fo- 301

cuses on re-calibrating and correcting the behavior 302

of LLMs during evaluations at test time. 303

3 Preliminaries 304

3.1 ICL Formulation 305

Formally, ICL is characterized as a problem involv- 306

ing the conditional generation of text (Liu et al., 307

2021), where an LLM M is employed to gen- 308

erate response yQ given an optimal task instruc- 309

tion I , a demo set C, and an input query xQ. I 310

specifies the downstream task that M should per- 311

form, e.g., “Choose sentiment from positive or 312

negative” used in our sentiment generation task. 313

C consists of N (e.g., 8) concatenated data-label 314

pairs following a specific template S, formally: 315

C = [S(x1, y1); · · · ; S(xN , yN )], ‘;’ here de- 316

notes the concatenation operator. Thus, given the 317

input prompt as p = [I; C; S(xQ, _)], M gener- 318

ates the response as ŷQ = M(p). S(xQ, _) here 319

means using the same template as the demos but 320

with the label empty. 321

3.2 Adversarial Attack on LLMs 322

In typical text-based adversarial attacks, the attack- 323

ers manipulate the input x with the goal of mis- 324

leading the model to produce inaccurate output or 325

bypass safety guardrails (Zou et al., 2023; Maus 326

et al., 2023). Specifically, given the input-output 327

pair (x, y), the attackers aim to learn the adversar- 328

ial perturbation δ adding to x by maximizing the 329

model’s objective function but without misleading 330

humans by bounding the perturbation within the 331

“perceptual” region ∆. The objective function of 332

the attacking process thus can be formulated as: 333

max
δ∈∆

L(M(xQ + δ), yQ), (1) 334

L here denotes the task-specific loss function, for 335

instance, cross-entropy loss for classification tasks. 336
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4 The Threat Model337

