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Abstract

Improving the effectiveness and efficiency of001
large language models (LLMs) simultaneously002
is a critical yet challenging research goal. In003
this paper, we find that low-rank pre-training,004
normall considered as efficient methods that005
will compromise performance, can be scal-006
ably effective when reduced parameters are007
precisely targeted. Specifically, by applying008
low-dimensional module only to the attention009
layer – resolves this issue and enhances both010
effectiveness and efficiency. We refer to this011
structure as Low-dimensional Projected Atten-012
tion (LPA) and provide an explanatory analysis.013
Through extensive experimentation at parame-014
ter scales of 130M, 370M, and scaling up to 3B,015
we have validated the effectiveness and scala-016
bility of LPA. Our results show that LPA model017
can save up to 12.4% in time while achieving an018
approximate 5% improvement in test perplexity019
(ppl) and on downstream tasks compared with020
vanilla Transformer.021

1 Introduction022

Improving large language models’ (LLMs) (Bom-023

masani et al., 2021; Han et al., 2021; Brown et al.,024

2020; Touvron et al., 2023) effectiveness and ef-025

ficiency simultaneously presents challenges due026

to inherent trade-offs, which remains a critical re-027

search goal in the research field. Among series028

methods proposed to alleviate this issue, parameter-029

efficient fine-tuning (Houlsby et al., 2019; Li and030

Liang, 2021; Zaken et al., 2021; Ding et al., 2023b)031

offer valuable insights. Notably, low-rank or low-032

dimension techniques such as LoRA (Hu et al.,033

2021) demonstrate on-par or even enhanced perfor-034

mance over traditional full parameter fine-tuning035

with reduced computational resources.036

Intuitively, besides the fine-tuning phase, adapt-037

ing LoRA’s principles to the pre-training phase038

through low-rank decomposition is both viable and039

promising, which can yield substantial benefits if040

effectiveness is maintained. However, existing stud- 041

ies have found that the direct low-rank pre-training 042

often compromises the effectiveness. To reduce 043

such effects, strategies such as iteratively accumu- 044

lating low-rank updates (Lialin et al., 2023) or in- 045

tegrating low-rank decomposition directly into the 046

gradient (Zhao et al., 2024) have been suggested. 047

Whether it’s the original LoRA or these improved 048

methods, they all involve performing low-rank de- 049

composition and updates on "amounts of change" 050

(weights or gradients), and do not reduce the num- 051

ber of parameters in the model itself, which face 052

obstacles in maintaining efficiency during subse- 053

quent inference and fine-tuning stages. Therefore, 054

an ideal scenario would be permanently reducing 055

the number of parameters (computational load) 056

through efficient methods, without compromising 057

or even enhancing the performance of pre-trained 058

models. 059

To achieve this goal, is it feasible to directly 060

perform low-rank decomposition on the matrices 061

in the model itself, rather than on the changes? 062

Current limited research suggests that existing low- 063

rank pre-training methods experience performance 064

losses and uncertainties (Lialin et al., 2023; Zhao 065

et al., 2024), with even fewer studies exploring 066

more direct approaches. However, in this paper, we 067

demonstrate that such direct low-rank pre-training 068

is feasible, provided that the parameters to be re- 069

duced are more precisely targeted. Specifically, we 070

describe the reduction of parameters as replacing 071

the original matrices with low-dimensional mod- 072

ules. We find that using low-dimensional modules 073

in the feed-forward neural (FFN) layers or across 074

all layers negatively impacts the model’s effective- 075

ness. However, we observe that employing them in 076

the attention layers consistently allows the model 077

to outperform the original Transformer. We refer 078

to this structure as Low-dimensional Projected At- 079

tention (LPA), provide an explanation, and experi- 080

mentally demonstrate its ability to reliably enhance 081
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both the efficiency and effectiveness of the model.082

