
Meta-Analysis of Randomized Experiments with
Applications to Heavy-Tailed Response Data

Nilesh Tripuraneni∗
University of California, Berkeley

Dominique Perrault-Joncas †

Amazon, Seattle
Dhruv Madeka
Amazon, NYC

Dean Foster
Amazon, NYC

Michael I. Jordan
University of California, Berkeley, Amazon

Abstract

A central obstacle in the objective assessment of treatment effect (TE) estimators
in randomized control trials (RCTs) is the lack of ground truth (or validation set)
to test their performance. In this paper, we propose a novel cross-validation-like
methodology to address this challenge. The key insight of our procedure is that the
noisy (but unbiased) difference-of-means estimate can be used as a ground truth
“label" on a portion of the RCT, to test the performance of an estimator trained on the
other portion. We combine this insight with an aggregation scheme, which borrows
statistical strength across a large collection of RCTs, to present an end-to-end
methodology for judging an estimator’s ability to recover the underlying treatment
effect. We evaluate our methodology across 699 RCTs implemented in the Amazon
supply chain. In this heavy-tailed setting, our methodology suggests that procedures
that aggressively downweight or truncate large values, while introducing bias,
lower the variance enough to ensure that the treatment effect is more accurately
estimated.

1 Introduction

Causal inference is widely used across numerous disciplines such as medicine, technology, and
economics to inform important downstream decisions Hernan and Robins [2020]. Inferring causal
relationships between an intervention and outcome requires estimating the treatment effect (TE):
the difference between what happened given an intervention and what would have happened in its
absence. A central difficulty is that these two events are never jointly observed Rubin [2005]. TE
estimation leverages randomized controlled trials (RCTs)—which randomly assign the products of
interest into either the treatment or control groups—to counter selection biases and allow causal
effects to be estimated via a simple differences-in-means estimate.

Indeed, the simplest “model-free" unbiased estimator of a treatment effect is the difference-in-means
(DM) estimate Rubin [2005]. Such an estimator may, however, suffer from high variance in real-world
scenarios which often involve heterogeneous, high-dimensional and heavy-tailed data3. A plethora of
additional information is thus often used to improve TE estimates relative to this simple baseline. For
example, pretreatment regression adjustments can significantly reduce the variance of a treatment
effect estimate while adding little additional bias Angrist and Pischke [2008], Imbens and Rubin
[2015]. Similarly, a host of other regularization and robustness modifications can be used to trade off
bias and variance.

∗Work done while at Amazon.
†Correspondence to joncas [at] amazon dot com.
3Such heavy-tailed data is commonplace in the large-scale RCTs which motivate our study.
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As the complexity of such estimators increases, so do the assumptions (and work) needed to establish
their statistical validity. One particular setting in which this becomes easier, and which we argue
arises in many practical applications,4 is when large RCTs can be run on the same population. This
setting provides an opportunity to get at the fundamental attributes of interest—the mean-squared
error (MSE) of a given treatment effect estimator. Our simple insight is that the DM estimator can
function as a noisy, but unbiased “label" for the treatment effect. Noisy estimates for a TE estimator
performance can then be computed by comparing this estimator to the (unbiased) difference-in-means
estimator via a simple, held-out validation estimate (see (4)). Our goal in this work is to judge
the performance of TE estimators by pooling noisy (but unbiased) estimates of their performance
across many RCTs. Such a procedure is desirable because it targets the actual quantity of interest, the
estimator MSE, in an assumption/estimator-agnostic fashion. The primary contributions of this work
are as follows:

• We process a corpus of 699 genuine RCTs implemented at Amazon across several years and we
highlight the heavy-tailed nature of the response and covariate variables. The unique challenges
associated with heavy-tailed estimation require careful navigation of the bias-variance tradeoff
which motivates the development of an objective selection procedure for TE estimation.

• We present a selection scheme which borrows statistical strength across the corpus of RCTs in
order to judge the relative performance of several commonly used TE estimators.

• We use this framework to argue that in the presence of heavy-tailed data—that often arise in
large-scale technology and logistics applications—aggressive downweighting and truncation
procedures are needed to control variance.