4.1 ICL Hijacking Attack338

ICL consists of an instruction I , a demo set C, and339

an input query xQ, providing more potential attack340

vectors compared to the conventional text-based341

adversarial attacks. This work focuses on manip-342

ulating C without changing I and xQ. Recently,343

(Wang et al., 2023c) applied character-level pertur-344

bation techniques (e.g., TextAttack (Morris et al.,345

2020) and TextBugger (Li et al., 2018)), such as346

character insertion, character deletion, neighbor-347

ing character swap, and character substitution, to348

reverse the output.349

Our hijacking attack learns the adversarial suf-350

fix tokens to the in-context demos to manipulate351

LLMs’ output via a new greedy gradient-based352

prompt injection algorithm. Given a clean demo353

set C = [S(x1, y1); · · · ; S(xN , yN )], our hijack-354

ing attack automatically produces an adversarial355

suffix for each demo in c, formally:356

C ′ = [S(x1+δ1, y1); · · · ; S(xN+δN , yN )], (2)357

where C ′ denotes the perturbed demo set. To make358

it clear, the adversarial suffixes appended to each359

demo as perturbations are different, respectively.360

In this case, the attack or perturbation budget refers361

to the number of tokens in each adversarial suffix.362

As a result, our hijacking attack induces M to363

generate an unwanted target output yT via append-364

ing adversarial suffix tokens on the in-context de-365

mos as yT = M(p′). In other words, M generates366

the same or different responses for the clean and367

perturbed prompts depending on the True or False368

of M(p) = yT :369 {
M(p) = M(p′), True,
M(p) ̸= M(p′), False,

370

where p = [I; C; S(xQ, _)] and p′ =371

[I; C ′; S(xQ, _)], respectively.372

4.2 Hijacking Attack Objective373

We express the goal of the hijacking attack as a for-374

mal objective function. Let us consider the LLM375

M as a function that maps a sequence of tokens376

x1:n, with x ∈ {1, · · · , V } where V denote the377

vocabulary size, namely, the number of tokens, to378

a probability distribution over the next token xn+1.379

Specifically, P(xn+1|x1:n) denotes the probability380

that xn+1 is the next token given the previous to-381

kens x1:n. In more detail, we formulate x1:n as382

[I; C; S(xQ, _)] and xn+1 as ŷQ in the context of 383

an ICL task, respectively. 384

Using the notations defined earlier, the hijacking 385

attack objective we want to optimize is simply the 386

negative log probability of the target token xn+1. 387

The generated target output yT is different from 388

the ground truth label yQ for the training query 389

(xQ, yQ). Formally: 390

L(xQ) = − logP(M(yT |p′)), (3) 391

where yT ̸= yQ, demonstrating the attack hijacks 392

M to generate the target output. p′ denotes the 393

perturbed prompt as: p′ = [I; C ′; S(xQ, _)]. In 394

summary, the problem of optimizing the adversarial 395

suffix tokens can be formulated as the following 396

optimization objective: 397

minimize
δi∈{1,··· ,V }|N|

L(xQ), (4) 398

where i denotes the indices of the demos and N is 399

the number of demos in the perturbed demos set 400

C ′, respectively. 401

4.3 Greedy Gradient-guided Injection 402

A primary challenge in optimizing Eq. 4 is opti- 403

mizing over a discrete set of possible token val- 404

ues. While there are some methods for discrete 405

optimization, prior work (Carlini et al., 2023) has 406

shown that those effective strategies often struggle 407

to reliably attack the aligned LLMs. 408

Motivated by prior works (Shin et al., 2020; Zou 409

et al., 2023; Wen et al., 2024), we propose a simple 410

yet effective algorithm for LLMs hijacking attacks, 411

called greedy gradient-guided injection (GGI) al- 412

gorithm (Algorithm 1 in Appendix). The key idea 413

comes from greedy coordinate descent: if we could 414

evaluate all possible suffix token injections, we 415

could substitute the tokens that maximize the adver- 416

sarial loss reduction. Since exhaustively evaluating 417

all tokens is infeasible due to the large candidate 418

vocabulary size, we instead leverage gradients with 419

respect to the suffix indicators to find promising 420

candidate tokens for each position. We then eval- 421

uate all of these candidate injections with explicit 422

forward passes to find the one that decreases the 423

loss the most. This allows an efficient approxima- 424

tion of the true greedy selection. We can optimize 425

the discrete adversarial suffixes by iteratively in- 426

jecting the best tokens. 427

We compute the linearized approximation of re- 428

placing the demo xi in C by evaluating the gra- 429

dient ∇e
x
j
i

L(xQ) ∈ R|V |, where e
xj
i

denotes the 430
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vector representing the current value of the j-th431

