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Abstract

Sequence-to-sequence models often require001
an expensive autoregressive decoding process.002
However, for some downstream tasks such003
as out-of-distribution (OOD) detection and re-004
source allocation, the actual decoding output005
is not needed, just a scalar attribute of this se-006
quence. In such scenarios, where knowing the007
quality of a system’s output to predict poor008
performance prevails over knowing the output009
itself, is it possible to bypass the autoregressive010
decoding? We propose Non-Autoregressive011
Proxy (NAP) models that can efficiently predict012
scalar-valued sequence-level attributes. Impor-013
tantly, NAPs predict these metrics directly from014
the encodings, avoiding the expensive decoding015
stage. We consider two sequence tasks: Ma-016
chine Translation (MT) and Automatic Speech017
Recognition (ASR). In OOD for MT, NAPs out-018
perform ensembles while being significantly019
faster. NAPs are also proven capable of pre-020
dicting metrics such as BERTScore (MT) or021
word error rate (ASR). For downstream tasks,022
such as data filtering and resource optimization,023
NAPs generate performance predictions that024
outperform predictive uncertainty while being025
highly inference efficient.026

1 Introduction027

Autoregressive encoder-decoder models have028

emerged as the dominant approach for many029

sequence-to-sequence tasks (Sutskever et al., 2014)030

and are the state-of-the-art for a range of tasks such031

as Automatic Speech Recognition (ASR) (Gulati032

et al., 2020), Machine Translation (MT) (Vaswani033

et al., 2017; Xue et al., 2021), and Abstractive034

Text Summarization (Chung et al., 2022; Raffel035

et al., 2020). However, for many applications,036

the decoded output sequence is not required, only037

attributes of the sequence. In out-of-distribution038

(OOD) detection, only a sequence-level metric such039

as confidence is required (Hendrycks and Gimpel,040

2017; Malinin and Gales, 2021). In selective clas-041

sification (Geifman and El-Yaniv, 2017; Xia and 042

Bouganis, 2022; El-Yaniv and Wiener, 2010) the 043

output is only needed if the prediction is trusted. 044

Another example is deferral strategies for resource 045

allocation (Li et al., 2015; Teerapittayanon et al., 046

2016; Viola and Jones, 2001; Xia and Bouganis, 047

2023; Zhu et al., 2006), where computation is al- 048

located between systems of different complexity. 049

Standard deferral strategy approaches use the pre- 050

dictive uncertainty of a simpler system to decide 051

whether or not to pass it on to a better-performing 052

system of higher complexity (Wang et al., 2022). 053

All of the examples above require some form 054

of predictive uncertainty metric from the output, 055

which in the case of transformer-based autoregres- 056

sive models are expensive to obtain (Brown et al., 057

2020; Chowdhery et al., 2022; Raffel et al., 2020; 058

Wu et al., 2016). Combined with the quadratic 059

cost of self-attention (Vaswani et al., 2017) and au- 060

toregressive decoding (equipped with beam-search 061

(Koehn, 2009)), this can limit the application of 062

these systems in real-world settings, such as those 063

that have limited computational resources or re- 064

quire low latency (Viola and Jones, 2001). Further- 065

more, ensembling generally improves system per- 066

formance and can be leveraged for useful analysis, 067

such as for robust uncertainty estimation (Gal and 068

Ghahramani, 2016; Lakshminarayanan et al., 2017). 069

However, ensembles’ memory and inference costs 070

scale linearly with the number of members in the 071

ensemble, making them even more impractical for 072

real-world scenarios. There are methods including 073

Knowledge Distillation (KD) (Ranzato et al., 2016; 074

Hinton et al., 2014) and Ensemble Distribution Dis- 075

tillation (EDD) (Malinin et al., 2020; Fathullah 076

et al., 2021, 2023; Fathullah and Gales, 2022) that 077

distill knowledge from an autoregressive ensemble 078

but this does not circumvent the high costs funda- 079

mentally associated with autoregressive generation. 080

Previous works have investigated adding a sec- 081

ond output head explicitly trained to capture a spe- 082
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cific metric such as epistemic uncertainty in image083

segmentation (Landgraf et al., 2023) or the true084

class probability in image classification (Corbière085

et al., 2019). The work of (Li et al., 2021) extends086

this style of approach to ASR by adding a second087

head to the decoder, to predict token-level decod-088

ing errors. Despite its success in providing robust089

estimates, computing the output uncertainties still090

requires an expensive autoregressive decoding pro-091

cess. The work of (Coleman et al., 2020) trains092

an independent proxy model for estimating uncer-093

tainties. This method is based on training a much094

smaller image classification model in an identical095

manner to the primary model, instead using the un-096

certainties produced by the small model’s outputs097

to guide the primary one. In the space of autore-098

gressive encoder-decoder models, this approach is099

still not feasible; the costs of training and decoding100

persist even for small autoregressive models.101

In this paper, we propose Non-Autoregressive102

Proxy (NAP) models that directly estimate103

sequence-level attributes, bypassing the expensive104

autoregressive decoding process. When deployed,105

these lightweight proxy models can be used to106

robustly predict sequence properties using a frac-107

tion of the computational requirements. Our ap-108

proach is kept general and applicable to any se-109

quence attribute, demonstrating the usefulness of110

this framework to diverse metrics such as sequence-111

level predictive uncertainty, BERTScore for MT,112

and word error rate (WER) for ASR. Investigations113

into downstream tasks such as out-of-distribution114

(OOD) detection show that NAPs can outperform115

an ensemble at a fraction of the inference time. Due116

to the flexibility of the proposed framework, we117

also investigate training NAPs on sequence-level118

performance metrics (BERTScores and WERs),119

outperforming uncertainty-based approaches on120

data filtering and resource optimization.121

2 Background122

There has been a range of work on predicting123

sequence-level attributes. One common example is124

estimating uncertainties from the outputs of autore-125

gressive systems (Malinin and Gales, 2021; Notin126

et al., 2021), where unsupervised token-level uncer-127

tainties from some decoding process are combined128

to form sequence-level estimates. Such sequence-129

level uncertainties are then used in downstream130

tasks such as OOD detection (Malinin and Gales,131

2021), quality estimation (Fomicheva et al., 2020)132

and curriculum learning (Zhou et al., 2020). 133

Previous work has also explored task-specific 134

supervised approaches to confidence/metric estima- 135

tion. The work of (Gamper et al., 2020) explores 136

training a small independent model to predict the 137

sub-utterance-level word error rate (WER) of a pri- 138

mary ASR model for short-duration audio when the 139

reverberant conditions change. However, the ap- 140

proach is not generalizable to other domains such 141

as MT due to the specific focus on reverberant 142

speech. Other work has also focused on training 143

an error detection module attached to the decoder 144

of some ASR or MT system (Evermann and Wood- 145

land, 2000; Koehn, 2009; Kumar and Sarawagi, 146

2019; Li et al., 2021; Liao and Gales, 2007; Ragni 147

et al., 2018). For example, a typical approach to 148

training the decoder-side error detector is based on 149

token-level error labels from the minimum Leven- 150

shtein distance alignment to the ground truth. From 151

these token-level estimates, a sequence-level con- 152

fidence score can be derived. In ASR where there 153

is often one clear true transcription of the input 154

audio, such an error detection module is appropri- 155

ate. However, these approaches are inappropriate 156

for MT where multiple translations could all have 157

the same meaning and be considered valid. Such 158

a token-level error detector would flag other valid 159

translations as errorful even when conveying the 160

same information and meaning. 161

This final example is one of the main motiva- 162

tions behind BERTScore and related approaches 163

(Sellam et al., 2020; Yuan et al., 2021; Zhang et al., 164

2020; Zhao et al., 2019). BLEU (Papineni et al., 165

2002; Post, 2018) has long been the main MT eval- 166

uation metric for measuring sequence similarity 167

between a translation and a reference using some 168

measure of overlap. However, it suffers from sim- 169

ilar issues as (Levenshtein) edit-distance metrics. 170

BERTScore resolves such issues by leveraging bidi- 171

rectional language models in generating contextual 172

variable-length embeddings for both the translation 173

and reference sequence, computing an automatic 174

sequence similarity score in this embedding space. 175

There has also been a set of work on supervised MT 176

quality estimation (Specia et al., 2020, 2021; Zerva 177

et al., 2022) in which models are trained to esti- 178

mate the quality (human expert estimated metric) 179

of a translation by making use of the source, the 180

decoded translation and additional token-level prob- 181

ability. However, both the automatic BERTScore 182

and quality metrics require an expensive autore- 183

gressive decoding stage to obtain the estimate. 184
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(b) Setup 2: Capturing sequence similarities.