1.1 Related Work

The literature on causal inference and treatment effect estimation is vast and a comprehensive review
is beyond the scope of this paper. Hernan and Robins [2020], Imbens and Rubin [2015], Angrist and
Pischke [2008], Hadad [2020] and Wager [2020] provide modern perspectives on both the theory and
practice of treatment effect estimation. Cross-validation (CV) also has been (and remains) a major
subject of statistical inquiry as it is amongst the most widely used tools to assess the quality of an
estimator and perform model selection Bayle et al. [2020], Lei [2020], Stone [1974], Geisser [1975].

Relatively little work has been done in the intersection of these two domains. Part of the difficulty
stems from the fact that the standard procedure of CV breaks down for treatment effect estimation
since the true treatment effect is never observed in data. Athey and Imbens [2016] and Powers et al.
[2018] do provide model-specific selection methods in the context of treatment effect estimation.
However, these works do not apply to arbitrary TE estimators. Closest to our work is that of Schuler
et al. [2018], who use a data-splitting methodology to evaluate several risk functions to assess
heterogeneous treatment effect estimators. This differs from our work in two principal ways. First,
our framework is targets the problem of average treatment effect estimation—in many scenarios that
we are interested in, treatments cannot be individualized and must be applied in an all-or-nothing
fashion to the entire population. Our statistical scheme also differs since we provide a provably
unbiased estimate5 of the mean-squared error of a TE estimator, and we introduce an aggregation
scheme to borrow statistical strength across different RCTs to compare estimators. Additionally, our
work uses a large corpus of 699 actual randomized RCTs conducted at Amazon over the course of
several years as our test-bed for estimator selection in contrast to synthetic data simulations.

One of our main motivations is to highlight the unique challenges associated with heavy-tailed data
often present in applications arising at large-scale technology and logistics companies. Semipara-
metric TE estimators for heavy-tailed datasets inspired by similar applications have been explored
Fithian and Wager [2014] and Taddy et al. [2016]. However, these works do not address the problem
of model selection which is our central focus. Specifically, we focus on methods to select among
simple estimators (with few to no tuning parameters) that are widely used in practice.

4Including AB testing of forecasting model improvements, website changes, supply-chain modifications, or a
number of other interventions.

5Leveraging the unbiased nature of the DM estimator.
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1.2 Preliminaries

We work within the Rubin potential outcomes model Rubin [2005] where we imagine we are given a
domain of objects Y and a target variable of interest Y (·) given a possible intervention. For a fixed
intervention I , our goal is to estimate the population average treatment effect (ATE):

∆ = E[Y (1)− Y (0)], (1)

where Y (1) corresponds to the value of an experimental unit—in our case a product in the supply
chain—given the treatment and Y (0) its unobserved counterfactual control (and vice versa). In
general, we also allow the existence of other covariates in our model X ∈ X . In a given RCT, we
first randomly sample an equal number of products into a treatment group, T , and a control group C.
We further let the (Xi, Ti, Yi) be the covariates, treatment dummy, and value of the ith product. By a
standard argument, using the assumption of randomization (independence of {Yi(1), Yi(0)} and Ti),
the differences-in-means estimator,

∆̂DM =
1

|T |
∑
i∈T

Yi(1)−
1

|C|
∑
i∈C

Yi(0), (2)

provides an unbiased estimate of ∆ [Rubin, 2005]. A primary benefit of the DM estimator is that it
is “model-free." That is, it makes no explicit assumptions on the data-generation process for Yi as a
function of the other covariates.

1.3 Dataset Description

We use 699 RCTs that were run at Amazon since 2017 on a population of products. The interventions
in each RCT consist of various modifications and (potential) improvements to the way in which
products are processed through the supply chain. The RCTs are most often constructed with 50% of
products in an RCT randomly placed in the treatment group and 50% in the control group, though
some are not evenly balanced. The RCTs vary in size from tens of thousands of products to those with
several millions. Each RCT is run over the course of approximately 27 weeks with the intervention
instituted at a trigger date at 10 weeks in the treatment group.

At each week in an RCT, the response variable generated from each product is computed. Each RCT
was preprocessed to contain the averaged pretreatment response (denoted X), a strictly nonnegative
averaged pretreatment auxiliary covariate (denoted D), averaged posttreatment response (denoted Y ),
and binary treatment indicator (denoted T ) for each product. Auxiliary covariates (such as D) often
arise in naturally occurring applications where it is feasible to forecast a related quantity to Y (such
as the number of expected products needed in a time period to satisfy user demand).