adversarial suffix token. Note that because LLMs432

typically form embeddings for each token, they can433

be written as functions of e
xj
i
, and thus we can434

immediately take the gradient with respect to this435

quantity (Ebrahimi et al., 2017; Shin et al., 2020).436

The key aspects of our GGI algorithm (Algo-437

rithm 1 in Appendix) are: firstly, it uses gradients438

of the selected token candidates to calculate the top439

candidates; secondly, it evaluates the top candidates440

explicitly to identify the most suitable one; and441

lastly, it iteratively injects the best token at each po-442

sition to optimize the suffixes. This approximates443

an extensive greedy search in a computationally444

efficient manner.445

5 The Defense Method446

Having developed the ICL hijacking attack by in-447

corporating adversarial tokens into the in-context448

demos, we now present a straightforward yet po-449

tent defense strategy to counter this attack. Initially,450

we assume that defenders treat LLMs as black-box,451

lacking any insight into their training processes452

or underlying parameters. The defenders apply453

defense on the input prompt p directly during test-454

time evaluation. Their goal is to rectify the behav-455

ior of LLMs and induce LLMs to generate desired456

responses to user queries.457

Given an input prompt p′ that includes adver-458

sarial tokens within the demos C ′, we assume459

that LLMs, when presented with demos containing460

clean data for the same tasks, can understand the461

genuine intent of the user’s query through ICL,462

rather than being misled by the adversarial de-463

mos. In this context, ‘clean data’ refers to data464

without any adversarial tokens and is randomly se-465

lected from the training set. More precisely, the466

defenders modify the input prompt p′ into p̃ by467

appending or inserting more clean demos into the468

demo set C ′, as follows: p̃ = [I;C ′; C̃;S(xQ, _)].469

C̃ = [S(x̃1, ỹ1); · · · ; S(x̃N , ỹN )] here denotes470

the clean demos selected from the training set.471

Through this approach, the defender guarantees472

that the in-context demos align with the user’s473

query and possess resilience against adversarial at-474

tacks. In our experiments, we maintained an equal475

number of demos in C ′ and C̃ and observed that476

this method resulted in effective defense across a477

range of datasets and tasks.478

6 Experiment Setup479

Datasets: We evaluate the performance of our480

LLM hijacking algorithm and other baseline al-481

gorithms on three classification datasets covering 482

sentiment analysis and topic generation tasks. SST- 483

2 (Socher et al., 2013) and Rotten Tomatoes (RT) 484

(Pang and Lee, 2005) are both binary sentiment 485

analysis datasets of movie reviews. AG’s News 486

(Zhang et al., 2015) is a multi-class news topic 487

classification dataset. These datasets allow us to 488

evaluate the hijacking attacks on a diverse set of 489

text classification benchmarks across both binary 490

and multi-class settings. More details on the dataset 491

statistics are provided in Table 4 of the Appendix. 492

Large Language Models: The experiments are 493

conducted using three different LLMs, GPT2-XL 494

(Radford et al., 2019), LLaMA-7b/13b (Touvron 495

et al., 2023), OPT-2.7b/6.7b (Zhang et al., 2022), 496

and Vicuna-7b (Chiang et al., 2023) allowing us 497

to evaluate attack effectiveness on both established 498

and SOTA LLMs. The choice of LLMs covers a di- 499

verse set of architectures and model sizes, enabling 500

a comprehensive evaluation of the vulnerability of 501

LLMs via adversarial ICL. 502

ICL Settings: For ICL, we follow the setting in 503

(Wang et al., 2023c) and use their template to in- 504

corporate the demos for prediction. The detailed 505

template is provided in Figure 8 of the Appendix. 506

We evaluate the 2-shot, 4-shot, and 8-shot settings 507

for the number of demos. Specifically, for each test 508

example, we randomly select the demos from the 509

training set and repeat this process 5 times, report- 510

ing the average accuracy over the repetitions. 511

Evaluation Metrics: Several different metrics eval- 512

uate the performance of ICL and hijacking attacks. 513

Clean accuracy evaluates the accuracy of ICL on 514

downstream tasks using clean demos. Attack accu- 515

racy evaluates the accuracy of ICL given the per- 516

turbed demons. Defense accuracy demonstrates the 517

accuracy of ICL with the defense method against 518

the hijacking attack. We further evaluate the effec- 519

tiveness of hijacking attacks using attack success 520

rate (ASR). Given a test sample (x, y) from a test 521

set D, the clean and perturbed prompts are denoted 522

as p = [I;C;x] and p′ = [I;C ′;x], respectively. 523

ASR is calculated as ASR =
∑

(x,y)∈D

1(M(p′)=yT )
1(M(p)=y) , 524

where 1 denotes the indicator function. 525

7 Result and Discussion 526

7.1 ICL Performance 527

The rows identified as ‘Clean’ in Table 1 and Ta- 528

ble 2 show the ICL performance on the respective 529

tasks when using clean in-context demos. In par- 530

ticular, Table 1 presents the accuracies for the gen- 531
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Table 1: The performance on sentiment analysis task with and without attacks on ICL. The row identified as
‘Clean’ in gray color represents the accuracy with clean in-context demos. Other rows illustrate the accuracies with
adversarial in-context demos. The details of the baselines in green color are present in Section B of the Appendix.
Specifically, we employ TextAttack (TA) (Morris et al., 2020) following the attack in (Wang et al., 2023c) as the
most closely related baseline for our attack (GGI). The accuracies of positive (P) and negative (N) sentiments are
reported separately to highlight the effectiveness of our hijacking attack.

Model Method
SST-2 RT

2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N

GPT2-XL

Clean 94.7 52.2 88.6 49.4 91.6 69.0 93.3 54.7 88.6 76.9 90.2 80.5
Square 99.4 2.0 99.8 4.2 99.4 11.0 99.8 1.5 100 4.1 99.3 7.5
Greedy 100 10.8 100 6.2 100 0.2 100 5.3 100 2.8 100 0.0

TA 95.0 2.2 99.8 17.8 99.6 21.6 95.9 8.1 96.3 41.3 96.4 47.3
GGI 100 1.2 100 0.0 100 0.0 100 2.8 100 0.0 100 0.0

OPT-6.7b

Clean 69.4 87.8 70.2 93.8 77.8 93.0 84.4 91.4 84.4 93.1 88.6 92.8
Square 99.2 31.4 93.8 72.2 99.6 29.0 98.1 42.2 97.0 68.7 99.4 33.2
Greedy 100 25.0 97.8 39.0 100 2.0 99.4 31.7 99.8 4.7 100 0.8

TA 94.8 80.8 54.8 98.6 91.6 89.4 92.5 86.1 77.6 96.4 94.0 86.3
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2

Vicuna-7b

Clean 91.4 81.2 88.2 81.4 94.6 82.6 84.8 78.4 85.9 80.5 90.4 85.4
Square 89.2 84.4 86.6 85.8 94.0 83.8 85.9 85.4 84.6 88.6 91.6 88.4
Greedy 93.0 83.4 88.4 87.0 94.6 80.0 91.2 82.8 86.9 88.7 91.9 85.9

TA 87.0 85.2 76.2 88.2 94.2 80.6 83.3 84.2 79.6 88.6 92.1 84.4
GGI 90.6 42.2 96.4 23.2 100 0.8 87.6 36.4 95.1 35.7 100 0.2