Figure 1: Our proposed proxy training scheme: A teacher encoder-decoder model trains a proxy encoder student
to predict consistent sequence scores using some loss function. In (a) we train the proxy to extract sequence
uncertainties from a decoder that is fed the reference. In (b) we train a proxy to capture sequence-level similarity
scores (e.g. BERTScore or WER) from decoded outputs.

3 Non-Autoregressive Proxy185

We are interested in the general problem of es-186

timating sequence-level attributes whilst remain-187

ing highly inference-efficient. These sequence-188

level metrics include: (1) information-theoretic189

uncertainties (Malinin and Gales, 2021); (2) neural-190

based evaluation scores such as BERTScore (Zhang191

et al., 2020); and (3) discrete sequence-similarity192

metrics such as word error rate. The standard193

approach to obtaining these sequence-level met-194

rics is to run an expensive autoregressive decoding195

scheme to produce a set of hypotheses. One can196

either extract sequence attributes directly from this197

hypothesis set (Malinin and Gales, 2021) or com-198

pare them with their corresponding references to199

obtain a measure of sequence similarity. The aim200

of this paper is to avoid the costly autoregressive201

generation stage and instead train an encoder-only,202

non-autoregressive proxy (NAP) model to imitate203

the sequence metrics produced by an autoregressive204

system, using only the source, see Figure 1.205

We employ two different setups as shown in Fig-206

ures 1a and 1b. The aim of the first setup is to207

train a proxy to directly extract sequence uncertain-208

ties when the main model is additionally given the209

reference sequence. This is in order to teach the210

proxy model to imitate the uncertainties from the211

gold reference. The second setup aims to teach the212

proxy a sequence similarity score when the autore-213

gressive generated hypothesis is compared to the214

reference. Both setups are highly challenging as215

the non-autoregressive proxy is tasked with predict-216

ing sequence-level metrics from only the source.217

However, the key feature of the NAP is that it di-218

rectly predicts these metrics without a decoding219

scheme (e.g. beam search) and without any refer-220

ence sequences, allowing the user to extract useful 221

information from large amounts of unlabelled data 222

with little cost. Furthermore, in the first setup of 223

Figure 1a, the proxy also avoids the exposure bias 224

problem (Bengio et al., 2015; Ranzato et al., 2016), 225

by directly training on the teacher-forced (Williams 226

and Zipser, 1989) sequence uncertainties. 227

In this work, we follow Figure 1a in training a 228

proxy on both single teacher confidence and en- 229

tropy scores or ensemble mutual information, eval- 230

uating its imitation ability and downstream out-of- 231

distribution detection ability. We also follow Figure 232

1b in training a proxy to predict BERTScores in 233

Machine Translation and WER in Speech Recogni- 234

tion and evaluate the performance of the NAP on a 235

data filtering and resource optimization task. 236

Loss Function: Sequence-level metrics are rep- 237

resented by single scalar values. Therefore, the 238

proxy student can be trained using any regression 239

loss function. However, unlike standard regression 240

tasks, we seek to learn the relative ordering (rank- 241

ings) of our scores, as this simplifies the task and 242

is more pertinent for downstream applications such 243

as OOD detection. Therefore, we will mainly opt 244

for the Spearman Rank and Pearson correlation co- 245

efficient (SCC & PCC) depending on the specific 246

task considered. Consider a batch of n items with 247

teacher scores {si}ni=1 and corresponding proxy 248

predictions {ŝi}ni=1. The Spearman loss function 249

is then defined as: 250

LSCC = −
(
1−

6
∑

i(r(si)− r(ŝi))
2

n(n2 − 1)

)
(1) 251

where r(s) ∈ {1, 2, . . . , n} signifies the rank of 252

s. Since the rank operator is discrete and non- 253

differentiable it is not directly applicable to our 254
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application. We resort to a differentiable Spear-255

man Rank extension (Blondel et al., 2020) with256

an open source implementation1. Note that unlike257

its original usage (Blondel et al., 2020), where the258

system is trained to rank class values for a single259

instance, we are using this loss to sort single values260

associated with multiple different items in a batch.261

We also investigate alternative loss functions such262

as the root mean squared error (RMSE) and mean263

absolute error (MAE), see Appendix B.1.264

Predictor Design: In order to produce a scalar265

score from a variable-length encoder-output repre-266

sentation, we make use of a pooling operation. We267

utilize two options, temporal averaging or multi-268

head attention with a single trainable query. The en-269

coder vector outputs {vl}Ll=1 are therefore pooled270

to form a fixed-size representation v which is fed271

into a three-layer multi-layer perception (MLP).272

Furthermore, early exploratory experiments found273

that a softmax activation is vital for good perfor-274

mance as it can be seen as introducing inductive275

bias into the estimation of information-theoretic276

and related metrics. Details on MLP architecture277

and ablation studies are provided in Appendix B.2.278

Proxy Encoder Backbone: By default, the NAP279

backbone is initialized from the encoder weights280

of the main encoder-decoder model. Since pre-281

trained models such as T5 (Raffel et al., 2020) and282

Whisper (Radford et al., 2022) are released in dif-283

ferent sizes, one can utilize smaller architectures284

to initialize smaller proxies, and train them to pre-285

dict attributes of larger systems. Appendix B.4286

further explores ‘mismatched’ encoders, e.g. using287

a RoBERTa NAP to predict the output attributes of288

a T5 system. Furthermore, all experiments in this289

paper freeze the encoder backbone and only train290

the small predictor on top of the NAP encoder. This291

improves the training speed and memory usage al-292

lowing a user to train multiple predictor heads on293

top of the same backbone, each for a different met-294

ric (e.g. estimating sequence-level confidence and295

BERTScores in the same forward pass). Note that296

the purpose of our investigations is not to create the297

best possible NAP model (for example, finetuning298

the backbone encoder could improve performance299

at no cost of inference speed). We only seek to300

demonstrate that this approach is highly flexible301

and applicable to a range of sequence-level metrics302

and can provide cheap but useful information for303

sequence-to-sequence tasks.304

1github.com/google-research/fast-soft-sort

4 Experimental Evaluation 305

Predicting Uncertainties: We will evaluate the 306

imitation ability of NAP models on various tasks. 307

Following Setup 1, the first set of experiments 308

will focus on the ability of a proxy system to cap- 309

ture sequence-level confidence or entropy from a 310

single T5 transformer (Raffel et al., 2020) fine- 311

tuned on a spoken-language Machine Translation 312

(MT) dataset. We further explore the ability of 313

NAPs to imitate mutual information (epistemic 314

uncertainty (Der Kiureghian and Ditlevsen, 2009; 315

Hora, 1996)) from an ensemble of T5 systems. The 316

performance of the NAPs will then be evaluated 317

by measuring the Spearman Rank correlation be- 318

tween the teacher (under teacher-forcing (Williams 319

and Zipser, 1989)) and the proxy estimates on a 320

range of in-domain (ID) and out-of-domain (OOD) 321

datasets. We also investigate the performance of 322

the proposed NAP on OOD detection. 323

Predicting BERTScores: Following Setup 2, 324

we also investigate if proxy systems can capture 325

much more complex sequence metrics such as 326

BERTScores (Zhang et al., 2020) from a single 327

T5 in MT. Capturing this metric is especially chal- 328

lenging since the beam-search output of the T5 329

decoder and corresponding reference will be fed 330

through a language model such as BERT (Devlin 331

et al., 2019) which then computes the final score. 332

The performance will be measured by computing 333

the Spearman Rank between proxy outputs and 334

BERTScores on both ID and OOD datasets. Fur- 335

thermore, the proxy is compared to sequence-level 336

confidence and entropy scores from the T5 model 337

to see how well they correlate with BERTScores. 338

The performance of a BERTScore estimating 339

proxy system can also be evaluated on two down- 340

stream tasks: Filtering task (Li et al., 2021): Given 341

a dataset, we remove the examples with the lowest 342

proxy or highest uncertainty estimate. For good es- 343

timates, the filtered subset should display a higher 344

average BERTScore. Resource optimization task 345

(Viola and Jones, 2001): Under a fixed resource 346

budget, one seeks to allocate inputs to models 347

of different complexity in order to maximize per- 348

formance. A well-performing allocation system 349

would achieve higher performance with a smaller 350

budget, see Figure 2. 351

Predicting WER: Finally, we follow Setup 2 352

in investigating if a NAP can imitate the sentence- 353

level WER and the total number of errors produced 354

by an ASR system. In this case, we utilize the 355
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Figure 2: In the baseline deferral system, the inputs with high uncertainty (under the small model) are fed into
the larger model. In the proxy deferral system, model selection is based on the output of an efficient proxy.