2 Heavy Tails and Hard Estimation Case Study
The difficulties associated with treatment effect estimation of an intervention in large-scale commerce
RCT datasets are many fold. The most salient difficulty for our consideration is that the response
distribution over the range of products has a heavy tail. Similar heavy-tailed distributions are known
to exist in user revenue distributions as well as user engagement metrics at large-scale technology
companies [Fithian and Wager, 2014, Taddy et al., 2016]. Estimation in this setting is difficult and
requires balancing several considerations when considering the pros and cons of various estimation
techniques. Our exploration of these issues serves a dual purpose: (1) to highlight the ubiquitous
occurrence of such heavy tails in naturally occurring data, and (2) to motivate the need for a model
selection procedure to navigate the bias-variance tradeoff.

Let us investigate the data inside a single RCT to assist in further making this point. The RCT under
consideration consists of millions of distinct products. This RCT (a representative choice) displays
significant heavy-tail behavior, as shown in Fig. 2.

We implement the Hill estimator to obtain an estimate of the power-law behavior η in the right tail
distribution of ∼ y−η across all the RCTs under consideration. The Hill cutoff hyperparameter is
chosen to discard points near the center of the distribution (i.e., near zero) and allows the formulation
of a bias-variance tradeoff [Drees et al., 2000]. We avoid a more sophisticated data-driven choice
of this cutoff since the precise Hill value is not of particular interest in our setting.6. Rather, it is

6Indeed we have tens of thousands of points in all RCTs, so small-sample difficulties associated with “Hill
horror plots" seem not to arise.
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Figure 1: Gini plot of a single RCT showing
the cumulative share of demand vs. product
population share ordered by descending pop-
ularity. Demand is heavy-tailed with the top
20% most popular products accounting for
nearly 80% of the demand share.
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Figure 2: Hill plot of the right tail of the re-
sponse variable distribution in a single RCT
versus the Hill cutoff hyperparameter. The
Hill values are an estimate of the power η in
the asymptotic tail behavior of the response
distribution variable, Y , p(y) ∼ y−η .

apparent the power η can be conservatively judged to be between 1 − 3 in Fig. 2. Analyzing the
response distribution across the entire corpus of 699 RCTs and choosing the Hill cutoff parameter at
the 5th percentile shows that the average decay exponent is ≈ 2.32 with a standard deviation of 0.79,
and median of 2.15.

The difficulties seen in this case study reinforce the conclusion that handling the heavy tails inherent in
our data likely requires more sophisticated (regularized) estimators than the DM estimator. Ultimately
this boils down to balancing the tradeoff between bias and variance in estimation. Navigating this
bias-variance tradeoff is one of the primary motivations for our aggregation methodology for TE
estimator selection.

3 Validation Procedure for Treatment Effect Estimators

In this section, we present the key idea behind the validation procedure we use to assess the quality of
an arbitrary treatment effect estimator, ∆̂E(·, ·), in the RCT denoted j. Let ∆ denote the population
ATE shown in (1). Given the groups T and C, we first randomly partition them into disjoint groups
T1, T2 and C1, C2. Now, consider the (potentially complicated) treatment effect estimator ∆̂E(T1, C1)
trained on the first fold of data. We can obtain an estimate of its performance by how well it targets
the difference-of-means estimator computed on the hold-out set ∆̂DM (T2, C2):

M̂SEE,j((T1, C1), (T2, C2)) = (∆̂E(T1, C1)− ∆̂DM (T2, C2))2. (3)

A simple argument shows that this quantity can be used to compare the relative MSE of two different
estimators. Given two different treatment effect estimators A and B in the aforementioned setting,
we have:

E[(∆̂A(T1, C1)− ∆̂DM (T2, C2))2] ≤ E[(∆̂B(T1, C1)− ∆̂DM (T2, C2))2] =⇒ (4)

E[(∆̂A(T1, C1)−∆)2] ≤ E[(∆̂B(T1, C1)−∆)2].

See Appendix A for a proof. This result motivates using the held-out sample error as a metric to
assess the relative merit of two estimators ∆̂A and ∆̂B . However, simply using this estimator on a
single RCT provides a (potentially very) noisy estimate of the population error, not the population
error itself. Indeed, if the estimator ∆̂DM (T2, C2) is sufficiently good to estimate ∆, why even bother
to use another estimator? Said another way, the error estimate in (3) will always suffer at least the
variance of the unbiased estimate (2). In practice we use a cross-validated version of (3) to reduce the
subsampling variance due to the random train/test splits (see Appendix D). This procedure will not
decrease the variance of the DM estimator arising from the underlying heavy-tailed data however.