LLaMA-7b

Clean 81.4 86.3 74.4 91.9 82.7 92.4 86.0 83.6 81.9 91.6 89.3 97.8
Square 86.8 80.0 96.8 58.6 98.0 56.4 86.9 57.4 97.4 50.1 97.8 57.4
Greedy 95.0 47.6 100 0.0 100 0.0 88.9 2.8 99.8 0.0 100 0.0

TA 87.2 77.8 93.8 69.0 99.8 8.8 83.1 57.4 94.2 68.9 99.6 3.80
GGI 100 0.4 100 0.0 100 0.0 96.8 0.0 100 0.0 100 0.0

LLaMA-13b

Clean 97.8 76.4 95.6 88.0 95.8 90.0 94.2 84.8 92.7 92.1 91.4 91.9
Square 98.4 72.8 98.2 78.4 97.8 85.4 93.6 87.4 94.4 84.1 94.2 87.6
Greedy 98.0 41.4 100 3.0 100 0.0 55.9 11.3 92.9 0.0 100 0.4

TA 98.2 72.2 92.8 92.8 97.5 87.6 94.8 81.8 88.0 94.0 92.5 89.3
GGI 99.2 37.8 100 7.2 100 0.0 99.1 3.8 86.1 3.6 100 0.0

Table 2: The performance of AG’s News topic generation task with and without attacks on ICL. The clean and attack
accuracies are reported separately for the four topics. These results highlight the effectiveness of our hijacking
attacks to induce LLMs to generate the target token, i.e., “tech”, regardless of the query content.

Model Method 4-shots 8-shots
word sports business tech word sports business tech

GPT2-XL

Clean 48.5 87.0 64.9 71.9 48.2 50.6 71.0 83.6
Square 2.0 66.0 26.8 96.0 19.6 65.6 28.0 97.2
Greedy 12.8 60.4 29.2 96.4 8.0 21.2 10.0 98.8

TA 54.8 84.0 73.2 82.4 82.0 82.4 91.2 57.6
GGI 0.0 2.0 0.4 100 0.0 0.0 0.0 100

LLaMA-7b

Clean 68.2 96.8 66.6 49.0 88.6 97.4 78.2 61.0
Square 78.4 98.0 76.0 36.8 94.4 98.0 60.0 57.6
Greedy 69.6 98.8 75.2 51.6 89.6 100 68.4 73.6

TA 42.4 94.8 67.6 32.4 95.2 96.0 39.2 24.8
GGI 0.0 20.0 0.00 98.0 29.6 56.0 0.0 100

eration of positive (P) and negative (N) sentiments532

in the SST-2 and RT datasets. All the tested LLMs533

perform well, achieving an average accuracy of534

83.6% on SST-2 and 86.7% on RT across various535

in-context few-shot settings. Table 2 indicates that536

LLMs with ICL also perform well in the context537

of multi-class generation on AG’s News dataset.538

The average accuracies stand at 69.1% for 4-shot539

settings and 72.3% for 8-shot settings across vari-540

ous LLMs. Additionally, LLMs with ICL exhibit541

improved performance with an increased number542

of in-context demos, particularly achieving best543

results with 8-shot settings.544

7.2 ICL Performance with Hijacking Attack545

While LLMs utilizing ICL show strong perfor-546

mance with clean in-context demos, Tables 1 and 2547

reveal that their effectiveness is significantly under- 548

mined by hijacking attacks. These attacks manipu- 549

late the models to produce target outputs by append- 550

ing adversarial suffixes to the in-context demos. 551

The baseline attacks successfully induce LLMs to 552

generate the targeted positive sentiment through 553

a few shots of adversarially perturbed demos, as 554

shown in Table 1. As a result, the positive test 555

samples achieve a predominantly higher accuracy 556

than the negative ones. Furthermore, our GGI at- 557

tack more effectively hijacks LLMs to generate the 558

target output, i.e., exclusively positive sentiment 559

token, regardless of the test query content. The pos- 560

itive test samples achieve almost 100% accuracy. 561

On the contrary, the negative ones get nearly 0% 562

accuracy on most settings, as shown in 1. For the 563
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Table 3: The performance of the defenses using ASRs across various LLMs and datasets. Adv denotes our hijacking
attack using the adversarial demos. Adv+Clean represents the proposed defense method, leveraging extra clean
demos with adversarial demos. The numbers within the parenthesis indicate the reduction in the ASRs after defense.