We validate the effectiveness of the LPA model083

on two Transformer model configurations, assess-084

ing both pre-training and downstream task perfor-085

mance. With a particular focus on the scalability086

of LPA model, we observe that it remains effec-087

tive even when the model parameters scale up to088

3B. Furthermore, our study explores the effects of089

the hyperparameter on LPA, the necessity of in-090

tegrating the low-dimensional module into every091

sublayer of the attention layer, and how to distribute092

any extra parameters effectively.093

2 Related Work094

Low-rank Parameter-efficient Fine-tuning.095

Parameter-efficient fine-tuning optimize only a tiny096

portion of parameters while keeping the majority097

of the neural network frozen (Houlsby et al., 2019;098

Li and Liang, 2021; Lester et al., 2021; Hu et al.,099

2021; Zaken et al., 2021; Ding et al., 2023a),100

saving significant time and computational costs101

and achieving performance comparable to full102

parameter fine-tuning on many tasks (Ding et al.,103

2023b). Low-rank adaptation (LoRA) is one of the104

most effective and influential parameter-efficient105

fine-tuning methods, having found widespread106

application (Dettmers et al., 2023). The LoRA107

method involves freezing the weights W0 of the108

pre-trained model while training two low-rank109

decomposition matrices Wu and Wd, resulting in110

the output of the LoRA module being represented111

as z ← W0x + WuWdx. We drew inspiration112

from LoRA and its improvement works, adapting113

them to the pre-training process to enhance114

effectiveness and efficiency of the model.115

Low-rank Pre-training for Neural Network.116

Some efforts have focused on making pre-training117

more efficient by reducing the number of train-118

able parameters (Lin et al., 2020; Yuan et al.,119

2020), and after finding that modules with low-120

dimension often yield poor results (Bhojanapalli121

et al., 2020), many works have concentrated on122

combining two low-rank matrices to reduce the pa-123

rameter count while keeping the module dimension-124

ality constant (Schotthöfer et al., 2022; Idelbayev125

and Carreira-Perpinán, 2020; Zhao et al., 2023;126

Thangarasa et al., 2023). Current research has pre-127

dominantly emphasized refining pre-training meth-128

ods for CNN networks (Sui et al., 2024; Jaderberg129

et al., 2014) or employing smaller language mod-130

els (Kamalakara et al., 2022). However, some stud-131

ies have found that low-rank pre-training can nega- 132

tively impact model performance and training ef- 133

fectiveness, leading to the use of low-rank updates 134

to train high-rank networks or the introduction of 135

low-rank decomposition in gradient for optimiza- 136

tion (Lialin et al., 2023; Zhao et al., 2024). We 137

discover that the unsatisfactory performance of the 138

direct low-rank pre-training stems from the lack 139

of precise parameter reduction placement, which 140

guides our further in-depth exploration. 141

3 Low-dimensional Projected Attention 142

We use a low-dimensional module for replacing 143

the original weight matrix, and observe varying 144

effects of incorporating the low-dimensional struc- 145

ture in different modules. We provide an explana- 146

tory analysis of these findings and propose the Low- 147

dimensional Projected Attention (LPA). Addition- 148

ally, we examine the efficiency of this approach. 149

3.1 Low-dimensional Module 150

The low-dimensional module is constructed by se- 151

quentially connecting two low-dimensional matri- 152

ces. Specifically, given a predetermined hyper- 153

parameter r, which is typically less than din×dout
din+dout

, 154

the low-dimensional module comprises two ma- 155

trices WA ∈ Rdin×r and WB ∈ Rr×dout , where 156

din and dout represent the input and output di- 157

mensions of the parameter matrix, respectively. 158

The input data x ∈ RL×din passes through WA 159

and WB sequentially, and the forward propaga- 160

tion of the low-dimensional module is expressed 161

as z ← WB (WA(x)). The low-dimensional 162

module is employed to displace the weight met- 163

ric W ∈ Rdin×dout in linear layers of the original 164

model, such as the weight in the Query sublayer of 165

the attention layer. 166

For the classic Transformer architecture, the for- 167

ward propagation formula for the original attention 168

layer is: 169

z← S

(
xWQW

T
KxT

√
d

)
xWV WO, (1) 170

where WQ, WK , WV and WO are the parame- 171

ter matrices of the Query, Key, Value, and Output 172

layers, S is the softmax function, and d is the di- 173

mension of the attention layer. When applying low- 174

dimensional module to the attention layer, the cor- 175

responding parameters for the Query, Key, Value, 176

and Output layers are WQ1, WQ2, WK1, WK2, 177

WV 1, WV 2, WO1 and WO2, where the matrices 178
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Figure 1: An illustration of the Low-dimensional Projected Attention (LPA). The calculations in softmax function
measure the relationships between input tokens.