Our proposal for resolving this conundrum is to note that in many situations we have access to
multiple RCTs from the same underlying population or process given different interventions. Thus,
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aggregating the set of error estimates

Â = {M̂SEA,1((T1, C1), (T2, C2)), . . . , ...M̂SEA,J((T1, C1), (T2, C2))} (5)
and comparing to

B̂ = {M̂SEB,1((T1, C1), (T2, C2)), . . . , ..., M̂SEB,J((T1, C1), (T2, C2))}, (6)
for various interventions J = {1, . . . , J}, can allow us to pool information across RCTs. We sidestep
the methodological complexities of performing this aggregation and instead turn to an investigation
of simple, practically-motivated schemes.

3.1 An Aggregation Scheme

Aggregating the mean-squared errors requires handling a practical consideration. Since the RCTs
and interventions across RCTs themselves may be different, the overall scales of the MSEs between
different RCTs may be different. As an example, consider a corpus of two RCTs on which estimator
A obtain errors {1, 10} and estimator B obtains errors {2, 9}. Simply averaging the errors or doing a
rank-based test of performance would indicate both estimators are equivalent. However, intuitively
we believe a relative improvement of estimator B from 10 to 9 on the second RCT does not outweigh
the degradation from 1 to 2 on the first RCT.

This observation motivates the definition of a normalized score to compare the estimators A vs B, as
a function of the vectors of their noisy errors.7 For each intervention j ∈ {1, ..., J} we define the
normalized score:

Sj(Âj , B̂j) =
B̂j − Âj

B̂j + Âj

, (7)

for Âj ∈ Â and B̂j ∈ B̂. Where Â and B̂ are defined according to (5) and (6) respectively.

This normalized score vector (which we denote by Ŝ(Â, B̂)) to bound them in the range [−1, 1].
Each element of this vector is a noisy score of estimator A’s performance relative to B on one RCT
in the corpus.8 If the estimator has many elements that are positive, it suggests that estimator B has
larger errors than estimator A. In this case, we would expect estimator A to be better than estimator
B.

To formalize this intuition we use a two-sided one-sample t-test applied to this normalized score
vector to test the null that the “population mean" of the Ŝ “distribution" is 0, i.e., that the performance
of estimator A is indistinguishable from the performance of estimator B. Overall, this procedure
interpolates between two extremes. A purely rank-based test of performance might only count the
number of RCTs for which A is better than B irrespective of how much better one is in a particular
RCT. Meanwhile, a procedure which only looks at the raw (unnormalized) RCT errors has the
property that RCTs with large MSE values for both estimators would drown out signal from RCTs
with small MSE values. We stress that the t-test heuristic provides a simple way of converting
the information contained in Ŝ(Â, B̂) to a single number, but we recommend looking at the score
histograms for a more complete picture.

4 Results

In this section, we present results obtained from a corpus of 699 RCTs performed at Amazon over
several years as described in Section 1.3. We compare commonly used estimators for TE estimation
by their out-of-sample MSE computed via the cross-validation procedure described in Section 3. See
Appendix Appendix B for more details on the specific estimators.

We begin by studying several of the normalized score histograms to facilitate the comparison of
our estimators; additional results are provided in Appendix C. In judging two estimators A,B via
their score distribution Ŝ(Â, B̂), we note that a left-skewed score distribution indicates B is a better
estimator (in terms of its MSE) than A.

7As noted earlier, in practice each error estimate is averaged over several resampled train/test splits, but we
suppress this extra notation for clarity.

8Our notion of a normalized score vector is element-wise transitive. That is, b−a
a+b

> 0 and c−b
b+c

> 0 imply
c−a
a+c

> 0.
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Figure 3: Histogram of the
score distribution for dm vs Win-
sorized (at 0.001) dm estimator.

1 0.5 0 0.5 1
Normalized Score

0

50

100

150

# 
of

 R
CT

s

S(dm,gen_dd)

Figure 4: Histogram of the score
distribution for dm vs gen_dd es-
timator.

