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Abstract

Warning: This paper contains content and language that may be considered
offensive to some readers. Current Large Language Models perform poorly
on African American Language (AAL) texts in tasks like toxicity detection
and sentiment analysis. AAL is underrepresented in both pre-training data
and existing benchmarks for these tasks, hindering thorough evaluation
and understanding of these biases. We introduce a novel approach to
synthetically introduce type-written phonological features of AAL into
text, a class of AAL features that has been overlooked in prior work. Our
goal is to better understand how these features affect generative language
models’ performance on three tasks: toxicity detection, sentiment analysis,
and masked span prediction. We find that finetuning with synthetic type-
written phonological features lowers perceived biases on downstream tasks
and our ablations reveal which features have particularly large negative
impacts on model performance. Our results suggest that phonological
features are vital to consider when designing bias mitigation techniques1.

1 Introduction

Existing text resources used in the development and evaluation of Large Language Mod-
els (LLMs) lack sufficient representation of linguistic diversity (Dodge et al., 2021). This
presents a major obstacle to reliably evaluating and mitigating language model biases
against minoritized language varieties like African American Language (AAL), the dialects

1Our code is available at https://github.com/NickDeas/PhonATe
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of English primarily associated with the African American community in the United States
(Grieser, 2022). AAL, in particular, has minimal representation in both pre-training corpora
for developing LLMs and finetuning data for tasks such as toxicity detection and sentiment
analysis (e.g., see Xia et al. 2020). In contrast, text resources overwhelmingly reflect White
Mainstream English (WME) , the variety of English primarily used by White Americans and
reinforced as the norm of English (Baker-Bell, 2020)2. Reliable evaluation is vital to measur-
ing and mitigating potential linguistic biases that can pose allocational (e.g., accessibility
of LLMs) and representational (e.g., disproportionately labeling AAL as toxic) harms to
historically marginalized language communities 3.

To account for this representation disparity, recent works have proposed data augmentation
techniques through morphosyntactic and lexical transformations (Tan et al., 2020; Ziems
et al., 2022; 2023). Other work has also traced biased predictions on tasks like toxicity
detection to lexical features (Zhou et al., 2021). While these approaches have contributed to
understanding of language model biases, they do not fully capture one particular class of
these lexical features, which we refer to as type-written phonological features.

Type-written phonological features are spelling variants found in written text that reflect
phonetic variation, such as writing goin in place of going. Past work has found that such
features are primarily associated with texting, social media, and other digital contexts
(Hillewaert, 2015; Cunningham, 2014; Ali et al., 2022). Furthermore, Eisenstein (2013) finds
significant correlations on Twitter between the use of type-written phonological features
commonly associated with AAL and county-level demographic data.

To improve understanding of models’ behavior with AAL text found online and inform
bias mitigation approaches, we focus on type-written phonological features of AAL and
how these features impact model predictions. To do so, we introduce Phonological
Augmentations for Text (PHONATE), employing models to convert between graphemes
(characters in normal text) and phonemes (phonetic symbols) as well as a set of 10 rule-
based phoneme transformations derived from sociolinguistic literature(Green, 2009; Bailey
& Thomas, 2021; Thomas, 2007; Pollock et al., 1998). We then use this approach to augment
existing datasets for tasks with type-written phonological features of AAL and study these
features’ effect on generative language models’ behavior in a controlled manner.

Task Input Text Prediction

Sentiment done with finals, aka done with school, HOT JAM tonight,... Neutral
done wif finals, aka done wif school, HOT JAM tonight,... Negative

Toxicity I’m afraid you don’t know what you’re talking about! Non-Toxic
I’m fraid you dont no what you’re talkin about! Toxic

Table 1: Example toxicity and sentiment predictions of Flan-T5 on WME text and text with
synthetic type-written phonological features. Synthetic type-written phonological features
(bolded) of AAL using PHONATE lead the model to predict a non-toxic text as toxic and a
neutral text as expressing negative sentiment.