pretrained state-of-the-art Whisper (Radford et al.,356

2022) models on the LibriSpeech corpus (Panay-357

otov et al., 2015). Since the Whisper model is very358

well-performing, it is able to perfectly decode a359

large fraction of the dataset, which would cause360

issues for a rank-based loss such as Spearman. We,361

therefore, resort to Pearson for these experiments.362

Note, the corpus-level WER performance of an363

ASR system is a length-weighted average of the364

sentence-level WERs. Therefore, we also train365

NAPs to predict the number of decoding errors366

in an utterance. Similar to the BERTScore exper-367

iments, the performance of NAPs will be evalu-368

ated in a similar manner using both filtering and369

resource optimization tasks.370

4.1 Machine Translation371

We use the IWSLT 2017 English-to-German train-372

ing set for finetuning T5 systems on spoken lan-373

guage translation. We generate a three-model en-374

semble of T5 systems which we use as a stronger375

baseline for uncertainty estimation. We also in-376

vestigate if Knowledge Distillation (KD) (Hinton377

et al., 2014) and Ensemble Distribution Distillation378

(EDD) (Malinin et al., 2020; Ryabinin et al., 2021)379

are able to imitate the uncertainties produced by a380

single or ensemble systems respectively.381

We use a range of in-domain and out-of-domain382

datasets for downstream tasks. These include383

the Web Inventory Talk (Ted IWSLT 2016; ID),384

Newstest-19 & 20 news commentary (OOD-1),385

Khresmoi medical data (OOD-2), MTNT-2019386

Reddit text (OOD-3) and KFTT Kyoto-related387

Wikipedia articles (OOD-3) datasets. All but the388

latter two datasets are English-to-German, while389

the final two are English-to-Japanese. Due to the390

language mismatch, OOD-3 datasets cannot be391

used to evaluate BERTScore prediction in Section392

4.1.2. Setup details are provided in Appendix A.393

Table 1 shows the inference time of iwslt-2017 394

test set for various models. This demonstrates a pri- 395

mary desideratum of a NAP, the ability to quickly 396

process large amounts of data. For example, a large 397

proxy being 46x faster than a T5 Large model us- 398

ing a beam of B = 12 (used in experiments below) 399

and is approximately 138x faster than the three- 400

model ensemble (if run serially). Given the shared 401

architecture between the proxy and primary model 402

encoders, this vast difference in inference time is 403

due to the ability to bypass expensive decoding. 404

Table 1: Inference time for iwslt-2017 using Hug-
ging Face (Wolf et al., 2020), with an NVIDIA A100.
BERTScore (BS) measured for the B = 12 setting.

Model T5 Model NAP
B = 1 B = 4 B = 12 BS

Small 41.9s 85.9s 178.6s 67.4 2.7s
Base 117.7s 270.3s 537.6s 68.2 5.5s
Large 313.7s 583.4s 826.6s 68.6 17.9s

4.1.1 Uncertainties in Machine Translation 405

We trained NAPs (of different sizes, see Table 1) 406

to predict sequence-level confidence P or entropy 407

H (using the conditional approximation described 408

in (Malinin and Gales, 2021)) of a T5 Large model. 409

We also trained NAPs to predict the mutual infor- 410

mation I score produced by an ensemble of fine- 411

tuned T5 Large models. The performance of the 412

proxies is compared to two baseline systems: KD 413

when capturing confidence or entropy of a single 414

model, and EDD in capturing mutual information 415

from an ensemble. The autoregressive distilled 416

baselines will also be of various sizes, see Table 1. 417

In the case of confidence P and mutual informa- 418

tion scores I, the proxy achieves a better rank or- 419

dering of instances for both datasets and at all sizes 420

than the corresponding encoder-decoder student, 421

despite being an order of magnitude faster at in- 422
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Table 2: Spearman Rank correlation of uncertainties when comparing baseline distillation and proxy to the
teacher ensemble. Averaged over 3 runs. Standard deviations in the order of ±1.0.

Model Size S B L S B L S B L

Dataset Distillation P Distillation H EDD I
iwslt-2017 18.7 19.8 20.8 69.4 73.1 74.5 43.7 51.5 55.1

ted-iwslt-2016 21.4 21.1 21.8 57.5 59.5 60.6 46.8 47.0 48.0

Dataset NAP P NAP H NAP I
iwslt-2017 39.9 42.6 42.1 40.4 58.8 62.7 53.7 54.3 55.6

ted-iwslt-2016 26.2 25.3 25.2 44.8 52.3 53.8 50.0 49.7 51.3

ference (Table 2). Knowledge-distilled models are423

better at imitating their teacher’s H, however, this424

is not indicative of downstream task performance425

such as OOD detection, as explored below (Table426

3). Note that the NAP here is unique in its ability427

to predict any scalar sequence metric, whereas KD428

is unable to mimic mutual information scores.429

Finally, we perform downstream OOD detection430

using confidence, entropy, and MI scores from a T5431

Large ensemble, EDD (T5 Large), and Proxy Large.432

We use iwslt-2017 as in-domain and measure per-433

formance with AUROC (50% represents random de-434

tection). Results in Table 3 show that in all but one435

scenario, the uncertainties predicted by the proxy436

model are best suited for the task, particularly con-437

sidering inference speeds. Note that overall, the438

detection performance of a NAP exceeds that of439

the Deep Ensemble. A potential explanation is that440

the proxy is directly trained to predict uncertainties441

while the ensemble estimates uncertainties based442

on the beam-search decoded outputs (Malinin and443

Gales, 2021), suffering from exposure bias (Bengio444

et al., 2015; Ranzato et al., 2016).445

4.1.2 BERTScores in Machine Translation446

Table 4 directly compares the rank correlation be-447

tween model confidence/proxy scores and sentence448

BERTScore performance. We include proxies with449

attentive pooling as this is a more challenging task.450

These suggest that training NAPs directly on per-451

formance metrics provides a better predictor of452

a system’s performance than using information- 453

theoretic metrics such as confidence and entropy. 454

Dataset filtering is an alternative approach to 455

evaluating the quality of uncertainty estimates, 456

with emphasis on the highest-performing exam- 457

ples. A well-suited predictor of performance will 458

show a monotonic increase in filtered dataset per- 459

formance, as harder examples are removed. Fig-
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Figure 3: Measuring T5 Large performance on a
filtered dataset when removing the worst examples
according to some metric.

460
ure 3 shows this desired behavior is best achieved 461

with NAPs (equipped with attention pooling) that 462

are directly trained to predict BERTScores of the 463

primary model, in both an ID and OOD dataset. 464

Entropy produced by the model itself is promis- 465

ing on the ID dataset but fails on OOD since the 466

performance does not increase as we filter more 467

examples. Failure to reproduce these trends using 468

uncertainty estimates of the primary model output 469

Table 3: %AUROC detection performance of autoregressive and proxy models using various uncertainties.
Averaged over 3 runs. Standard deviations in the order of ±2.0.

Split Dataset Deep Ensemble EDD NAP
P H I P H I P H I

OOD-1 newstest-19 42.9 53.1 58.5 45.5 54.6 55.7 51.0 53.4 70.5
newstest-20 35.9 50.8 63.4 40.6 54.0 61.2 51.6 53.2 78.1

OOD-2 khresmoi-dev 38.1 51.8 67.2 43.6 57.2 63.4 50.4 51.1 77.9
khresmoi-test 39.4 53.8 67.6 44.4 58.5 63.4 55.5 54.9 81.2

OOD-3 mtnt-2019 66.0 72.2 64.4 67.0 72.0 61.9 70.4 72.0 71.4
kftt 31.9 33.8 47.0 32.6 35.8 40.8 27.3 34.8 54.7
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Table 4: Spearman Rank correlation score between model confidence/entropy and the model BERTScore. The
NAPs were trained to predict this score directly. Averaged over 3 runs. Standard deviations are approx. ±2.0.

Split Dataset T5 Large NAP NAP w/ Attention
P H S B L S B L

ID iwslt-2017 16.6 41.6 42.0 43.7 44.9 42.5 44.4 45.6
ted-iwslt-2016 11.6 37.3 35.8 36.3 37.3 35.7 37.0 38.1

OOD-1 newstest-19 32.9 39.3 34.3 36.7 37.6 34.7 37.1 39.2
newstest-20 34.2 38.3 38.6 38.7 39.6 38.9 39.0 39.3

OOD-2 khresmoi-dev 41.4 45.5 40.8 43.1 44.7 41.3 42.3 44.8
khresmoi-test 42.9 46.1 42.0 46.5 45.5 42.3 47.8 45.2

average 29.9 41.3 38.9 40.8 41.6 39.2 41.3 42.0

suggests over-confidence (Guo et al., 2017) in low-470

performing examples.471

Figure 4 shows results for resource allocation,472

where examples are allocated to either a T5 Small473

or Large based on whether a performance-based474

related metric is above or below a threshold. De-475

pending on the fraction allocated to the larger sys-476

tem, different levels of overall inference time and477

performance are achieved. As expected from the
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Figure 4: Newstest 20: Measuring BERTScore and
inference time when distributing inputs between a
T5 Small and Large according to some metric.