Model
SST-2 RT AG’s News

Adv Adv+Clean Adv Adv+Clean Adv Adv+Clean
Preceding Proceeding Preceding Proceeding Preceding Proceeding

GPT2-XL 100 100 (-0) 99.6 (-0.4) 100 100 (-0) 97.4 (-2.6) 99.1 75.5 (-23.6) 80.5 (-18.6)
OPT-6.7b 98.2 44.9 (-53.3) 52.5 (-45.7) 99.9 50.2 (-49.7) 57.8 (-42.1) 65.6 23.5 (-42.1) 22.5 (-43.1)

LLaMA-7b 100 49.1 (-50.9) 98.3 (-1.7) 100 53.1 (-46.9) 99.8 (-0.2) 82.8 42.2 (-40.6) 88.2 (+5.4)

more complex multi-class AG’s News topic genera-564

tion task, the effectiveness of those baseline attacks565

decreases significantly. Especially the TA method566

is not successful in hijacking LLMs to generate the567

target token, i.e., ‘tech’. Only our GGI attack suc-568

cessfully hijacks the LLMs to generate “tech” by569

appending the adversarial suffixes to the in-context570

demos, as shown in Table 2.571

7.3 Defense Method Performance572

Table 3 presents ASRs of our hijacking attack573

when countered with the proposed defense mech-574

anism that uses additional clean demos. The575

defense method is tested in two different set-576

tings. In the Preceding setting, clean demos are577

placed before the adversarial demos in the se-578

quence p̃ = [I; C̃;C ′;S(xQ, _)]. Conversely, in579

the Proceeding setting, clean demos are added af-580

ter the adversarial demos, forming the sequence581

p̃ = [I;C ′; C̃;S(xQ, _)].582

The results show a significant decrease in ASRs583

of our hijacking attack, affirming the effectiveness584

of the defense method. Notably, the Preceding set-585

ting results in considerably lower ASRs compared586

to the Proceeding setting. This relates to the mech-587

anism through which our hijacking attack induces588

LLMs to generate target outputs. As depicted in589

Figure 6b, the adversarial suffixes divert the LLMs’590

attention away from the original query. Further-591

more, Figure 7 of the Appendix illustrates that the592

LLM primarily focuses on the initial segments of593

the demos, which are indicated by a darker green594

color. Therefore, in the Preceding method, the595

model shifts its attention to these first few demos,596

which contain additional clean samples before the597

adversarial demos. These clean samples effectively598

re-calibrate and rectify the model’s behavior, re-599

sulting in a larger reduction in ASRs, as shown in600

Table 3. In contrast, the first few demos remain601

adversarial in the Proceeding method, rendering602

it ineffective in defending against the adversarial603

demonstration attack.604

Furthermore, the results indicate that our pro-605

posed defense methods are ineffective on small-606

sized LLMs, such as the GPT2-XL used in our 607

experiments. We hypothesize that this is due to 608

their limited emergent abilities. In other words, 609

employing additional demos during ICL cannot 610

correct the behavior of small-sized LLMs under 611

hijacking attacks. 612

7.4 Stealthiness of GGI 613

The perplexity scores shown in Figure 2 for both 614

the baseline and our attacks exhibit minor (non- 615

significant, P-value of 0.329 ≫ 0.05 cutoff is re- 616

ported from one-way ANOVA test) increases com- 617

pared to the score of the clean samples, highlight- 618

ing the stealth of our proposed word-level adver- 619

sarial attacks. Specifically, the adversarial triggers 620

learned from our GGI algorithm are imperceptible 621

and maintain the semantic integrity and coherence 622

of the original content, as shown in the examples 623

of Figures 9 and 10 in the Appendix.

Clean Greedy Square Ours
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10

15

20

25

Pe
rp

le
xi
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20.8

23.05 22.32
24.5

P-Value=0.329

Figure 2: Average perplexity scores reported for
LLaMA2-7b on 100 random samples under eight-shots
setting from SST-2 derived from three separate runs un-
der various attacks. 624

8 Conclusion 625

This work further reveals the vulnerability of ICL 626

via crafted hijacking attacks. By appending im- 627

perceptible adversarial suffixes to the in-context 628

demos using a greedy gradient-based algorithm, 629

our attack effectively hijacks the LLMs to generate 630

the unwanted targets by diverting LLMs’ attention 631

from the relevant context to the adversarial suf- 632

fixes. We will continue on studying novel attack 633

and defense techniques to enhance ICL security. 634
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9 Limitations and Risks635