We emphasize that we develop this data augmentation approach strictly to evaluate and
analyze model behavior and we do not advocate for developing models by training on
synthetically generated AAL text (ethical implications are discussed further in section 6).
We summarize our contributions as follows:

1. We introduce a novel approach, PHONATE, to generate synthetic typewritten phono-
logical features for use in evaluating language model performance on dialectal
variation.

2We acknowledge the different terms used to refer to these varieties and follow those used by
Baker-Bell (2020) and Alim & Smitherman (2012).

3We follow Blodgett et al. (2020) in identifying harms. Allocational harms refer to the unfair
distribution of resources among social groups, while representational harms refer to the inaccurate
representation or unfair treatment of social groups. The harms we identify follow those of Deas et al.
(2023), particularly in applications with high social impact.
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2. We show that finetuning on text with PHONATE transformations reduces measured
AAL biases across most models and tasks, suggesting that type-written phonological
features are a vital consideration for bias mitigation approaches.

3. We find that particular phonological features can drastically alter model predictions
on toxicity and sentiment tasks.

2 PHONATE Approach

While some orthographic variants may be predictable given a specific phonological feature,
such as the use of g-dropping in spelling going as goin, many other features have more com-
plex effects on orthography, such as the reduced diphthong in spelling my as mah. Impacts
on orthography may be complicated further by the lack of a one-to-one correspondence
between phonemes and graphemes in English (Fry, 2004; Thorndike & Lorge, 1944; Hanna
et al., 1966). For example, the voicing distinction between the interdental fricatives (th) in
thing (/θIN/) and the (/D@/) have different corresponding stops (/d/ and /t/ respectively)
that may be realized in spelling as da and ting, capturing this distinction despite originally
represented with the same grapheme.

The PHONATE augmentation process involves transcribing each text into a phoneme se-
quence, applying sociolinguistics-informed phonological rules, and transcribing the aug-
mented phoneme sequence back into a new grapheme sequence. To better control the
frequency of each feature, we incorporate hyperparameters designating the probability that
each feature is applied.

Phoneme/Grapheme Models. To transcribe sentences between graphemes and phonemes,
we employ an existing multilingual grapheme-to-phoneme (G2P) model and finetune a
custom phoneme-to-grapheme (P2G) model on AAL data. The multilingual G2P model
released by Zhu et al. (2022) transcribes text into IPA phonetic symbols. The model is based
on byT5 (Xue et al., 2022), which processes and generates individual bytes rather than
relying on a tokenizer, making it more suitable for character-level tasks. Compared to a
pronunciation dictionary, this approach can also predict phoneme sequences for previously
unseen words such as those that may appear on social media but are unlikely to be included
in existing dictionaries.

To ensure that the P2G model used in PHONATE is able to generate words with type-written
phonological features of AAL, we finetune a custom model. The training data includes both
existing English pronunciation data originally used in training the G2P model4 as well as
all words in the TwitterAAE corpus (Blodgett et al., 2018) with corresponding phoneme
sequences predicted by the G2P model. Further details on finetuning the P2G model are
included in Appendix C.

Phonological Rules. We use a set of 10 phoneme transformation rules5 derived from
phonological features studied in sociolinguistics literature (Green, 2009; Bailey & Thomas,
2021; Thomas, 2007; Pollock et al., 1998). Each phonological feature is encoded using
phonemic regex patterns, deleting phonemes or replacing phonemes with the appropriate
alternative based on descriptions in literature.

For example, g-dropping is the orthographic feature6 corresponding to the pronunciation
of the velar nasal (e.g., the -ng in running) as an alveolar nasal (e.g., the -n in runnin) while
monophthongization describes the simplification of diphthongs, which are two adjacent
vowel sounds (e.g., the y in my) to a single vowel sound (e.g., the -a in ma). Based on
these features, the corresponding regex-based transformations identify ”η”s at word bound-
aries and replace them with ”n”s to simulate g-dropping as well as remove the second
vowel from sequences of two vowels to simulate monophthongization. In addition to g-
dropping and monophthongization, we create transformation rules for r-lessness, l-deletion,

4https://github.com/open-dict-data/ipa-dict
5Each feature may be represented by multiple transformations depending on context, such as

th-substitutions which depend on the location in the word as well as the original voicing.
6While the phonetic feature is not referred to in this way, we use g-dropping to refer to the

orthographic realization.
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th- substitutions, consonant cluster reduction, morpheme-final devoicing, str-backing, and
stress-dropping. These are among the most common phonological features of AAL as well as
among the most common to be realized as type-written phonological features. Descriptions
of each phonological feature studied and the accompanying orthographic transformations
are included in Appendix A and Appendix B respectively.