with subscript 1 correspond to the WA matrix of179

the low-dimensional module, and the matrices with180

subscript 2 correspond to the WB matrix. The for-181

ward propagation formula for the attention layer182

with the low-dimensional module is:183

z← S

(
xWQ1WQ2W

T
K1W

T
K2x

T

√
d

)
184

xWV 1WV 2WO1WO2. (2)185

Similarly, the forward propagation formula for the186

original FFN layer is:187

z← δ (xWU )WD, (3)188

where WU and WD are the up-projection and189

down-projection matrices of the FFN layer, and δ is190

the non-linear activation function. When applying191

the low-dimensional module to the FFN layer, the192

corresponding parameters for the up-projection and193

down-projection matrices are WU1, WU2, WD1194

and WD2. The forward propagation formula for195

the FFN layer with the low-dimensional module is:196

z← δ (xWU1WU2)WD1WD2. (4)197

3.2 Position Optimization of Low-dimensional198

Module199

The model performance may be influenced by the200

position of the low-dimensional module within the201

model, a phenomenon akin to what has been widely202

observed in the field of parameter-efficient finetun-203

ing (Zaken et al., 2021; Hu et al., 2022; Zhang et al.,204

2023; Ding et al., 2023a). In order to validate this205

influence and ascertain the appropriate position, we206

apply the low-dimensional module separately in the207

attention layers, FFN layers, and across all layers. 208

The resulting models are based on the 135M and 209

369M transformers, and we adjust the hyperparam- 210

eter r to ensure that the parameter count of these 211

models remains approximately consistent across 212

these three position settings. 213

To confirm the robustness of the optimal low- 214

dimensional module position, we apply it in two 215

different Transformer model settings, each con- 216

taining only decoders. The Model Setting 1 em- 217

ploys the Layer Normalization (Ba et al., 2016) 218

and the "ATTN(FFN)-Norm-Add" regularization 219

process, with ReLU (Fukushima, 1975) as the acti- 220

vation function. The corresponding models are pre- 221

trained on the WikiText-103 dataset (Merity et al., 222

2016), which contains 0.1B tokens. The Model Set- 223

ting 2 uses RMS Normalization and the same FFN 224

layer as in LLaMA (Touvron et al., 2023), along 225

with the "Norm-ATTN(FFN)-Add" regularization 226

process. The corresponding models are pre-trained 227

on the Pile dataset (Gao et al., 2020), using 2.6B 228

tokens for the 130M parameter model and 6.8B 229

tokens for the 370M parameter model. 230

The perplexities of these pre-trained models on 231

test datasets are presented in Table 1. The models 232

with low-dimensional modules employed across 233

all layers perform worse than the original Trans- 234

formers, consistent with the findings of Lialin et al. 235

2023. Applying the low-dimensional module to the 236

attention layers yields a considerable improvement 237
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in pre-training performance compared to its appli-238

cation to FFN layers and across all layers. Notably,239

for the 370M parameter model, the performance240

of the model with low-dimensional modules in at-241

tention layers even surpasses that of the original242

Transformer model, which suggests that employing243

the low-dimensional module in the attention layers244

can serve as a beneficial strategy.245

Transformer Low Attn Low FFN Low All

Model Setting 1

14.61(135M) 14.66(125M) 15.25(125M) 15.00(126M)
13.65(369M) 12.89(319M) 14.12(325M) 13.14(318M)

Model Setting 2

18.84(134M) 18.95(115M) 20.43(116M) 20.64(117M)
12.10(368M) 11.68(318M) 12.77(318M) 12.68(314M)

Table 1: Test perplexities for models with low-
dimensional module integration at various positions
and the original Transformer models. Low Attn, Low
FFN, and Low All separately mean applying the low-
dimensional module in the attention layers, FFN layers,
and across all layers.