478
dataset filtering results, proxy outputs can better479

predict instances for which the small model will480

perform poorly and it does so with a minuscule time481

cost. By contrast, relying on the output of the small482

model itself to decide whether the large model is483

required causes serious delays due to the time spent484

decoding, delays that the NAP preempts. The best485

performance was achieved by NAPs trained on the486

difference in BERTScore between the two avail-487

able systems. The aim of this difference metric is488

to assign to the large model, examples for which489

we expect a maximal increase in performance. Ob- 490

taining such a difference metric using the original 491

models would defeat the whole purpose of resource 492

optimization. Finally, it is possible to be more effi- 493

cient or better performing than a T5 Base using this 494

deferral system while matching its performance or 495

efficiency respectively. 496

4.2 WERs in Automatic Speech Recognition 497

We repeat experiments from Section 4.1.2 using 498

pre-trained Whisper models from Hugging Face 499

(Wolf et al., 2020) on the LibriSpeech corpus 500

(Panayotov et al., 2015). We will by default use 501

greedy decoding as opposed to beam-search since 502

it was found to be robust enough (Radford et al., 503

2022). Table 5 shows real-time factors (RTFs) 504

demonstrating the inference efficiency of NAPs 505

which do not require a decoder. Compared to 506

greedy (B = 1) decoding of Whisper Large-V2, 507

medium and large-sized NAPs are 43 and 33 times 508

faster, respectively. 509

Table 5: Real-time Factors for test.other using
Hugging Face, with an NVIDIA A100. Corpus WER
measured for the B = 1 setting.

Model Whisper Models NAP
B = 1 B = 5 %WER

Small 0.0480 0.0507 7.62 0.0014
Medium 0.0722 0.1075 6.26 0.0024

Large-V2 0.1029 0.1625 5.16 0.0031

Table 6 recreates the prior success of proxies in 510

imitating model performance, in this case, sentence- 511

level WER. Furthermore, since Whisper encoders 512

pad all inputs to 30s, including an attention pooling 513

layer can discount the padding and significantly 514

improve performance. The following experiments 515

will use the medium-sized NAP with attention pool- 516

ing as default since it was found to have similar 517

performance to its larger counterpart on the devel- 518

7



Table 6: Pearson correlation between Whisper Large-V2 confidence/entropy and sentence WER. The NAPs
were trained to predict WER directly. Standard deviations in the order of ±1.0.

Dataset Whisper Large-V2 NAP NAP w/ Attention
P H S M L S M L

test.clean 13.3 16.8 32.4 36.3 33.9 43.9 49.7 47.2
test.other 51.9 60.1 38.0 42.4 43.8 49.8 59.0 61.5

opment sets but with a 23% smaller RTF.519

Figure 5 shows the filtered corpus WER of520

test.clean and test.other when removing521

the worst examples according to model confi-522

dence/entropy or proxy outputs. While all are suc-523

cessful on test.other, sequence-level confidence524

and entropy significantly suffer on test.clean525

showing increasing corpus WER in certain regions526

when supposedly removing bad examples, a sign527

of over-confidence. This failure on test.clean528

could have been somewhat predicted by the small529

correlations in Table 6 while NAPs with attention530

show a significantly better correlation performance531

with sentence WER.532
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Figure 5: Measuring the corpus WER of Whisper
Large-V2 on a filtered dataset when removing the
worst examples according to some metric.

Figure 6 shows results for resource allocation,533

where examples are allocated to a Whisper Small534

or Large-V2 based on some performance-based re-535

lated metric. Again, deferral systems using NAPs536

(with attention) significantly outperform decoder537

uncertainty-based selection schemes. In fact, the538

best-performing NAP here was one trained on the539

number of errors in a transcription, rather than the540

WER. This is simply because the ordinate in Figure541

6 is the corpus WER, rather than the average sen-542

tence WER. This is proportional to the error count543

in the whole corpus, making this a more suitable544

optimization target. Finally, we note that resource545

optimization by training a proxy to predict a differ-546

ence in WER or errors is not presented here. Since547

the Whisper Small and Large-V2 make the same548

number of word errors in approximately 75% of549

examples on the training set, training a proxy on 550

such a sparse label set is difficult. 551
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Figure 6: Resource allocation: Measuring corpus
WER and RTF when allocating inputs between a
Whisper Small and Large-V2 according to a metric.

5 Conclusion 552

For many downstream sequence-to-sequence tasks, 553

only attributes of the output sequence are needed, 554

and not the output itself. In this paper, we propose 555

a simple efficient framework for directly estimat- 556

ing scalar sequence-level attributes using only the 557

source. While conditioning on the decoding can 558

provide performance gains, this fundamentally de- 559

feats the idea behind the inference-efficient Non- 560

Autoregressive Proxies which make them useful 561

and practical for preemptive performance predic- 562

tion. We show that NAPs can learn information- 563

theoretic uncertainties as well as performance met- 564

rics, such as BERTScores for MT or WERs for 565

ASR, in terms of both mimicking attribute score 566

ranks and the impact on downstream tasks. For 567

MT systems they outperform a deep ensemble on 568

OOD detection with an order of magnitude higher 569

inference speed. Furthermore, NAPs are able to 570

outperform predictive uncertainty on downstream 571

tasks such as data filtering and resource optimiza- 572

tion on both ASR and MT tasks. 573
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Limitations574

This work only investigates using proxies to esti-575

mate metrics for encoder-decoder models, and the576

approach is not directly applicable to decoder-only577

transformers such as language models unless mod-578

ifications are made to the proxy framework. Fur-579

thermore, the aim of this piece of work is inference-580

efficient and preemptive prediction of performance581

using only the source. Future work can extend the582

work to Autoregressive Proxy models that consider583

the decoded output as well, which could improve584

performance at the cost of no longer being efficient585

and feasible to the downstream tasks considered586

such as resource allocation.587

References588

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam589
Shazeer. 2015. Scheduled sampling for sequence pre-590
diction with recurrent neural networks. Conference591
on Neural Information Processing Systems.592

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and593
Josip Djolonga. 2020. Fast differentiable sorting594
and ranking. International Conference on Machine595
Learning.596

Tom Brown, Benjamin Mann, Nick Ryder, Melanie597
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind598
Neelakantan, Pranav Shyam, Girish Sastry, Amanda599
Askell, et al. 2020. Language models are few-shot600
learners. Advances in neural information processing601
systems, 33:1877–1901.602

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,603
Jan Niehues, Sebastian Stüker, Katsuitho Sudoh,604
Koichiro Yoshino, and Christian Federmann. 2017.605
Overview of the iwslt 2017 evaluation campaign. In-606
ternational Workshop on Spoken Language Transla-607
tion.608

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,609
Maarten Bosma, Gaurav Mishra, Adam Roberts,610
Paul Barham, Hyung Won Chung, Charles Sutton,611
Sebastian Gehrmann, et al. 2022. Palm: Scaling612
language modeling with pathways. arXiv preprint613
arXiv:2204.02311.614

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-615
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi616
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.617
2022. Scaling instruction-finetuned language models.618
arXiv preprint arXiv:2210.11416.619

Cody Coleman, Christopher Yeh, Stephen Mussmann,620
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,621
Jure Leskovec, and Matei Zaharia. 2020. Selection622
via proxy: Efficient data selection for deep learning.623
International Conference on Learning Representa-624
tions.625

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 626
Vishrav Chaudhary, Guillaume Wenzek, Francisco 627
Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 628
moyer, and Veselin Stoyanov. 2020. Unsupervised 629
cross-lingual representation learning at scale. Associ- 630
ation for Computational Linguistics. 631

Charles Corbière, Nicolas Thome, Avner Bar-Hen, 632
Matthieu Cord, and Patrick Pérez. 2019. Address- 633
ing failure prediction by learning model confidence. 634
Conference on Neural Information Processing Sys- 635
tems. 636

Armen Der Kiureghian and Ove Ditlevsen. 2009. 637
Aleatory or epistemic? does it matter? Structural 638
safety. 639

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 640
Kristina Toutanova. 2019. Bert: Pre-training of deep 641
bidirectional transformers for language understand- 642
ing. Conference of the North American Chapter of 643
the Association for Computational Linguistics: Hu- 644
man Language Technologies. 645