1 0.5 0 0.5 1
Normalized Score

0

50

100

150

# 
of

 R
CT

s

S(dm,gen_dd_w1)

Figure 5: Histogram of the
score distribution for dm vs
gen_dd_w1 estimator.

In Table 1, we use the t-test heuristic from Section 3.1 to summarize each score histogram. For
the sake of brevity, we do not display all the methods tested in the table. Overall, we see several
phenomena that accord with our expectations. First, adjusting for the pretreatment covariate reduces
variance (i.e., gen_dd is better then dm). Second, downweighting large values of Y provides
significant value: inverse weighting by D and Winsorization performs generically the best under our
metric (gen_dd_w1 and all Winsorized estimators perform well). We also see that the dm estimator
is dominated by every other method in Table 1; such as the median of median-of-means estimator
(mom1000), whose robustness underlies its improved performance.

We summarize this table by converting it into a table of pairwise comparisons of wins/losses/ties
using a p-value to determine the significance of the win or loss. The question of extracting an ordered
ranking from the table of wins/losses is a classic problem. The natural procedure of simply summing
up the number of row-wise wins is commonly referred to as the Copeland/Borda counting method
(see [Saari and Merlin, 1996] and references within).

Table 1: Comparison of Estimators via one-sample t-test applied to their normalized score vector.
Easiest to read row-wise. The index (A,B) of the table computes the pair of the (t-statistic, p-value)
associated with the score Ŝ(Â, B̂). A large positive t-statistic at index (A,B) indicates estimator A
is better then estimator B and vice-versa.

Method dm mom1000 gen_dd gen_dd_w1 dm_wins.001 gen_dd_wins.001 gen_dd_w1_wins.001
dm x (-3.58, 0.000363) (-12.68, 2.38e-33) (-22.36, 3.6e-84) (-28.19, 7.99e-118) (-25.33, 2.96e-101) (-24.96, 4.11e-99)
mom1000 (3.58, 0.000363) x (-2.12, 0.0342) (-11.89, 7.32e-30) (-13.51, 3.78e-37) (-14.61, 1.94e-42) (-15.72, 5.33e-48)
gen_dd (12.68, 2.38e-33) (2.12, 0.0342) x (-21.1, 4.73e-77) (-19.01, 2e-65) (-25.15, 3.11e-100) (-23.49, 1.14e-90)
gen_dd_w1 (22.36, 3.6e-84) (11.89, 7.32e-30) (21.1, 4.73e-77) x (-0.26, 0.794) (-5.12, 3.87e-07) (-9.56, 1.87e-20)
dm_wins.001 (28.19, 7.99e-118) (13.51, 3.78e-37) (19.01, 2e-65) (0.26, 0.794) x (-4.17, 3.41e-05) (-5.39, 9.62e-08)
gen_dd_wins.001 (25.33, 2.96e-101) (14.61, 1.94e-42) (25.15, 3.11e-100) (5.12, 3.87e-07) (4.17, 3.41e-05) x (-4.12, 4.2e-05)
gen_dd_w1_wins.001 (24.96, 4.11e-99) (15.72, 5.33e-48) (23.49, 1.14e-90) (9.56, 1.87e-20) (5.39, 9.62e-08) (4.12, 4.2e-05) x

Applying such a method by inspection returns the following rankings:

gen_dd_w1_wins.001 > gen_dd_wins.001 > dm_wins.001 ≈ gen_dd_w1 > gen_dd > mom1000 > dm

Overall, these results suggest that aggressively Winsorizing and/or downweighting heavy tails can
profitably trade variance for some additional bias.

5 Conclusion

In this work, we develop a simple methodology for treatment effect model/estimator selection which
pools the performance of estimators across RCTs. The methodology allows us to compare estimators
on a held-out data fold in an unbiased way. The results align with a priori intuitions of estimator
performance for our data corpus. One insight is that we should be trading off variance for more bias
to reduce the MSE of treatment effect estimation in problems with heavy tails. Further investigation
into better estimators (as judged by their held-out MSE) and their coverage is warranted.

While our corpus consists of RCTs at Amazon run over several years, we hope our primary method-
ological contribution – to propose a cross-validation-like methodology to evaluate TE estimators –
can be used to objectively evaluate causal inference techniques in settings where large corpora of
RCTs are available.
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A Proofs of Estimator Validation Lemmas

We present below the proof of (4).