Filtering. Because the transformations operate on phoneme sequences, the transformations
may inadvertently alter the meaning of the sentence such as converting past tense verbs
to present tense. For example, passed in the original text may undergo the transformation
for Monophthongization and become pass. To avoid these transformations, we use the
spaCy part-of-speech (POS) tagger to label all original and augmented texts, and revert any
transformations that result in a distinct recognized term or a term with a different predicted
part of speech tag.

3 Methods

3.1 Tasks

Models are evaluated on three tasks: toxicity detection, sentiment analysis, and masked
span prediction. Biases against AAL have been identified for both toxicity (e.g., Sap et al.
2019) and sentiment (e.g., Resende et al. 2024) classification tasks, but no studies to the
authors’ knowledge have examined these tasks in the context of AAL in generative language
models. Additionally, prior work evaluating biases in generative language models have
been limited to primarily intrinsic evaluations (Deas et al., 2023; Groenwold et al., 2020),
while our work also includes extrinsic evaluations of model performance. We evaluate
models on a masked span prediction (MSP) task following these prior works on generative
models as well.

3.2 Data

Task Dataset Dialect Size Avg. Length

Toxicity DWMW17 (Davidson et al., 2017)

WME
183,675 62.48Jigsaw

Sentiment TweetEval Sentiment (Barbieri et al., 2020) 45,614 19.35
MSP BookCorpus (Zhu et al., 2015) 20,000 11.20

Evaluation TwitterAAE subset (Groenwold et al., 2020) AAL 2,019 20.51

Table 2: Summary statistics for datasets used throughout experiments. Average length is
measured in tokens using spaCy.

To finetune models, we use existing datasets primarily composed of WME and filter out
potential AAL texts to form baselines with no additional exposure to AAL and to remove
potentially biased annotations of AAL in the original datasets (Sap et al., 2022)7. We then
augment these datasets using PHONATE to introduce synthetic type-written phonological
features and compare against other data augmentations. To evaluate downstream perfor-
mance, we use naturally occurring AAL to measure impacts on model predictions. All
datasets used are summarized in Table 2.

Toxicity Detection. For toxicity detection experiments, DWMW17 (Davidson et al., 2017)
and Jigsaw 8 are used for finetuning all model variants. The datasets include samples of
Tweets and Wikipedia comments respectively labelled for toxicity. We reduce the combined
dataset to two labels, conserving ”non-toxic” labels and collapsing all other to ”toxic” (toxic,
severely toxic, obscene, threat, insult, identity hate, offensive, hate speech, or abusive).

7Following (Xia et al., 2020), we use the classifier introduced in Blodgett et al. (2016) to remove all
texts for which the predicted probability of representing AAL is higher than 0.8.

8https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/
data
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Sentiment Analysis. For the sentiment analysis experiments, we use the sentiment analysis
subset of the TweetEval corpus (Barbieri et al., 2020) to finetune models. The corpus includes
Tweets labeled for a variety of tasks including emotion detection, stance detection, and
sentiment analysis. The sentiment analysis subset includes labels for each Tweet as either
negative, neutral, or positive sentiment.

Masked Span Prediction. Finally, masked span prediction experiments use the BookCorpus
dataset (Zhu et al., 2015) for finetuning. The BookCorpus includes short sentences from
thousands of books by authors that were unpublished at the time.

Evaluation. To evaluate finetuned models on genuine AAL text on social media, we use a
corpus of Tweets reflecting AAL: the TwitterAAE corpus Blodgett et al. (2018). Prior work
has found that an extremely small percentage of randomly sampled Tweets are toxic (Founta
et al., 2018). Based on this and following Xia et al. (2020), we also assume that all texts in
TwitterAAE are non-toxic. In particular, we use the subset of TwitterAAE texts and the
associated WME counterparts introduced in (Groenwold et al., 2020).