Ran El-Yaniv and Yair Wiener. 2010. On the founda- 646
tions of noise-free selective classification. Journal of 647
Machine Learning Research. 648

Gunnar Evermann and Philip C. Woodland. 2000. Large 649
vocabulary decoding and confidence estimation using 650
word posterior probabilities. International Confer- 651
ence. on Acoustics, Speech and Signal Processing 652
(ICASSP). 653

Yassir Fathullah and Mark J. F. Gales. 2022. Self- 654
distribution distillation: Efficient uncertainty estima- 655
tion. Uncertainty in Artificial Intelligence. 656

Yassir Fathullah, Mark J.F. Gales, and Andrey Malinin. 657
2021. Ensemble distillation approaches for grammat- 658
ical error correction. International Conference on 659
Acoustics, Speech and Signal Processing (ICASSP). 660

Yassir Fathullah, Guoxuan Xia, and Mark J. F. Gales. 661
2023. Logit-based ensemble distribution distillation 662
for robust autoregressive sequence uncertainties. Un- 663
certainty in Artificial Intelligence. 664

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, 665
Frédéric Blain, Francisco Guzmán, Mark Fishel, 666
Nikolaos Aletras, Vishrav Chaudhary, and Lucia Spe- 667
cia. 2020. Unsupervised quality estimation for neural 668
machine translation. Transactions of the Association 669
for Computational Linguistics. 670

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a 671
bayesian approximation: Representing model uncer- 672
tainty in deep learning. International Conference on 673
Machine Learning (ICML). 674

Hannes Gamper, Dimitra Emmanouilidou, Sebastian 675
Braun, and Ivan J Tashev. 2020. Predicting word 676
error rate for reverberant speech. International Con- 677
ference on Acoustics, Speech and Signal Processing 678
(ICASSP). 679

9



Yonatan Geifman and Ran El-Yaniv. 2017. Selective680
classification for deep neural networks. International681
Conference on Neural Information Processing Sys-682
tems.683

Anmol Gulati, Chung-Cheng Chiu, James Qin, Jiahui684
Yu, Niki Parmar, Ruoming Pang, Shibo Wang, Wei685
Han, Yonghui Wu, Yu Zhang, and Zhengdong Zhang.686
2020. Conformer: Convolution-augmented trans-687
former for speech recognition. Interspeech.688

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-689
berger. 2017. On calibration of modern neural net-690
works. International Conference on Machine Learn-691
ing.692

Dan Hendrycks and Kevin Gimpel. 2017. A baseline for693
detecting misclassified and out-of-distribution exam-694
ples in neural networks. In International Conference695
on Learning Representations (ICLR).696

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.697
Distilling the knowledge in a neural network. Con-698
ference on Neural Information Processing Systems699
Deep Learning Workshop.700

Stephen C Hora. 1996. Aleatory and epistemic uncer-701
tainty in probability elicitation with an example from702
hazardous waste management. Reliability Engineer-703
ing & System Safety.704

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,705
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-706
rahman Mohamed. 2021. Hubert: Self-supervised707
speech representation learning by masked prediction708
of hidden units. IEEE/ACM Transactions on Audio,709
Speech, and Language Processing.710

Philipp Koehn. 2009. Statistical machine translation.711
Cambridge University Press.712

Aviral Kumar and Sunita Sarawagi. 2019. Calibration713
of encoder decoder models for neural machine trans-714
lation. arXiv arXiv:1903.00802.715

Balaji Lakshminarayanan, Alexander Pritzel, and716
Charles Blundell. 2017. Simple and scalable pre-717
dictive uncertainty estimation using deep ensembles.718
Advances in neural information processing systems,719
30.720

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,721
Kevin Gimpel, Piyush Sharma, and Radu Soricut.722
2020. Albert: A lite bert for self-supervised learning723
of language representations. International Confer-724
ence on Learning Representations (ICLR).725

Steven Landgraf, Kira Wursthorn, Markus Hillemann,726
and Markus Ulrich. 2023. Dudes: Deep uncertainty727
distillation using ensembles for semantic segmenta-728
tion. arXiv, arXiv:2303.09843.729

Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt,730
and Gang Hua. 2015. A convolutional neural network731
cascade for face detection.732

Qiujia Li, David Qiu, Yu Zhang, Bo Li, Yanzhang He, 733
Philip C. Woodland, Liangliang Cao, and Trevor 734
Strohman. 2021. Confidence estimation for attention- 735
based sequence-to-sequence models for speech recog- 736
nition. International Conference on Acoustics, 737
Speech and Signal Processing. 738

Hank Liao and Mark JF Gales. 2007. Uncertainty decod- 739
ing for noise robust speech recognition. Interspeech. 740

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 741
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 742
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 743
Roberta: A robustly optimized BERT pretraining 744
approach. arXiv, arXiv:1907.11692. 745

Andrey Malinin and Mark Gales. 2021. Uncertainty 746
estimation in autoregressive structured prediction. In- 747
ternational Conference on Learning Representations. 748

Andrey Malinin, Bruno Mlodozeniec, and Mark J. F. 749
Gales. 2020. Ensemble distribution distillation. In- 750
ternational Conference on Learning Representations. 751

Chris Manning and Hinrich Schütze. 1999. Foundations 752
of Statistical Natural Language Processing. MIT 753
Press. 754

Pascal Notin, José Miguel Hernández-Lobato, and Yarin 755
Gal. 2021. Improving black-box optimization in 756
VAE latent space using decoder uncertainty. Ad- 757
vances in Neural Information Processing Systems. 758

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San- 759
jeev Khudanpur. 2015. Librispeech: An asr corpus 760
based on public domain audio books. International 761
Conference on Acoustics, Speech and Signal Process- 762
ing (ICASSP). 763

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 764
Jing Zhu. 2002. Bleu: a method for automatic evalu- 765
ation of machine translation. Association for Compu- 766
tational Linguistics. 767

Matt Post. 2018. A call for clarity in reporting BLEU 768
scores. Conference on Machine Translation: Re- 769
search Papers. 770

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock- 771
man, Christine McLeavey, and Ilya Sutskever. 2022. 772
Robust speech recognition via large-scale weak su- 773
pervision. arXiv, arXiv:2212.04356. 774

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 775
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 776
Wei Li, and Peter J. Liu. 2020. Exploring the limits 777
of transfer learning with a unified text-to-text trans- 778
former. Journal of Machine Learning Research. 779

Anton Ragni, Qiujia Li, Mark JF Gales, and Yongqiang 780
Wang. 2018. Confidence estimation and deletion pre- 781
diction using bidirectional recurrent neural networks. 782
IEEE Spoken Language Technology Workshop (SLT). 783

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, 784
and Wojciech Zaremba. 2016. Sequence level train- 785
ing with recurrent neural networks. International 786
Conference on Learning Representations. 787

10



Max Ryabinin, Andrey Malinin, and Mark J. F. Gales.788
2021. Scaling ensemble distribution distillation to789
many classes with proxy targets. Conference on Neu-790
ral Information Processing Systems.791

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.792
2020. Bleurt: Learning robust metrics for text gener-793
ation. Annual Meeting of the Association for Compu-794
tational Linguistics.795

Lucia Specia, Frédéric Blain, Marina Fomicheva, Er-796
ick Fonseca, Vishrav Chaudhary, Francisco Guzmán,797
and André F. T. Martins. 2020. Findings of the WMT798
2020 shared task on quality estimation. In Proceed-799
ings of the Fifth Conference on Machine Translation,800
pages 743–764, Online. Association for Computa-801
tional Linguistics.802

Lucia Specia, Frédéric Blain, Marina Fomicheva,803
Chrysoula Zerva, Zhenhao Li, Vishrav Chaudhary,804
and André F. T. Martins. 2021. Findings of the WMT805
2021 shared task on quality estimation. Proceed-806
ings of the Sixth Conference on Machine Translation807
(WMT).808

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.809
Sequence to sequence learning with neural networks.810
Advances in neural information processing systems,811
27.812

Surat Teerapittayanon, Bradley McDanel, and H.T.813
Kung. 2016. Branchynet: Fast inference via early814
exiting from deep neural networks. International815
Conference on Pattern Recognition (ICPR).816

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob817
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz818
Kaiser, and Illia Polosukhin. 2017. Attention is all819
you need. Advances in neural information processing820
systems, 30.821

Paul Viola and Michael Jones. 2001. Rapid object de-822
tection using a boosted cascade of simple features.823
IEEE Computer Society Conference on Computer824
Vision and Pattern Recognition (CVPR).825

Xiaofang Wang, Dan Kondratyuk, Eric Christiansen,826
Kris M. Kitani, Yair Movshovitz-Attias, and Elad827
Eban. 2022. Wisdom of committees: An overlooked828
approach to faster and more accurate models. In-829
ternational Conference on Learning Representations830
(ICLR).831