[Proof of (4)] We simplify the MSE of a treatment effect estimator E by centering the DM estimator
around its mean and expanding the square:

E[(∆̂A(T1, C1)− ∆̂DM (T2, C2))2] = E[(∆̂A(T1, C1)−∆+∆− ∆̂DM (T2, C2))2] =

E[(∆̂A(T1, C1)−∆)2] + E[(∆− ∆̂DM (T2, C2))2] + 2E[(∆̂A(T1, C1)−∆)]
�����������:0

E[(∆− ∆̂DM (T2, C2))] =⇒
E[(∆̂A(T1, C1)− ∆̂DM (T2, C2))2] = E[(∆̂A(T1, C1)−∆)2] + E[(∆− ∆̂DM (T2, C2))2], (8)
where the cancellation uses the independence of the first/second folds of data to factor the expectation
over the two terms, and the unbiased estimation property of the DM estimator over the second fold
[Rubin, 2005]9. We then obtain the following variances for two estimators A and B:

E[(∆̂A(T1, C1)− ∆̂DM (T2, C2))2]− E[(∆̂B(T1, C1)− ∆̂DM (T2, C2))2] = (9)

E[(∆̂A(T1, C1)−∆)2]− E[(∆̂B(T1, C1)−∆)2], (10)
from which the claim follows.

B Estimators

In this Appendix we formally define the estimators used in the paper.

For the following estimators, we note that each admits a “Winsorization" which can be used to trade
off bias and variance. To do this, we can simply Winsorize the covariates and targets, X,D, Y , in
only the training fold, to reduce variance. The test folds are always left untrimmed/Winsorized so (4)
remains valid. Explicitly we define Winsorization at level 0.001 to Winsorize the X,Y distributions
at P0.1, P99.9 and the (positive) auxiliary D distribution at P99.9.

The simple difference-of-means estimator,

∆̂DM =
1

|T |
∑
i∈T

Yi(1)−
1

|C|
∑
i∈C

Yi(0), (11)

as defined before is the first estimator we consider. We also consider the Difference-of-Median-of-
Means (mom) estimator

∆̂DMoM = MoM({Yi(1)}|T |
i=1, B)− MoM({Yi(0)}|C|i=1, B). (12)

Where MoM({Yi(1)}|T |
i=1, B) indicates we bucket the data into B blocks, compute the mean in each

block, and the median across all the blocked means. We use mom1000 in our experiments to denote
the median-of-means estimator chosen with 1000 total blocks. Next we also consider what we refer
to as the Generalized Difference-in-Differences (gen_dd) estimator which assumes access to a
pretreatment product-specific covariate Xi corresponding to the response value Yi. So, assuming the
model,

Y = α+ T ·∆+X · β + ϵ, (13)
we can estimate the ATE for a binary treatment by (least-squares) regressing Yi onto (1, Ti, Xi),
where ϵi represents a general conditionally mean-zero noise term (which may depend on Xi). If
the covariates Xi are strongly correlated with the response value Yi, incorporating them into the
regression can significantly reduce the variance.

Finally we consider a reweighted version of the previous estimator we refer to as the Weighted
Generalized LR (and Generalized Difference-in-Differences) (gen_dd_w1) estimator. That is, we
can consider estimation objectives of the form:

1

n

n∑
i=1

1

(1 +Di)γ
(Yi − α−∆Ti − βiXi)

2. (14)

9Throughout we also implicitly use the fact the subfolds are (uniformly) randomly sampled from the
treatment and control groups—so the expectation over the subfold is equivalent to the expectations over the
entire treatment/control groups.
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to estimate α β, and most importantly the TE ∆. In practice, the covariate D is taken as an auxiliary
covariate, which serves as positive surrogate capturing the shape of the distribution of Y . In this case
the weighting has the effect of downweighting large values of Y which can be useful to regularize
heavy-tailed distributions.

C Additional Results

First we present several additional estimator histograms.
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0.001) dm estimator.
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Figure 13: Histogram
of the score distribu-
tion for gen_dd_w1 vs
gen_dd_w1_wins.001 estima-
tor.

1 0.5 0 0.5 1
Normalized Score

0

100

200

300

400

# 
of

 R
CT

s

S(gen_dd_w3,gen_dd_w1)

Figure 14: Histogram of
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timator.

In this section we present additional results from our aggregation methodology to explore their
stability under using different bootstrapped train/test splits to compute the normalized score vectors
Â and B̂. Tables 2 and 3 show consistent results.