This work uncovers a potential vulnerability of636

LLMs during in-context learning. By inserting ad-637

versarial tokens, which our algorithm has learned,638

into in-context demos, we can make the LLM pro-639

duce undesired target outputs without the need for640

a trigger in the query. Our evaluation focuses on641

the attack success rate, particularly in the context642

of sentiment analysis and topic generation tasks.643

Our threat model, which is based on single token644

generation, has proven to be highly effective while645

maintaining content integrity. This efficiency elim-646

inates the necessity for models that generate mul-647

tiple tokens, which could compromise the content648

integrity. However, it is possible that our attack649

may be more effective for generation tasks across650

the LLMs that are similar in sizes (or smaller) and651

training approaches. Further studies are warranted652

to extend our approach to a wide range of down-653

stream tasks and LLMs.654

This work represents a purple teaming effort655

with the goal to discover the vulnerabilities of LLM656

during in-context learning and defend against the657

attacks. It offers a unified platform that enables658

both the red team and blue team to collaborate659

more effectively. Moreover, it facilitates a seam-660

less knowledge transfer between the teams. As661

such, it will not pose risks for natural users nor662

LLM vendors. Rather, our findings can be utilized663

by these stakeholders to guard against malicious664

uses and enhance the robustness of LLMs to such665

threats.666
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A Experiments Details1024

We show the dataset statistics in Table 4. Specifi-1025

cally for the SST-2 and RT sentiment analysis tasks,1026

we employ only 2 training queries to train adversar-1027

ial suffixes using our GGI method. We use 4 train-1028

ing queries for the more complex multi-class topic1029

generation tasks, i.e., AG’s News. We randomly1030

select 1,000 samples as user queries for testing.1031

Table 4: Statistics of the training queries used in Algo-
rithm 1 and test queries for the three datasets.