Ronald J. Williams and David Zipser. 1989. A learn-832
ing algorithm for continually running fully recurrent833
neural networks. Neural Computation.834

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien835
Chaumond, Clement Delangue, Anthony Moi, Pier-836
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,837
Joe Davison, Sam Shleifer, et al. 2020. Transformers:838
State-of-the-art natural language processing. Con-839
ference on Empirical Methods in Natural Language840
Processing: System Demonstrations.841

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, 842
Mohammad Norouzi, Wolfgang Macherey, Maxim 843
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 844
2016. Google’s neural machine translation system: 845
Bridging the gap between human and machine trans- 846
lation. arXiv preprint arXiv:1609.08144. 847

Guoxuan Xia and Christos-Savvas Bouganis. 2022. 848
Augmenting softmax information for selective clas- 849
sification with out-of-distribution data. Computer 850
Vision – Asian Conference on Computer Vision. 851

Guoxuan Xia and Christos-Savvas Bouganis. 2023. 852
Window-based early-exit cascades for uncertainty 853
estimation: When deep ensembles are more 854
efficient than single models. arXiv preprint 855
arXiv:2303.08010. 856

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, 857
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and 858
Colin Raffel. 2021. mt5: A massively multilingual 859
pre-trained text-to-text transformer. In Proceedings 860
of the 2021 Conference of the North American Chap- 861
ter of the Association for Computational Linguistics: 862
Human Language Technologies, pages 483–498. 863

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021. 864
Bartscore: Evaluating generated text as text gener- 865
ation. Advances in Neural Information Processing 866
Systems. 867

Chrysoula Zerva, Frédéric Blain, Ricardo Rei, Piyawat 868
Lertvittayakumjorn, José G. C. de Souza, et al. 2022. 869
Findings of the WMT 2022 shared task on quality 870
estimation. Proceedings of the Seventh Conference 871
on Machine Translation (WMT). 872

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. 873
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu- 874
ating text generation with bert. International Confer- 875
ence on Learning Representations. 876

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris- 877
tian M Meyer, and Steffen Eger. 2019. Moverscore: 878
Text generation evaluating with contextualized em- 879
beddings and earth mover distance. Conference on 880
Empirical Methods in Natural Language Processing 881
and Joint Conference on Natural Language Process- 882
ing (EMNLP-IJCNLP). 883

Yikai Zhou, Baosong Yang, Derek F Wong, Yu Wan, 884
and Lidia S Chao. 2020. Uncertainty-aware curricu- 885
lum learning for neural machine translation. In Pro- 886
ceedings of the 58th Annual Meeting of the Asso- 887
ciation for Computational Linguistics, pages 6934– 888
6944. 889

Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and 890
S. Avidan. 2006. Fast human detection using a cas- 891
cade of histograms of oriented gradients. IEEE Com- 892
puter Society Conference on Computer Vision and 893
Pattern Recognition (CVPR). 894

11

https://aclanthology.org/2020.wmt-1.79
https://aclanthology.org/2020.wmt-1.79
https://aclanthology.org/2020.wmt-1.79


Table 7: Dataset statistics post tokenization.

Split Dataset #Sequences #Tokens/Sequence
src ref

Training
iwslt-2017

206,112 29.1 28.5
Validation 888 31.9 32.7
Evaluation 8,079 27.8 27.5

ID ted-iwslt-2016 3,662 46.4 54.2

OOD-1 newstest-19 1,997 35.3 39.7
newstest-20 1,418 49.1 61.6

OOD-2 khresmoi-dev 500 33.7 38.6
khresmoi-test 1,000 34.7 40.4

OOD-3 mtnt-2019 1,392 26.8 -
kftt 1,160 40.2 -

A Experimental Configuration895

This section will describe the experimental setup896

of all experiments. Details about datasets, mod-897

els, and training hyperparameters and evaluation898

are provided. Hugging Face was used extensively899

for all experiments in terms of loading various pre-900

trained models, corresponding tokenizers and pro-901

cessed datasets.902

A.1 Machine Translation903

A.1.1 Datasets904

Table 7 reports information about the datasets used905

for training and evaluation. Note that we use the906

T5 (Raffel et al., 2020) approach for English-to-907

German tokenization meaning that we prepend908

the following prompt to all inputs "translate En-909

glish to German: " prior to tokenization. We use910

iwslt-2017 training set for finetuning T5 systems911

on spoken language translation and evaluate the912

corresponding test set. We furthermore use the in-913

domain (ID) spoken language test set and OOD914

news commentary (OOD-1), medical data (OOD-915

2), and a final mixed category of noisy text and916

Japanese articles (OOD-3) for downstream tasks. 917

A.1.2 Models 918

All experiments use the T5 model. In Table 8 we 919

report parameter counts of various models. The 920

T5 is an encoder-decoder model with a language 921

model head which predicts a probability mass func- 922

tion over every token in the output sequence. The 923

proxy model consists of a T5 encoder and a head 924

for predicting uncertainty. The parameter counts 925

below are reported for a proxy with an average 926

pooling layer; an attentive pooling layer would add 927

some parameters. Note, although the embedding 928

layer is expensive parameter-wise, it is extremely 929

fast inference-wise since it is equivalent to a lookup 930

table. 931

A.1.3 Finetuning T5 Models 932

All T5 models were finetuned on the IWSLT-2017 933

(Cettolo et al., 2017) training set and evaluated 934

on several ID and OOD datasets using both Sacre- 935

BLEU (Post, 2018) and BERTScore (BS) (Zhang 936

et al., 2020), see Table 9. We set the beam size to 937

12 and used a length penalty of 0.60. 938

Table 8: Parameter counts of models. NAPs do not use a decoder during inference.

Model Embeddings Encoder Decoder Head Total

T5 Small 16.4M 35.3M 41.6M 16.4M 60.5M
NAP Small - 5.2M 40.6M

T5 Base 24.7M 109.6M 137.9M 24.7M 222.9M
NAP Base - 11.8M 121.4M

T5 Large 32.9M 334.9M 435.6M 32.9M 737.7M
NAP Large - 20.9M 355.9M
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Table 9: SacreBLEU and BERTScore performance of finetuned T5 models.

Split Dataset Small Base Large
BLEU BS BLEU BS BLEU BS

ID iwslt-2017 32.0 67.4 33.8 68.2 34.3 68.6
ted-iwslt-2016 30.9 65.2 31.9 65.9 32.3 66.3

OOD-1 newstest-19 37.3 68.0 38.9 69.8 38.9 69.9
newstest-20 29.4 64.4 30.8 65.4 31.4 65.9

OOD-2 khresmoi-dev 27.1 68.9 29.2 70.7 29.4 70.7
khresmoi-test 27.4 68.0 30.0 70.2 30.2 70.3