D Cross-Validation Methodology

The cross-validation methodologies described in Section 3 are for the most part intuitive; nonetheless,
it is worthwhile to present all the details of how we partition T and C as well as how we repeat the
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Method dm mom1000 gen_dd gen_dd_w1 gen_dd_w_norm dm_wins.001 gen_dd_wins.001 gen_dd_w1_wins.001
dm x (-3.58, 0.000369) (-12.49, 1.68e-32) (-21.95, 6.88e-82) (-17.57, 1.27e-57) (-27.53, 5.04e-114) (-24.74, 6.91e-98) (-24.47, 2.51e-96)
mom1000 (3.58, 0.000369) x (-2.03, 0.043) (-11.7, 5.02e-29) (-9.15, 5.86e-19) (-13.23, 7.35e-36) (-14.3, 6.26e-41) (-15.43, 1.68e-46)
gen_dd (12.49, 1.68e-32) (2.03, 0.043) x (-20.42, 3.05e-73) (-13.23, 7.11e-36) (-18.44, 2.49e-62) (-24.2, 9.27e-95) (-22.75, 1.9e-86)
gen_dd_w1 (21.95, 6.88e-82) (11.7, 5.02e-29) (20.42, 3.05e-73) x (6.83, 1.8e-11) (-0.22, 0.828) (-4.82, 1.78e-06) (-9.39, 7.72e-20)
gen_dd_w_norm (17.57, 1.27e-57) (9.15, 5.86e-19) (13.23, 7.11e-36) (-6.83, 1.8e-11) x (-4.38, 1.37e-05) (-8.76, 1.46e-17) (-11.22, 5.47e-27)
dm_wins.001 (27.53, 5.04e-114) (13.23, 7.35e-36) (18.44, 2.49e-62) (0.22, 0.828) (4.38, 1.37e-05) x (-4.03, 6.21e-05) (-5.27, 1.79e-07)
gen_dd_wins.001 (24.74, 6.91e-98) (14.3, 6.26e-41) (24.2, 9.27e-95) (4.82, 1.78e-06) (8.76, 1.46e-17) (4.03, 6.21e-05) x (-4.11, 4.44e-05)
gen_dd_w1_wins.001 (24.47, 2.51e-96) (15.43, 1.68e-46) (22.75, 1.9e-86) (9.39, 7.72e-20) (11.22, 5.47e-27) (5.27, 1.79e-07) (4.11, 4.44e-05) x

Table 2: Comparison of Estimators via one-sample t-test applied to their normalized score vector.
This table was computed using error vectors from only 50 resampled train/test splits to feed into Â

and B̂. Easiest to read row-wise. The index (A,B) of the table computes the pair of the (t-statistic,
p-value) associated with the score Ŝ(Â, B̂). A large positive t-statistic at index (A,B) indicates
estimator A is better then estimator B and vice versa.

Method dm mom1000 gen_dd gen_dd_w1 gen_dd_w_norm dm_wins.001 gen_dd_wins.001 gen_dd_w1_wins.001
dm x (-3.44, 0.000613) (-12.49, 1.73e-32) (-22.14, 5.73e-83) (-17.7, 2.55e-58) (-27.85, 7.64e-116) (-25.18, 2.11e-100) (-24.73, 8.29e-98)
mom1000 (3.44, 0.000613) x (-2.24, 0.0252) (-11.93, 5.02e-30) (-9.39, 8.29e-20) (-13.64, 8.54e-38) (-14.76, 3.62e-43) (-15.8, 2.07e-48)
gen_dd (12.49, 1.73e-32) (2.24, 0.0252) x (-20.86, 1.08e-75) (-13.48, 4.75e-37) (-18.83, 2e-64) (-24.98, 2.95e-99) (-23.22, 4.23e-89)
gen_dd_w1 (22.14, 5.73e-83) (11.93, 5.02e-30) (20.86, 1.08e-75) x (6.72, 3.64e-11) (-0.37, 0.714) (-5.31, 1.47e-07) (-9.42, 6.27e-20)
gen_dd_w_norm (17.7, 2.55e-58) (9.39, 8.29e-20) (13.48, 4.75e-37) (-6.72, 3.64e-11) x (-4.52, 7.21e-06) (-9.1, 8.98e-19) (-11.23, 5e-27)
dm_wins.001 (27.85, 7.64e-116) (13.64, 8.54e-38) (18.83, 2e-64) (0.37, 0.714) (4.52, 7.21e-06) x (-4.2, 3.05e-05) (-5.32, 1.37e-07)
gen_dd_wins.001 (25.18, 2.11e-100) (14.76, 3.62e-43) (24.98, 2.95e-99) (5.31, 1.47e-07) (9.1, 8.98e-19) (4.2, 3.05e-05) x (-3.87, 0.000119)
gen_dd_w1_wins.001 (24.73, 8.29e-98) (15.8, 2.07e-48) (23.22, 4.23e-89) (9.42, 6.27e-20) (11.23, 5e-27) (5.32, 1.37e-07) (3.87, 0.000119) x