Datasets Training Queries Test Queries
SST-2 2 1,000

RT 2 1,000
AG’s News 4 1,000

B Baseline Attacks1032

B.1 Greedy Search1033

We consider a heuristics-based perturbation strat-1034

egy, which conducts a greedy search over the vo-1035

cabulary to select tokens, maximizing the reduction1036

in the adversarial loss from Eq. 3. Specifically, it1037

iteratively picks the token that decreases the loss1038

the most at each step.1039

B.2 Square Attack1040

The square attack (Andriushchenko et al., 2020)1041

is an iterative algorithm for optimizing high-1042

dimensional black-box functions using only func-1043

tion evaluations. To find an input x+ δ in the demo1044

set C that minimizes the loss in Eq. 3, the square1045

attack has three steps: Step 1: Select a subset of1046

inputs to update; Step 2: Sample candidate values1047

to substitute for those inputs; Step 3: Update x+ δ1048

with the candidate values that achieve the lowest1049

loss. The square attack can optimize the hijacking1050

attack objective function without requiring gradient1051

information by iteratively selecting and updating a1052

subset of inputs.1053

B.3 Text Attack1054

We also utilize TextAttack (TA) (Morris et al.,1055

2020), adopting a similar approach to the attack1056

described by (Wang et al., 2023c), which serves as1057

the most closely related baseline for our hijacking1058

attack. Different from our word-level attack, the1059

use of TA at the character level includes minor mod-1060

ifications to some words in the in-context demos1061

and simply flips the labels of user queries, as de-1062

picted in Figure 1. In our experiments, we employ a1063

transformation where characters are swapped with1064

those on adjacent QWERTY keyboard keys, mim- 1065

icking errors typical of fast typing, as done in Tex- 1066

tAttack (Morris et al., 2020). Specifically, we use 1067

the adversarial examples for the same demos in our 1068

hijacking attack during the application of TA. 1069

C Attack Performance 1070

In addition to the attack accuracy performance pro- 1071

vided in Table 1 and 2, we present ASRs for vari- 1072

ous attacks across the three datasets. As outlined 1073

in Table 5, our GGI attack achieves the highest 1074

ASRs, substantiating its highest effectiveness in 1075

hijacking the LLM to generate the targeted output. 1076

In sentiment analysis tasks like SST-2 and RT, all 1077

attacks exhibit high ASRs. While for the more com- 1078

plex multi-class topic generation task, such as AG’s 1079

News, only our GGI attack achieves high ASRs. 1080

This further emphasizes the potential effectiveness 1081

of our hijacking attack on more complex generative 1082

tasks, such as question answering tasks. 1083

D Impact of Number of In-context Demos 1084

We extend our investigation to explore the impact 1085

of in-context demos on adversarial ICL attacks. 1086

We observe a substantial impact on the attack per- 1087

formance in ICL based on the number of demos 1088

employed. As indicated in Tables 1 and 2, an in- 1089

crease in the number of in-context demos correlates 1090

with a higher susceptibility of the attack to hijack 1091

LLMs, resulting in the generation of target outputs 1092

with greater ease. Specifically, in the 8-shot setting, 1093

LLMs consistently exhibit significantly lower accu- 1094

racies in negative sentiment generation, demonstrat- 1095

ing a higher rate of successful attacks compared 1096

to the 2-shot and 4-shot settings. Moreover, the 1097

attacks demonstrate higher ASRs as the number of 1098

in-context demos used in ICL increases, as shown 1099

in Table 5. 1100

E Impact of Sizes of LLMs 1101

Results in Table 5 reveal that the ASRs on GPT2- 1102

XL are significantly higher than those on LLaMA- 1103

7b, suggesting that hijacking the larger LLM is 1104

more challenging. Here, we continue examining 1105

how the size of LLMs influences the performance 1106

of hijacking attacks. Table 6 illustrates the perfor- 1107

mance of sentiment analysis tasks with and with- 1108

out attacks on ICL using different sizes of OPT, 1109

i.e., OPT-2.7b and OPT-6.7b. These results further 1110

highlight that the smaller LLM, i.e., OPT-2.7b, is 1111
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Table 5: ASR among different datasets, models, and attack methods. Best scores are in bold.

Model Method SST-2 RT AG’s News
2-shots 4-shots 8-shots 2-shots 4-shots 8-shots 4-shots 8-shots

GPT2-XL

Square 98.0 97.8 94.2 98.7 97.9 95.9 64.9 65.2
Greedy 94.6 96.9 99.9 97.4 98.6 100 68.3 87.3

TA 89.6 91.0 89.0 85.9 77.5 74.6 15.1 15.9
GGI 99.4 100 100 98.6 100 100 99.1 100

LLaMA-7b

Square 48.1 65.9 70.6 48.4 69.9 69.7 10.3 15.9
Greedy 64.2 100 100 64.3 99.8 100 14.3 22.1

TA 48.2 59.5 95.4 45.8 58.0 97.8 9.3 6.8
GGI 97.7 100 100 90.7 99.9 100 82.8 77.9

Table 6: The performance of sentiment analysis task with and without attacks on ICL using different sizes of OPT.

Model Method
SST-2 RT

2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N

OPT-2.7b

Clean 98.5 38.6 85.6 62.8 58.4 76.4 98.1 36.6 81.2 68.4 57.8 89.6
Square 100 0.0 100 0.0 100 1.8 100 1.3 100 0.0 99.6 7.5
Greedy 100 0.0 100 0.0 100 0.0 100 0.4 100 0.2 100 0.0

TA 99.6 13.8 99.8 26.8 99.0 7.2 97.6 52.9 97.2 59.7 99.4 6.8
GGI 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0

OPT-6.7b

Clean 69.4 87.8 70.2 93.8 77.8 93.0 84.4 91.4 84.4 93.1 88.6 92.8
Square 99.2 31.4 93.8 72.2 99.6 29.0 98.1 42.2 97.0 68.7 99.4 33.2
Greedy 100 25.0 97.8 39.0 100 2.0 99.4 31.7 99.8 4.7 100 0.8

TA 94.8 80.8 54.8 98.6 91.6 89.4 92.5 86.1 77.6 96.4 94.0 86.3
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2

much easier to be attacked and induced to gener-1112

ate unwanted target outputs, such as ‘positive’, in1113

the sentiment analysis tasks. Figure 3 illustrates1114

our proposed hijacking attack performance using1115

ASR on two OPT models of varying sizes in AG’s1116

News topic generation task. It clearly shows that1117

attacking the smaller OPT2-2.7b model achieves a1118

much higher ASR in both settings, confirming our1119

finding and others (Wang et al., 2023a) that larger1120

models are more resistant to adversarial attacks.1121

4-shots 8-shots
0
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R

OPT-2.7b
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Figure 3: Impact of LLM size on adversarial robustness.
ASRs on the AG’s News topic generation task using
different sizes of OPT models, i.e., OPT-2.7b and OPT-
6.7b, with two different few-shot settings.