The learning rate was fixed to 0.0001 and the939

batch size was selected to maximize GPU memory940

usage on a single NVIDIA A100 SXM4 80GBs.941

The performance was tracked on the validation set942

10 times per epoch and training was terminated943

when performance stalled for a whole epoch.944

The table shows that increasing the size of the945

T5 model improves performance on the ID datasets.946

Surprisingly the performance gap between the base947

and large configuration is very small for most OOD948

datasets, showing that the base model is particularly949

effective despite being more than a third of the size.950

A.1.4 Training Non-Autoregressive Proxies951

We generated scores (uncertainty or BERTScore)952

from finetuned T5 Large models and used them to953

train NAP models. We used the smooth and dif-954

ferentiable extension to the Spearman Rank loss955

function (Blondel et al., 2020) which requires a956

hyperparameter controlling the level of smooth-957

ing. This hyperparameter was set to 0.000001 in958

all experiments. Similar to the section above, all959

experiments used a learning rate of 0.0001, max-960

imised batch size and training was stopped when961

performance did not improve after an epoch.962

A.1.5 Estimating Uncertainties in MT963

The experiments in this section used the training set964

of IWSLT-2017 and followed Setup 1, see Figure965

1a. The main T5 model produced sequence-level966

confidence or entropy uncertainty estimates under967

the reference sequence. The NAP model was then968

trained to capture this uncertainty. We could have969

also opted to generate sequence-level uncertainties970

using Setup 2 (see Figure 1b) but the quality of971

the uncertainties then depends on the quality of the972

decoded hypotheses. If we work with unlabelled973

datasets, we can always revert back to Setup 2 and974

train our proxy to imitate the uncertainties of the975

free-running hypotheses.976

The performance of the uncertainty estimation 977

NAP was then compared to the main model in two 978

ways. We first computed the Spearman Rank corre- 979

lation between the NAP output and the main model 980

which was given the reference output. The second 981

and more important evaluation was based on out- 982

of-distribution detection. For this task, we took one 983

in-domain dataset (IWSLT-2017 test set) and com- 984

pared it with one of the out-of-distribution datasets 985

mentioned above. We sought low uncertainties 986

for the ID dataset and high uncertainties for the 987

OOD dataset. We used the AUROC (Manning and 988

Schütze, 1999) metric for measuring detection per- 989

formance, where 50% represents a fully random 990

system. 991

A.1.6 Estimating BERTScores in MT 992

We decoded a finetuned T5 Large system (with a 993

beam of B = 12 and length-penalty of 0.60) on 994

the IWSLT-2017 training set. The decoded outputs 995

were used to compute the BERTScore for each 996

instance, following Setup 2. The NAP was then 997

trained using the exact same hyperparameters as 998

the above section. 999

Similar to the section above, the outputs of the 1000

NAP were first compared with the main model 1001

on several unseen datasets. Following, we evalu- 1002

ated the performance of this system on two down- 1003

stream tasks. First, we took a dataset and filtered 1004

out samples with the lowest estimated BERTScore 1005

and computed the average BERTScore of the re- 1006

maining samples. For a well-performing metric, we 1007

expect the average BERTScore of the remaining 1008

samples to increase monotonically. 1009

Next, we also performed a resource optimization 1010

task in which we used the NAP output to decide 1011

whether an input should be passed to a smaller (T5 1012

Small) or larger more robust (T5 Large) system. 1013

When a proxy output is above a threshold, the in- 1014

put was passed to a smaller system and otherwise to 1015
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the slower and larger system. The threshold there-1016

fore had a large impact on the performance and1017

inference speed of the two model system. By select-1018

ing different thresholds, different operating points1019

were achieved. A good system would achieve bet-1020

ter performance while deferring as few samples as1021

possible to the slower system.1022

Furthermore, we also train a NAP to predict the1023

BERTScore difference between the two models in1024

the deferral system. This can be motivated by a1025

simple example: Consider two different models, a1026

smaller M1 and a larger more robust M2. Given1027

two different inputs x1 and x2 the two models1028

achieve the following BERTScores:1029

Table 11: Simple example.

M1 M2 M2 −M1

x1 0.70 0.90 0.20
x2 0.50 0.40 -0.10

Clearly, the first input is easier to handle since1030

both models achieve higher BERTScores with M21031

being stronger. If we performed an allocation based1032

on the isolated performance of a single model it-1033

self, we would give the simpler example x1 to the1034

smaller model M1 and the harder input x2 to the1035

larger model achieving an average performance of1036

0.55 BERTScore. However, if we instead perform1037

an allocation based on the performance difference,1038

and refer samples to the stronger model M2 where1039

it dominates (and vice versa), we would allocate1040

x1 to model M2 and x2 to model M1 achieving1041

an average score of 0.70. This shows that an al-1042

location system should focus on the performance1043

difference of the relevant metric.1044

A.2 Automatic Speech Recognition1045

A.2.1 Datasets1046

Table 12 includes information about the Lib-1047

riSpeech corpus (Panayotov et al., 2015). The num-1048

ber of words per sequence is computed based on the 1049

Whisper text normalization scheme. In this task, 1050

we do not finetune the ASR models and do not use 1051

any out-of-domain datasets. Instead, focus is on the 1052

noisy validation.other and test.other sets. 1053

Table 12: Dataset statistics.

Dataset #Seq. #Words per
Sequence

train.clean.100 28,539 35.0
train.clean.360 104,014 34.8
train.other.500 148,688 32.7

valid.clean 2,703 20.3
valid.other 2,864 18.0

test.clean 2,620 20.2
test.other 2,939 18.0

A.2.2 Models 1054

In Table 10 we report parameter counts of various 1055

models. Whisper is an encoder-decoder model with 1056

a language model head that predicts a probability 1057

mass function over every token in the output se- 1058

quence. The proxy model consists of a Whisper 1059

encoder and a head for predicting uncertainty. The 1060

parameter counts below are reported for a NAP 1061

with an average pooling layer; an attentive pooling 1062

layer would add some parameters. 1063

A.2.3 Training Non-Autoregressive Proxies 1064

We generated sentence-level word error rates 1065

(WERs) from the Whisper Large-V2 model us- 1066

ing greedy search. While it was found that a 1067

beam of B = 5 was the best-performing setting in 1068

the original work (Radford et al., 2022), this was 1069

only achieved using a highly non-standard decod- 1070

ing mechanism; simply using beam search with 1071

B = 5 actually degrades performance. Therefore, 1072

we opted for a simpler setup using greedy search, 1073

see Table 13. 1074

Table 10: Parameter counts of models. NAPs do not use a decoder during inference.

Model Encoder Decoder Head Total

Whisper Small 88.1M 153.6M 39.8M 241.7M
NAP Small - 14.2M 102.3M

Whisper Medium 307.2M 456.6M 53.1M 763.9M
NAP Medium - 25.2M 332.4M

Whisper Large-v2 636.8M 906.5M 66.4M 1543.3M
NAP Large-v2 - 39.3M 676.1M
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Table 13: Baseline %WER performance with
greedy decoding.

Dataset Small Medium Large-v2

valid.clean 3.70 2.69 2.48
valid.other 7.35 5.46 4.96

test.clean 3.45 2.88 2.87
test.other 7.62 6.26 5.16

When generating the sentence WERs on the1075

training data of the LibriSpeech corpus, it was1076

found that approximately half of all instances were1077

correctly decoded. This would present problems1078

for a ranking loss and we instead opted to train1079

all NAP models using the Pearson correlation loss.1080

Similar to the section above, all experiments used a1081

learning rate of 0.0001, maximised batch size and1082

training was stopped when performance did not1083

improve after an epoch.1084

A.3 Estimating WERs in ASR1085

Following the exact same line of experiments as1086

in Section A.1.6. A NAP was trained to imitate1087

the sentence-level WERs and was evaluated on two1088

downstream tasks, filtering and resource allocation.1089

Note that we train additional proxy systems to cap-1090

ture the total number of errors (instead of the error1091

rate) since this is more aligned with the resource1092

allocation task. The resource allocation was done1093

between the Whisper Large-V2 and Whisper Small1094

models.1095

We are unable to train a system to capture the er-1096

ror difference for the resource allocation task since1097

training the NAP was unstable. Approximately1098

74% of all error differences on the training set were 1099

0 making it a highly imbalanced dataset. 1100

B Ablation Studies 1101

We run all of our ablation studies on capturing 1102

mutual information of a T5 Large ensemble on the 1103

machine translation task. The ensemble consists of 1104

three members. 1105

Table 14: NAP OOD performance using MI I.

Dataset NAP Large
mae rmse pcc scc

newstest-19 67.3 66.9 69.6 70.5
newstest-20 74.9 73.6 76.0 78.1

khresmoi-dev 77.9 78.2 79.1 77.9
khresmoi-test 80.5 81.0 81.5 81.2

mtnt-2019 69.5 71.4 73.4 71.4
kftt 50.2 50.2 52.8 54.7

average 70.1 70.2 72.1 72.3

B.1 Choice of Loss Function 1106

All of the experiments in the main paper used a dif- 1107

ferentiable Spearman correlation coefficient (scc) 1108

loss. This section explores alternative loss func- 1109

tions including mean absolute error (mae), root 1110

mean squared error (rmse) and pearson correlation 1111

coefficient (pcc), see Table 14. 1112

The correlation-based loss functions are consis- 1113

tently better than mean absolute and root mean 1114

squared error losses, possibly because the correla- 1115

tion losses do not require accurate prediction of the 1116

uncertainties, only their ordering. 1117

Linear 

Softmax

Linear 

Tanh

Linear 

Encoder Output

Average Pooling

(a) Standard.

Trainable Query

Linear 

Softmax

Linear 

Tanh

Linear 

Encoder Output

Attention

(b) With attentive pooling.

Figure 7: The standard three-layer network is used on top of a non-autoregressive proxy. When average pooling
the encoder output is restrictive, an attention layer is used instead with a trainable query.
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Figure 8: Various configurations of proxy heads investigated.

B.2 Predictor Architecture1118

We also investigate the architecture, and specifi-1119

cally the activations of the MLP that are added on1120

top of the NAP encoder, see Figure 7. In a toy ex-1121

ample, we found that a two-layer (with tanh activa-1122

tion) network is better able to predict entropy scores1123

from categorical predictions. This motivates using1124

a three-layer network with a softmax activation to1125

produce ’virtual’ probabilities. This section also1126

explores a range of different (parameter-matched)1127

two-layer and three-layer MLPs with various acti- 1128

vation functions, see Figure 8. 1129

Table 15 shows the performance of various 1130

MLPs (with average pooling) in the out-of- 1131

distribution detection task. The two-layer and 1132

three-layer MLPs are parameter matched. The final 1133

model 3L SM is the default MLP head used in all 1134

experiments. Clearly, the use of a softmax activa- 1135

tion is extremely important for achieving the best 1136

possible performance. 1137

Table 15: Detection performance of NAPs using MI I.