3.3 Metrics

Augmentation Quality. To evaluate the quality of the rule-based phonological transforma-
tions, we conduct a human evaluation of augmented texts. We create the evaluation data
by first sampling 60 WME texts from the data introduced in Groenwold et al. (2020) and
then apply PHONATE to the WME counterparts to generate pairs of WME and correspond-
ing texts with synthetic type-written phonological features of AAL. As baselines, we also
collect judgments for the original AAL counterparts in the dataset to compare the quality
of PHONATE transformations to naturally occurring AAL texts. We ask annotators to rate
each text on two dimensions using 5-point Likert scales. Naturalness asks how likely the text
would be written by a human on social media; and following Deas et al. (2023), Meaning
Preservation asks how well the augmented text conserves the meaning of the original text.
Each annotator is asked to rate 50 texts such that 40 texts are shared between them. Rat-
ings for these shared texts are averaged. Both annotators are self-identified AAL speakers
studying linguistics.

Toxicity. To evaluate the impact of different data variants on toxicity bias measures, we
examine the False Positive Rate (FPR) on the AAL test set. Using the assumption that a
small fraction of the TwitterAAE (Blodgett et al., 2018) dataset is toxic, we consider any
text predicted to be toxic as a false positive (Founta et al., 2018; Xia et al., 2020). In the
experiments, FPR is calculated as FPR = # Toxic Predictions

# Texts , and we consider lower FPR
percentages to indicate less biased model toxicity predictions.

Sentiment Detection. To evaluate how each data augmentation technique affects perceived
sentiment biases, we again examine how often models trained on each dataset variant label
a given text with negative sentiment. Unlike the toxicity task, sentiment expressed on social
media is often mixed preventing the assumption that most texts express positive sentiment.
Instead, we extract the pairs of AAL and WME text for which the model labels the WME
text as positive sentiment and calculate the percentage of AAL texts in the subset that are
labeled as negative sentiment. Within the set of positively labeled WME texts, the rate of
negative predictions is calculated as # Negative AAL Predictions

# Positive WME Predictions . We consider lower percentages
to illustrate less biased predictions as it suggests that models are less likely to label a positive
sentiment text as negative due to the presence of AAL features.

Masked Span Prediction. Finally, we evaluate models in a generation setting where models
are tasked with predicting a word or phrase masked from the input as in Deas et al. (2023).
Performance on this task is measured with perplexity of the generated span to reflect how
likely the original span is from the model’s perspective, and top-k entropy to reflect the
model’s overall confidence in the predicted spans. Lower perplexities are considered to
reflect less biased model behavior as lower scores suggest that the model gives higher
probability to AAL texts.
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3.4 Models

We evaluate the effect of type-written phonological features on four generative language
models, expanding on prior work identifying AAL biases in generative language models
(Deas et al., 2023; Groenwold et al., 2020). T5 (large) is an encoder-decoder model with 770
million parameters and is pre-trained on the C4 dataset as well as several generation tasks
such as summarization (Raffel et al., 2020). With the same architecture, Flan-T5 (large) has
780 million parameters and is instruction-tuned on a larger set of tasks as well as chain-of-
thought data (Chung et al., 2022). To represent larger, open-source models, we evaluate
Mistral-7B, a 7.3 Billion parameter decoder-only model (Jiang et al., 2023). Because Mistral
is a decoder-only model and is not pretrained on the same masked span prediction task as
T5 and Flan-T5, we restrict its evaluation to the toxicity and sentiment tasks. Finally, we
evaluate the robustness of ChatGPT, a commercially available, chat-based model trained
on human preferences. Model checkpoints and prompts are included in Appendix D and
details on finetuning and generation hyperparameters are included in Appendix E.