3.3 Explanation for Position Optimization246

Our preliminary experiments indicate that the op-247

timal position for low-dimensional modules in the248

Transformer architecture is the attention layer. Fur-249

ther detailed observations reveal that applying low-250

dimensional modules to the FFN layers diminishes251

the model’s effectiveness compared to the original252

Transformer model, whereas applying them to the253

attention layers enhances the model’s performance,254

particularly in the 370M parameter setting.255

Lemma 1. In the attention layer, for the input vec-256

tor xi ∈ R1×din of the i-th input token, the corre-257

sponding output zi ∈ R1×dout satisfies258

zi ← S

(
xiWQW

T
KxT

√
d

)
xWV WO, (5)259

indicating that zi is dependent on all the vectors in260

the input x, especially for the computation in the261

Key, Value layers.262

There are two primary empirical explanations for263

these phenomena. First, the parameter matrix with264

low-dimensional modules can be viewed as a two- 265

step projection, which involves first mapping the 266

input data into a low-dimensional space and then 267

back into the target space. Typically, the FFN layer 268

projects the input into a high-dimensional space 269

via WU , processes it with the non-linear activation 270

function, and then maps it back to the original space 271

via WD. The heavy reliance on high-dimensional 272

space of the FFN layers means that introducing 273

low-dimensional space through low-dimensional 274

modules negatively impacts it. Additionally, for 275

each token in the input consisting of L tokens, con- 276

sidering Lemma 1 and S
(
xiWQWT

KxT

√
d

)
∈ R1×L, 277

the softmax computation in the attention layer re- 278

sults in one-dimensional weight data for L tokens, 279

indicating that the attention layer is less sensitive 280

to the dimensionality of the input space. Hence, 281

introducing a low-dimensional space has minimal 282

negative impact on the attention layer. 283

Lemma 2. In the FFN layer, the output zi ∈ 284

R1×dout corresponding to xi ∈ R1×din satisfies 285

zi ← δ (xiWU )WD, (6) 286

implying that zi is only dependent on xi instead of 287

other vectors in the input x. 288

Secondly, for the input data which comprises 289

L tokens, based on Lemma 2, the projection of 290

these L tokens in the FFN layer is independent, ef- 291

fectively processing them sequentially. In contrast, 292

based on Lemma 1, the computation in the attention 293

layer involves the relationships between each input 294

token and all L tokens. Theoretically, since the 295

projection can be optimized to any possible choice, 296

projecting data into a low-dimensional space be- 297

fore mapping it back to the target space should 298

not affect the size of the output space. However, 299

in practice, this operation tends to concentrate the 300

output in several subspaces within the target space, 301

reducing the output space size, which constrains 302

the possible output values and makes it harder to 303

identify the optimal weight point. 304

This negative impact is substantial for the FFN 305

layer, but for the attention layer, the reduced out- 306

put space implies that the data points for input 307

tokens are closer together, making their relation- 308

ships easier to capture. Consequently, applying 309

the low-dimensional module to attention layers can 310

enhance the model’s effectiveness. 311

The above presents two explanatory analyses 312

for these phenomena. However, when the orig- 313

inal model has a low parameter count, applying 314
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low-dimensional modules to the attention layer de-315