Split Dataset
NAP Large

2L 2L 2L 2L 3L 3L 3L 3L 3L
Tanh SM LN-Exp LN-Tanh ReLU Tanh LN-Exp LN-Tanh SM

OOD-1 newstest-19 56.6 67.7 50.5 48.4 46.4 57.2 59.9 59.7 70.5
newstest-20 66.2 75.4 58.6 56.0 47.0 68.2 67.7 63.2 78.1

OOD-2 khresmoi-dev 55.6 77.5 66.4 49.8 39.2 52.8 65.1 59.1 77.9
khresmoi-test 56.0 80.6 67.4 51.8 38.9 53.8 65.2 62.2 81.2

OOD-3 mtnt-2019 54.1 71.6 48.4 52.6 63.4 47.8 61.4 50.6 71.4
kftt 55.2 50.4 55.9 52.0 43.0 62.0 58.1 44.8 54.7

average 57.3 70.5 57.9 51.8 46.3 56.9 62.9 56.6 72.3

16



Table 16: Parameter counts and inference time of models on iwslt-2017.

Layers Embeddings Encoder Head Total Inference Time

Default 24L 32.9M 334.9M 20.9M 355.9M 17.9s
21L 32.9M 289.2M 20.9M 310.1M 15.3s
18L 32.9M 259.4M 20.9M 280.4M 12.7s
15L 32.9M 221.7M 20.9M 242.7M 9.9s
12L 32.9M 184.0M 20.9M 204.9M 7.5s

B.3 Intermediate Outputs of Encoder1138

It is not necessary to pick the final layer output1139

as the input to the predictor MLP. One can use1140

intermediate layer outputs as well. Previous work1141

has found that using intermediate outputs can even1142

improve upon a task (Hsu et al., 2021; Zhang et al.,1143

2020). Using intermediate layer outputs also leads1144

to faster inference and lower parameter counts, see1145

Table 16.1146

According to Table 17, the performance of NAPs1147

remains arguably consistent when utilizing inter-1148

mediate outputs down until the 12th layer, where1149

performance starts dropping. Therefore, it is pos-1150

sible based on this experiment to remove the top1151

9 layers of the T5 encoder reducing the total pa-1152

rameter count by 32% and inference time by 45%1153

without notably sacrificing performance.1154

B.4 Mismatched Pretrained Encoders1155

This section investigates if it is possible to use al-1156

ternative mismatched encoders as the backbone for1157

a proxy system when predicting sequence-level at-1158

tributes for the T5 model. We, therefore, investigate1159

replacing the T5 encoder with RoBERTa (Liu et al.,1160

2019), XLM-RoBERTa (Conneau et al., 2020) or1161

the lightweight ALBERT (Lan et al., 2020). See1162

Table 18 for information about the model size and1163

inference time.1164

The detection performance of alternative back- 1165

bones such as base RoBERTa and base XLM- 1166

RoBERTa are slightly worse but with significantly 1167

lower inference times. The large RoBERTa and 1168

XLM-RoBERTa are approximately as fast as the T5 1169

Encoder-based proxy but only the latter achieves 1170

similar detection performance. The lightweight 1171

ALBERT pretrained backbone significantly suffers 1172

at this task. 1173

B.5 Decorrelating Epistemic and Aleatoric 1174

Uncertainty 1175

Epistemic and aleatoric uncertainties are of dif- 1176

ferent natures. The former is a measure of the 1177

lack of knowledge in our model parameters and 1178

model choice under the given dataset. As the 1179

dataset increases the epistemic uncertainty should 1180

decrease. The latter is an intrinsic measure of un- 1181

certainty in the data itself which might be caused 1182

by noisy data collection methods or labelling er- 1183

rors. Therefore, we propose a new loss function in 1184

which we aim to maximise the correlation between 1185

the proxy outputs {ŝi}i and teacher sequence-level 1186

epistemic scores {sei}i whilst also decorrelating 1187

its outputs from teacher sequence-level aleatoric 1188

scores {sai}i: 1189

Lscc

(
{ŝi}, {sei}

)
− α

∣∣∣Lscc

(
{ŝi}, {sai}

)∣∣∣ (2) 1190

Table 17: Detection performance of NAPs using MI I.

Split Dataset NAP Large
24L 21L 18L 15L 12L

OOD-1 newstest-19 70.5 68.7 69.1 68.6 68.1
newstest-20 78.1 77.0 77.1 76.0 75.4

OOD-2 khresmoi-dev 77.9 78.5 77.2 77.0 76.4
khresmoi-test 81.2 81.2 80.3 80.2 80.1

OOD-3 mtnt-2019 71.4 70.0 70.9 72.8 70.6
kftt 54.7 48.9 54.5 56.0 48.8

average 72.3 70.7 71.5 71.8 69.9

17



Table 18: Parameter counts and inference time of models on iwslt-2017.

Layers Embeddings Encoder Head Total Inference Time

T5 Large Encoder 32.9M 334.9M 20.9M 355.9M 17.9s

RoBERTa Base 39.0M 124.1M 11.8M 135.9M 4.3s
RoBERTa Large 52.0M 354.3M 20.9M 375.3M 17.5s

XLM-RoBERTa Base 192.4M 277.5M 11.8M 289.3M 4.5s
XLM-RoBERTa Large 256.5M 558.8M 20.9M 579.8M 19.2s

ALBERT Base 3.9M 11.1M 11.8M 22.9M 4.8s
ALBERT Large 3.9M 16.6M 20.9M 37.6M 19.4s

Table 19: Detection performance of NAPs using MI I.

Split Dataset T5 Encoder RoBERTa XLM-RoBERTa ALBERT
Large Base Large Base Large Base Large

OOD-1 newstest-19 70.5 64.3 62.6 68.8 69.3 60.8 63.2
newstest-20 78.1 72.0 69.1 76.8 77.4 67.9 68.0

OOD-2 khresmoi-dev 77.9 78.7 77.2 69.2 80.0 73.2 71.0
khresmoi-test 81.2 81.9 78.0 72.1 83.0 75.8 74.2

OOD-3 mtnt-2019 71.4 61.6 62.1 61.7 61.6 63.5 68.3
kftt 54.7 61.7 62.1 62.6 62.3 51.4 43.0

average 72.3 70.1 68.5 68.6 72.3 65.4 64.6

where α controls the level of decorrelation. Table1191

20 shows that by using this style of loss function,1192

the proxy can be made to perform significantly1193

better. The base model α = 0.0 already outper-1194

forms a deep ensemble at detection, and further-1195

more, setting α = 1.0 shows even better overall1196

performance.1197

Table 20: NAP OOD performance using MI I.

Dataset NAP Large
α = 0.0 0.5 1.0 2.0

newstest-19 70.5 76.1 76.0 75.3
newstest-20 78.1 85.9 86.3 84.0

khresmoi-dev 77.9 86.1 88.0 83.5
khresmoi-test 81.2 86.8 87.7 83.3

mtnt-2019 71.4 61.7 57.3 51.1
kftt 54.7 70.2 76.5 77.9

average 72.3 77.8 78.6 75.9

C Deferral Between Whisper Systems1198

This section will provide a brief look into the in-1199

ference speed or performance gains that can be1200

achieved by using a deferral system. Following1201

the results in Figure 6, Table 21 shows the WER 1202

or RTF of various deferral systems (allocating be- 1203

tween Whisper Small and Large-V2) when operat- 1204

ing at the Whisper Medium RTF or WER respec- 1205

tively. The best deferral system, a NAP trained on 1206

the number of errors of Whisper Small, reduces 1207

WER by 11% while matching the inference speed 1208

of Whisper Medium. For the same WER perfor- 1209

mance, this system can reduce the RTF by 26%. 1210

Table 21: Columns show (1) corpus WER per-
formance of various deferral systems operating at
the same RTF as Whipser Medium and (2) the
RTF when operating at the same WER as Whipser
Medium.

Selection WER RTF

Whisper Medium 6.26 0.0722

Confidence Selection 6.19 0.0707
Entropy Selection 6.09 0.0677

NAP trained on WER of Large 5.94 0.0645
NAP trained on WER of Small 5.89 0.0640
NAP trained on Error of Large 5.77 0.0596
NAP trained on Error of Small 5.57 0.0534
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