F Comparison of Hijacking Attacks1122

In contrast to baseline hijacking attacks, i.e.,1123

Square and Greedy, our GGI exhibits superior per-1124

formance in generating targeted outputs, as evi-1125

denced by the results in Table 1 and 2, along with 1126

the highest ASRs highlighted in Table 5. This un- 1127

derscores the effectiveness of GGI as a more potent 1128

method of attack. 1129

To further illustrate the efficiency of our GGI, 1130

we present the objective function values of Eq. 3 1131

in Figure 4 for various attack methods. Since our 1132

GGI attack enjoys the advantages of both greedy 1133

and gradient-based search strategies as depicted 1134

in Algorithm 1, the values of the object function 1135

decrease steadily and rapidly, ultimately reaching 1136

the minimum loss value. On the other hand, both 1137

the Square and Greedy attacks use a greedy search 1138

strategy, with fluctuating results that increase and 1139

decrease the loss value, unable to converge to the 1140

minimum loss value corresponding to the optimal 1141

adversarial suffixes. 1142

G Diverting LLM Attention 1143

Attempting to interpret the possible mechanism of 1144

our hijacking attacks, we show an illustrative exam- 1145

ple using attention weights from LLaMA-7b on the 1146

SST2 task with both clean and perturbed prompts. 1147

As depicted in Figure 6b, the model’s attention for 1148

generating the sentiment token of the test query has 1149

been diverted towards the adversarial suffix tokens 1150

‘NULL’ and ‘Remove’. Compared to the attention 1151

maps using the clean prompt (Figure 6a), these two 1152

suffixes attain the largest attention weights repre- 1153

sented by the darkest green color. This example 1154

illuminates a possible mechanism for why our hi- 1155

jacking attack can induce the LLM to generate the 1156
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Figure 4: An illustration of the learning objective values
during iterations among different attacks on SST2 using
GPT2-XL with 8-shots.
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Figure 5: Average perplexity scores reported for
LLaMA2-7b on 100 random samples under eight-shots
setting from RT derived from three separate runs under
various attacks. P-value of 0.993 ≫ 0.05 cutoff indi-
cates non-significant difference in the scores.

targeted outputs - the adversarial suffixes divert the1157

LLMs’ attention away from the original query.1158

Additionally, Figure 7 illustrates the attention1159

distribution for the perturbed prompts after apply-1160

ing the Preceding and Proceeding defense meth-1161

ods. Notably, in the demos, the model primarily1162

focuses on the front segments of demos, which1163

are indicated by a darker green color. Therefore,1164

the model converts its attention to the front seg-1165

ments, which are the extra clean samples, in the1166

Preceding method. These clean samples effectively1167

re-calibrate and rectify the model’s behavior, lead-1168

ing to a significant reduction in ASRs, as shown1169

in Table 3. In contrast, the first few demos remain1170

adversarial in the Proceeding method, rendering1171

it ineffective in defending against the adversarial1172

demonstration attack, as shown in Table 3.1173

Overall, these attention maps visualize how the1174

adversarial suffixes distract LLMs from focusing1175

on the relevant context to generate the unwanted 1176

target output and how our proposed defense meth- 1177

ods rectify the behavior of LLMs given the extra 1178

clean demos. 1179

H More Results 1180

Figure 8 illustrates the prompt template employed 1181

in ICL for various tasks. For the SST2/RT dataset, 1182

the template is structured to include an instruction, 1183

a demo set composed of reviews and sentiment 1184

labels, and the user query. Similarly, the AG’s 1185

News dataset template comprises the instruction, 1186

the demo set with articles and topic labels, and the 1187

user query. Additionally, examples are provided in 1188

Figure 9 and Figure 10 to enhance understanding. 1189
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(a)

(b)

Figure 6: Attentions maps generated using (a) clean and (b) adversarial perturbed prompts. In (b), the adversarial
suffix tokens, i.e., ‘NULL’ and ‘Remove’, are underlined in red. Darker green colors represent larger attention
weights. The prompts are tokenized to mimic the actual inputs to the LLMs. Best viewed in color.

(a)

(b)

Figure 7: Attentions maps generated using (a) Preceding and (b) Proceeding defense methods. Best viewed in color.
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Algorithm 1: Greedy Gradient-guided Injection (GGI)
Input : Model: M, Iterations: T , Batch Size: b, Instruction: I , Demos: C, Query: (xQ, yQ)

Target: yT
Initialization: p′0 = [I; [S(x1 + δ1, y1); · · · ; S(xN + δN , yN )]; S(xQ, yT )]
repeat

for i ∈ N do
[δi1 ; ...; δik ] = Top−k(−∇p′L(M(ŷ|p′t−1), yT )) /* Compute top-k substitutions */

K = {[δi1 ; ...; δik ] | i = 1, ..., N}
B = {(δi1, . . . , δib) | (δi1, . . . , δik) ∈ K} /* Make a subset of substitution */

for i ∈ N do
δ⋆i = δij , where j = argminδibL(M(ŷ|p′t−1), yT ) /* Compute best replacement */

∆ = [δ⋆1 ; ...; δ
⋆
N ]

p′t = [I; [S(x1 + δ⋆1 , y1); · · · ; S(xN + δ⋆N , yN )]; S(xQ, yT )] /* Update prompt */

until T times;
Output :Optimized prompt suffixes [δ⋆1 , · · · , δ⋆N ]

Figure 8: Template designs for all the datasets used in our experiments. We also provide examples for these datasets
to ensure a better understanding.
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Figure 9: Visualization of an adversarial example generated by baseline and our attacks on SST-2 via attacking
LLaMA-7b.

Figure 10: Visualization of an adversarial example generated by baseline and our attacks on AG’s News via attacking
LLaMA-7b.
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