grades the effect of projection, leading to a notice-316

able decline in the model’s capacity to fit the data.317

As a result, this method is effective only for mod-318

els with a larger parameter count, with a critical319

threshold between 130M and 370M parameters, as320

identified in our pre-experiments in Section 3.2321

Therefore, applying low-dimensional modules to322

the attention layer is the optimal strategy in Trans-323

former models. This essentially involves two-step324

projection through a low-dimensional space within325

the attention layer, and we term this model architec-326

ture Low-dimensional Projected Attention (LPA).327

3.4 Methodological Efficiency328

The core architecture of the LPA model is com-329

posed of low-dimensional modules. Because of330

the lower parameter number in these modules, pre-331

training LPA model reduces memory consump-332

tion and is more conducive to large-scale training.333

Moreover, unlike other low-rank pre-training ap-334

proaches (Schotthöfer et al., 2022; Lialin et al.,335

2023), the final model generated by pre-training336

LPA model retains a low-dimensional structure, im-337

plying continued efficiency during subsequent in-338

ference and fine-tuning stages. Theoretically, com-339

pared to the original linear layer, where the input340

x ∈ RL×din undergoes forward computation with341

floating point operations (flops) at O(L · din · dout),342

utilizing the low-dimensional module reduces this343

to O(L · r · (din + dout)), considering r < din·dout
din+dout

.344

In order to experimentally verify the method-345

ological efficiency, we conduct tests on 135M,346

369M, and 3.23B Transformers with Model Set-347

ting 1 and the corresponding LPA models during348

the evaluation stage, measuring the clock time and349

GPU memory consumption on the WikiText-103350

dataset (for 135M and 369M models) and the Pile351

dataset (Gao et al., 2020) (for 3.23B models) with352

identical compute infrastructure and batch size.353

Theoretically, applying low-dimensional module354

to the attention layers reduces flops from 8L · din ·355

dout +2L2 · dout to 8L · r · (din + dout)+ 2L2 · dout.356

As presented in Table 2, both the evaluation time357

and GPU memory consumption of the LPA model358

are smaller compared to the corresponding Trans-359

former, demonstrating the methodological effi-360

ciency. Furthermore, the LPA model offers the361

potential to reduce the KV cache, as the hidden 362

states projected into the low-dimensional space can 363

be stored in place of the KV cache. 364

Params Time
pre Step

GPU
memory

Transformer 135M 153.4ms 2302MiB
LPA 125M 150.6ms 2276MiB

Transformer 369M 351.0ms 4648MiB
LPA 319M 322.9ms 4464MiB

Transformer 3.23B 6.923s 71.94GiB
LPA 2.43B 6.066s 70.26GiB

Table 2: The average evaluation time pre step and GPU
memory consumption pre device for Transformer and
LPA with various model sizes.

4 Experiments 365

Extensive experiments are conducted to validate 366

the effectiveness of LPA across models of various 367

scales, particularly emphasizing its efficacy with 368

the 3.23B models. Furthermore, we investigate the 369

impact of hyperparameter r on LPA, whether apply- 370

ing the low-dimensional module to all sublayers in 371

the attention layer is necessary, and the allocation 372

of surplus parameters. 373

4.1 Effectiveness of LPA 374

Experimental Settings. To validate the effective- 375

ness and robustness of the LPA architecture, we 376

conduct experiments with two model settings in- 377

troduced in Section 3.2, pre-training models with 378

parameter sizes of 130M and 370M. For Model 379

Setting 1, we use the WikiText-103 dataset (Mer- 380

ity et al., 2016), consisting of 0.1B tokens, and 381

set r of LPA to 256. For Model Setting 2, we pre- 382

train the models using 2.6B tokens from the Pile 383

dataset (Gao et al., 2020) for the 130M parameter 384

model and 6.8B tokens for the 370M parameter 385

model, with the LPA architecture r set to 128 or 386

256. Detailed model configurations and training 387

hyperparameters are provided in Table 9 in Ap- 388

pendix A. For the implementation of our models, 389

we leverage the Huggingface Transformers (Wolf 390

et al., 2020) and PyTorch (Paszke et al., 2019) 391

frameworks. Our computational infrastructure is 392

powered by the NVIDIA GeForce RTX 3090 (max- 393

imum GPU memory=24GB), NVIDIA A800 (max- 394

imum GPU memory=80GB), and NVIDIA A6000 395

(maximum GPU memory=48GB). 396
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Figure 2: Training loss for the 2.43B LPA model, the 3.23B Same-Dim Transformer, and the 2.49B Transformer
with nearly the same parameter count as the LPA model.

As indicated in Table 9, the parameter count397

of LPA model typically ranges from 75% to 90%398

of the corresponding Transformer, referred to as399

the Same-Dim Transformer. To compare the per-400

formance of the LPA and Transformer models un-401

der the same parameter settings, we also pre-train402

Transformer models with parameter counts nearly403

equal to those of LPA models. Following pre-404

training, we evaluate the models on test datasets,405

using perplexity (ppl) as the performance metric.406

Transformer
(Same-Dim)

Transformer
(Same-Param) LPA

Model Setting 1

14.61(135M) 14.69(128M) 14.66(125M)
13.65(369M) 13.75(319M) 12.89(319M)

Model Setting 2

18.84(134M) 19.47(116M) 18.95(115M)
12.10(368M) 12.33(318M) 11.68(318M)

Table 3: Test perplexities for all models with parameter
sizes of 130M and 370M. The model size is provided in
parentheses.