Table 3: Comparison of Estimators via one-sample t-test applied to their normalized score vector.
This table was computed using error vectors from only 50 resampled train/test splits to feed into Â

and B̂ distinct from those in previous table. Easiest to read row-wise. The index (A,B) of the table
computes the pair of the (t-statistic, p-value) associated with the score Ŝ(Â, B̂). A large positive
t-statistic at index (A,B) indicates estimator A is better then estimator B and vice versa.

procedure to cross-validate (3). We start with a formal definition of treatment T and control C groups.
Let j be some lab in J ; then, the treatment group for this lab is the set of outcomes Yi,j and features
Xi,j for each product i under the in the treatment arm Ti,j = 1, that is Tj = {(Yi,j , Xi,j)|Ti,j = 1}
where |Tj | = Kj is the number of products that were assigned to the treatment arm Ti,j = 1.
Similarly, the control group is given by C = {(Yi,j , Xi,j)|Ti,j = 0}Mj

i=Kj+1 where |Cj | = Mj −Kj

is the number of products assigned to the control arm Ti,j = 0 and Mj is the total number of products
in the lab.

The goal of our methodology is to find an optimal estimator ∆̂j for the ATE ∆j or an optimal roll
out policy Dj under some objective function L. This means finding a function of T and C such that
f(T , C) ∈ R or f(T , C) ∈ {0, 1} respectively, and that optimizes the expected objective:

E[L(f(T , C),∆)] (15)

for f in some functional space F . As discussed in Section 3, to do this in the context of an RCT
where ∆ is unknown, we rely on the fact that the difference-in-means estimator ∆̂(T , C) is unbiased
for the ATE ∆. Specifically, for any lab i, we randomly split the treatment and control group using
two random subsets of product indices Sj = {1, . . . ,Kj} and Rj = {Kj + 1, . . . ,Mj} so that we
end up with the four following sets:

• Tj,1 = {(Yi,j , Xi,j)|Ti,j = 1 and i ∈ Sj}
• Cj,1 = {(Yi,j , Xi,j)|Ti,j = 0 and i ∈ Rj}
• Tj,2 = {(Yi,j , Xi,j)|Ti,j = 1 and i /∈ Sj}
• Cj,2 = {(Yi,j , Xi,j)|Ti,j = 0 and i /∈ Rj} .

We also pick the size of Sj and Rj so that the split proportion p is constant across treatment, control,
and labs:

|Sj |
Kj

=
|Rj |

Mj −Kj
= p.

With this splitting methodology, we can now replace (15) with the empirical mean of the objective
over all the labs in J :

1

|J |
∑
j∈J

L(f(Tj,1, Cj,1), ∆̂DM (Tj,2, Cj,2)).

9



We can now optimize empirical objective for f similarly to empirical risk minimization for supervised
learning. We can also “cross-validate” the empirical mean of the objective to reduce the subsampling
variance and to get confidence intervals. To do this we simply repeat the splitting procedure multiple
times so that every random index set Sj and Rj is now also indexed by a split b ∈ {1, . . . , B}.
Putting all of this together, we now have:

1

|J |
∑
j∈J

1

B

B∑
b=1

L(f(Tj,b,1, Cj,b,1), ∆̂DM (Tj,b,2, Cj,b,2)). (16)

This is how we estimated (3) in the paper, using p = 0.5 and B = 100. It is worth noting that in
the case of (3), we ended up replacing the outer sum of (16) with the aggregation methodology of
Section 3.1 to deal with the heavy-tailed nature of Mj , i.e. to ensure that the largest labs did not
dominate the value of (16).
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