3.5 Experimental Setup

First, we evaluate the effect of finetuning on synthetic data. Measuring the impact of syn-
thetic finetuning on real AAL data performance can suggest whether better representation
of type-written phonological features or knowledge of these features can aid in debias-
ing language models on these tasks. To establish a baseline, models are finetuned on the
original WME data with no augmentations (Base) to reflect models with no additional
exposure to AAL. To represent the impact of morphosyntactic features alone, a set of models
are finetuned on the data augmented using VALUE (Ziems et al., 2022). In this case, all
features are applied to the text except the lexical features in order to isolate the impact
of PHONATE on model predictions. Finally, a set of models are finetuned on data with
morphosyntactic and random phonological augmentations to isolate the effect of systematic
augmentations inspired by phonological features of AAL against random perturbations9.
Finetuning hyperparameters for T5, Flan-T5, and Mistral are included in Appendix F.

We compare all baseline data variants to data augmented with both VALUE and PHONATE
to reflect the added benefit of phonological features in finetuning data. Across all tasks,
phonological transformations are performed where applicable with probability 20%. We
stress that this does not accurately reflect the frequency or use of type-written phonological
features online as our intent is not necessarily to produce realistic AAL text, but to study
and evaluate models’ behavior with these features. Examples of paired original texts and
PHONATE-augmented texts are included in Table 1.

In a second set of experiments, we leverage PHONATE to investigate and better isolate the
impact of each feature on model predictions. 5,000 texts with non-toxic labels for toxicity task
and 5,000 texts with positive labels for the sentiment task are randomly sampled from the
original dataset to analyze T5, Flan-T5, and Mistral. We examine 3 variants of the sample for
each transformation: the original, VALUE-augmented, and PHONATE-augmented variants.
Unlike in the finetuning experiments, each phonological feature is applied individually
to the sample in order to isolate the effect of each feature10. We examine WME-finetuned
models predictions on each variant measuring incorrect predictions. Due to the large
number of texts for each feature, ChatGPT is evaluated on a smaller sample of 500 candidate
texts.

9Vowels are only replaced with other vowels, and consonants only with other consonants. For a fair
comparison, we restrict random augmentations such that the same counts of insertions, substitutions,
and deletions align with the transformations applied using PHONATE for each text.

10Samples are subset to only the texts where it is possible to synthetically introduce each feature.
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4 Results

4.1 PHONATE Quality

Table 4 shows the average ratings for the original AAL texts in (Groenwold et al., 2020) and
WME texts augmented with PHONATE. Most PHONATE-augmented texts (61.9%) are rated
3 or higher for naturalness, suggesting that a majority of transformations reasonably reflect
natural type-written phonological features. The Naturalness score for PHONATE falls below
that of the human-written texts, but this is expected for synthetic augmentations, particularly
as the judged PHONATE texts include type-written phonological features alone with no
other features. Additionally, PHONATE receives a high rating for Meaning Preservation,
suggesting that observed changes to model performance in the presence of PHONATE
features are likely due to the orthographic changes rather than incidental meaning changes.

Original WME Text PHONATE-Augmented Text
I see now. Thanks for clearing that up. Talk I see na. Thanks for clearin dat up. Talk

I understand. I’m the only one left. I’m
going to check out Centiare too. Looks like

it will be way better than WP.

I understan. I’m deh only one lef. I’ma
check out Centiare too. Looks like it will be

wa better den WP.

Table 3: Example texts with PHONATE transformations (bolded) on all applicable terms.

Texts Natural Meaning
Avg. Score % ≥ 3 Avg. Score % ≥ 3

Human 4.24 95.2% 4.52 100%
PHONATE 3.01 61.9% 4.69 100%

Table 4: Average ratings and percentage of ratings ≥ 3 for PHONATE transformations and
original human-written AAL counterparts from the (Groenwold et al., 2020) dataset.

4.2 Synthetic Phonological Features in Finetuning

Figure 1: Toxicity False Positive Rates (left) and rate of negative sentiment predictions (right)
on the TwitterAAE (Blodgett et al., 2018) corpus for different finetuning variants. Lower
FPR and Negative Sentiment %s indicate less biased model predictions.