Results and analysis. The test perplexity for407

each model is presented in Table 3. Generally408

speaking, the LPA model can achieve similar or409

slightly better performance compared to the Same-410

Dim Transformer. Moreover, the performance411

of LPA model is notably superior to that of the412

Transformer with a nearly equivalent model size.413

However, for the 130M parameter size model, the414

test perplexity of the LPA model is slightly higher415

than that of the Same-Dim Transformer across two416

model settings. This could be attributed to the fact417

that with fewer parameters in the model, each pa-418

rameter has to accommodate more, thus making the419

parameter count more crucial. The integration of 420

low-dimensional modules into the attention layer 421

considerably reduces the model’s fitting capability, 422

thereby diminishing overall performance. Conse- 423

quently, employing LPA with 130M parameters 424

may not enhance model’s effectiveness and may 425

even have adverse effects. 426

Transformer
(Same-Dim)

Transformer
(Same-Param) LPA

6.45(3.23B) 6.69(2.49B) 6.11(2.43B)

Table 4: Test perplexities for all models with parameter
sizes of 3B. The model size is provided in parentheses.

4.2 Scaling up to 3.23B 427

In this section, experiments are conducted on the 428

3B-scale models, including the pre-training of 429

a 2.43B LPA model, a 3.23B Same-Dim Trans- 430

former, and a 2.49B Transformer with nearly the 431

same parameter count as the LPA model. Inspired 432

by LLaMA (Touvron et al., 2023), we adopt the 433

pre-normalization for these large models. Com- 434

pared to pre-training smaller models, we utilize a 435

larger dataset, specifically 13% of the Pile dataset, 436

amounting to 51B tokens, without data repetition 437

during pre-training. Additional hyperparameters 438

for the model architecture and training settings are 439

detailed in Table 10 in Appendix A. 440

Figure 2 illustrates the training loss for three 441

models, and Table 4 presents their perplexities on 442

the test set. The 2.43B LPA model achieves a lower 443

test perplexity than both the 3.23B and 2.49B Trans- 444

former models. Moreover, the training loss of the 445

2.43B LPA model consistently remains below those 446

of two Transformer models, particularly in the later 447

stages of pre-training. This indicates that the LPA 448
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Model Params CoLA
Mcc

SST-2
Acc

MRPC
Acc

QQP
Acc/F1

STS-B
Corr

MNLI
Acc(m/mm)

QNLI
Acc

RTE
Acc

Avg.

Transformer 369M 18.28 84.94 74.35 86.60/81.95 72.47 71.69/71.81 80.92 52.76 67.47
LPA 319M 25.46 86.51 78.92 87.44/83.06 78.77 73.73/74.20 83.26 53.60 70.72

Table 5: Test results of the pre-trained LPA and Transformer models on the GLUE benchmark. "Mcc", "Acc", "F1"
and "Corr" represent matthews correlation coefficient, accuracy, the F1 score, and pearson correlation coefficient
respectively. And "Acc(m/mm)" represents the results corresponding to matched and mismatched datasets of MNLI.

maintains a significant advantage when the model449

parameter is scaled up to 3B, suggesting substantial450

potential for application in even larger models and451

demonstrating its scalability.452

4.3 Downstream Tasks Performance453

To further demonstrate the superiority of the LPA454

model over Transformer, in addition to compar-455

ing test perplexities, we also evaluate the per-456

formance of the pre-trained 369M Transformer457

and the 319M LPA model with Model Setting 1458

on downstream tasks. Using the GLUE bench-459

mark (Wang et al.), which is widely recognized for460

natural language understanding, we conduct full-461

parameter fine-tuning on CoLA (Warstadt et al.,462

2019), SST-2 (Socher et al., 2013), MRPC (Dolan463

and Brockett, 2005), QQP (Wang et al.), STS-464

B (Wang et al.), MNLI (Williams et al., 2017),465

QNLI (Rajpurkar et al., 2016) and RTE (Dagan466

et al., 2005; Haim et al., 2006; Giampiccolo et al.,467

2007; Bentivogli et al., 2009). We perform repeated468

experiments with 3 random seeds and report the469

average results in Table 5.470

Due to the nature of decoder-only models be-471

ing less adept at classification tasks, the overall472

scores on GLUE the benchmark are relatively lower.473

However, our results indicate that pre-trained LPA474

model outperforms the Transformer, especially on475

tasks such as MRPC and STS-B, which continues476

to show that LPA model outperforms Transformer.477

4.4 Apply LPA with Different r478

For the LPA, r is the most critical hyperparameter,479

and it is essential to investigate the impact of differ-480

ent r on the performance of LPA models. We pre-481

train a 369M Transformer with Model Setting 1 and482

the corresponding LPA models with r set to 256,483

128, 64, and 32, followed by conducting repeated484

experiments with 3 random seeds and computing485

the average test perplexity for each configuration.486

Figure 3 shows the training loss curves of these487

models, and Table 6 presents the test perplexity488

results. Overall, although the performance of LPA489
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Figure 3: Training loss for Transformer and LPA models
with different r. The darker curves correspond to larger
values of r in LPA.

model degrades as r decreases, the LPA models 490

generally outperform the Same-Dim Transformer 491

in both training loss and test perplexity, which in- 492

dicates that LPA is quite tolerant to variations in 493

r. However, when the r is too low, such as 32, the 494

effectiveness of LPA is relatively inferior compared 495

to the Transformer, which may be because a very 496

low r results in a lack of crucial parameters, signif- 497

icantly impacting the model’s fitting capability. 498

Param Perplexity

Transformer 369M 13.65

LPAr=256 319M 12.89
LPAr=128 293M 13.03
LPAr=64 281M 13.19
LPAr=32 274M 13.82

Table 6: Parameter count and test perplexities for Trans-
former and LPA models with different r.

4.5 Apply Low-dimensional Module to 499

Different Sublayers in Attention 500

In the aforementioned experiments, we apply the 501

low-dimensional module to all sublayers of the 502
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attention layer, including the Query, Key, Value,503

and Output layers. In this section, we explore504

whether applying the low-dimensional module to505

only some sublayers can achieve better results. We506

design combinations of sublayers to which the low-507

dimensional module is applied based on the func-508

tional characteristics of them. Specifically, accord-509

ing to Lemma 1, the computations in the Key and510

Value layers require all the vectors in the input511

x. Additionally, the Query, Key, and Value lay-512

ers collectively handle the computation of the re-513

lationships between the input tokens. Therefore,514

we consider two configurations in the experiments:515

applying the low-dimensional module to the Key516

and Value layers, and applying it to the Query, Key,517

and Value layers, which are denoted as LPAK,V518

and LPAQ,K,V , respectively.519

Model
Setting 1

Model
Setting 2

Transformer 13.65(369M) 12.10(368M)
LPA 12.89(319M) 11.68(318M)

LPAK,V 13.29(344M) 11.73(343M)
LPAQ,K,V 12.94(331M) 11.80(330M)

Table 7: Test perplexities for LPA, LPAK,V , LPAQ,K,V ,
and the Same-Dim Transformer with parameter sizes of
370M. The model size is provided in parentheses.

The LPA, LPAK,V , LPAQ,K,V , and the Same-520

Dim Transformer with parameter sizes of 370M521

and two model settings are pre-trained, and Ta-522

ble 7 reports their test perplexities. We observe that523

the performance of both LPAK,V and LPAQ,K,V is524

slightly inferior to that of LPA, indicating that ap-525

plying the low-dimensional module to all sublayers526

in attention layer is more appropriate.527

4.6 Allocating Surplus Parameters across528

Modules529

The reduced parameter of LPA model compared to530

the Same-Dim Transformer presents an opportunity531

to allocate the saved parameters to other modules532

of the model, which is a worthwhile avenue to533

explore for further enhancing the model’s effective-534

ness. Building upon LPA model, we respectively535

allocate the parameters in three ways: (1) Attn536

Dim. Increasing the output dimensions of WQ,537

WK , WV and the input dimensions of WO in at-538

tention layers. (2) FFN Dim. Expanding the output539

dimensions of the up-project matrix WU and the540

input dimensions of the down-project matrix WD541

in the FFN layers. (3) Layer Num. Enlarging542

the number of layers in LPA model. We conduct 543

repeated experiments with Model Setting 1, using 544

the same training settings and 3 random seeds for 545

Transformer and LPA model, and the average test 546

perplexities are presented in Table 8. 547

130M
Param Size

370M
Param Size

Transformer 14.61(135M) 13.65(369M)
LPA 14.66(125M) 12.89(319M)

Attn Dim. 14.32(135M) 12.85(369M)
FFN Dim. 14.38(135M) 13.02(369M)

Layer Num. 14.39(138M) 13.04(371M)

Table 8: Test perplexities for variant models obtained
through parameter reallocation and baselines. The
model size is provided in parentheses.

Both the LPA model and the models obtained 548

through parameter reallocation exhibit lower test 549

perplexity compared to the Transformer, which in- 550

dicates that these parameter reallocation strategies 551

have a positive impact compared to the original 552

Transformer model. Notably, the models employ- 553

ing the Attn Dim. strategy demonstrate the most 554

favorable performance in terms of test perplexity, 555

indicating that allocating surplus parameters to in- 556

crease the dimensionality of attention layers leads 557

to superior results, making it the most effective 558

parameter reallocation scheme. Furthermore, com- 559

pared to LPA model, the FFN Dim. and Layer 560

Num. models exhibit higher test perplexity at the 561

370M parameter size, suggesting that augmenting 562

the FFN dimension and the layer number on top 563

of LPA architecture may be unsuitable solutions, 564

especially in the context of large parameter size. 565

5 Conclusion 566

This paper demonstrates that low-rank pre-training 567

can enhance both the effectiveness and efficiency 568

of LLMs when reduced parameters are precisely 569

targeted. By incorporating low-dimensional mod- 570

ules specifically in the attention layers, we develop 571

the Low-dimensional Projected Attention (LPA), 572

which outperforms Transformers without the effi- 573

ciency compromises. Our empirical analysis and 574

experiments show that LPA maintains its effective- 575

ness even as model parameters scale up to 3B. Addi- 576

tionally, we explore the impact of hyperparameters 577

and the optimal reallocation of surplus parameters, 578

providing a robust framework for future enhance- 579

ments in LLM pre-training. 580
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Limitations581

Despite the encouraging results demonstrated by582

this paper, certain limitations in our current study583

are worth acknowledging. First of all, our expla-584

nation in Section 3.3 is empirical rather than a rig-585

orous theoretical explanation with mathematical586

derivation. Furthermore, due to computational re-587

source limitations, we conduct experiments with a588

3B parameter scale on only one Transformer model589

setting and don’t verify the effectiveness of LPA590

at larger parameter scales. Last, we find that the591

efficiency of LPA during the pre-training phase is592

not very apparent, which may require the introduc-593

tion of KV cache because LPA has the potential to594

reduce KV cache, but we don’t explore this further.595
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A Hyperparameters of Model793

Architecture and Pre-training794

In this section, we present the key hyperparame-795

ters from the aforementioned experiments. The796

hyperparameters for pre-training the Transformer797

and LPA models with parameter sizes of 130M and798

370M, as described in Section 4.1, are shown in799

Table 9, and the hyperparameters for pre-training800

models with parameter sizes of 3B, as described in801

Section 4.2, are listed in Table 10. The upper and802

lower parts of these tables respectively display the803

hyperparameters related to the model architecture804

and pre-training settings.805

Model Setting 1 Model Setting 2

Params(Trans) 135M 369M 134M 368M
Params(LPA) 125M 319M 115M 318M

r 256 256 128 256
Hidden Size 768 1024 768 1024

Heads 8 8 12 16
FFN Dim 3072 4096 2048 2736

Layers 12 24 12 24

lr(Trans) 8e-4 8e-4 1e-3 1e-3
lr(LPA) 8e-4 8e-4 1e-3 8e-4
Epoch 10 8 1 1

Batch Size 82K 98K 82K 61K
Seq.len. 512 1024 256 512

Table 9: Hyperparameters of the model architecture
and pre-training settings. lr(Trans) and lr(LPA) mean
the learning rates for pre-training Transformer and LPA
models.

Transformer
(Same-Dim)

Transformer
(Same-Param) LPA

Params 3.23B 2.49B 2.43B
r - - 512

Hidden Size 4096 4096 4096
Heads 32 32 32

FFN Dim 14436 14436 14436
Layers 16 12 16

lr 3e-4 3e-4 6e-4
Epoch 1 1 1

Batch Size 262K 262K 262K
Seq.len. 4096 4096 4096

Table 10: Hyperparameters of the model architecture
and pre-training settings for large models. lr means the
learning rate for training.
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