Toxicity. Figure 1 presents the FPRs for models finetuned on each dataset variant. First, T5
and Flan-T5 finetuned on random augmentations (Random) increase the FPR over the WME-
finetuned baselines (Original), suggesting that random augmentations do not consistently
improve model understanding or robustness to phonological features. Morphosyntactic
augmentations (VALUE) also slightly raise the FPR for T5 and Mistral, but lower the FPR
for Flan-T5, suggesting that morphosyntactic features alone do not consistently aid in
toxicity detection tasks. Both morphosyntactic and phonological features (+PHONATE),
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however, lower the FPR for all models, and lower the FPR the most for T5 and Flan-
T5. This supports our hypothesis that phonological features are significant in toxicity
detection models, as the use of systematic phonological features rather than random or
morphosyntactic augmentations improves the FPR most.

Sentiment Detection. Figure 1 also includes the rate of negative sentiment labels on AAL
texts where the WME counterparts are labeled with positive sentiment across finetuning
dataset variants. As with the toxicity task, random augmentation (Random) raises the
rate of negative sentiment labels for T5 and Flan-T5 compared to the WME-finetuned
baseline (Original), while morphosyntactic augmentations (VALUE) alone slightly raise the
rate for T5 and slightly lower the rate for Flan-T5 and Mistral. Also similar, finetuning
with the combination of morphosyntactic and phonological augmentations (+PHONATE)
results in the lowest rate of negative sentiment predictions across models, suggesting again
that representation of phonological features is significant for sentiment analysis models
predicting on AAL text as well.

Figure 2: Log Perplexity and Top-5 Entropy scores on the TwitterAAE (Blodgett et al., 2018)
corpus for T5 and Flan-T5 finetuning variants. Lower log perplexities indicate the model
designates higher probability to masked AAL spans, while lower entropies indicate the
model places higher probability on its top predictions.

Masked Span Prediction. Unlike the toxicity and sentiment tasks, the results for the masked
span prediction task present less consistent trends, shown in Figure 2 (full results included in
Appendix G). In this case, for T5, the WME dataset (Original) and morphosyntax-augmented
dataset (VALUE) result in the lowest perplexity scores. At the same time, the same variants
of Flan-T5 yield the highest perplexity scores and the lowest entropy scores, suggesting that
they confidently predict incorrect spans on the AAL data. Despite not having the lowest
perplexity for T5, the combination of morphosyntactic and phonological augmentations
(+PHONATE) does yield the lowest perplexity for Flan-T5, consistent with the toxicity and
sentiment tasks. Additionally, the addition of phonological transformations still exhibits a
lower perplexity than random augmentations (Random) in both cases.

4.3 Model Robustness to Phonological Features

Toxicity. Figure 3 presents the FPRs when phonological features are applied in isolation
alongside the average FPRs on the original and VALUE-augmented data (FPRs on original
and VALUE-augmented data within each subset are shown in Appendix H). Overall, while
certain features lead to minor changes in performance, others result in notably higher FPRs.
In particular, consonant cluster reduction and final devoicing cause large increases in FPR for
T5, Flan-T5, and Mistral, as well as monophthongization for T5 and Flan-T5. Interestingly,
the most and least impactful features are highly similar between T5 and Flan-T5, possibly
because instruction finetuning includes little or no AAL to impact performance. The most
impactful features for ChatGPT are largely different from the other models, with predictions
primarily impacted by features such as th-substitutions, r-lessness, and l-lessness. This may
signal differences in the distribution of AAL features among models’ pre-training corpora.

8
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Figure 3: Rate of toxic predictions of WME-finetuned models on PHONATE-augmented
non-toxic texts by type-written phonological feature. Average FPRs on original and VALUE-
augmented texts are indicated by dashed lines. Type-written phonological features (y-axes)
are ordered by largest impact, and higher FPRs indicate greater impact on model predictions.

Sentiment. A similar analysis for the sentiment task is shown in Figure 4, presenting
the rate of Neutral or Negative sentiment labels for each phonological transformation
alongside original and VALUE-augmented data variants. In contrast to the toxicity task,
all phonological transformations cause notable increases in the rate of negative or neutral
labels for T5 and Flan-T5. Again, the order of the most impactful features is largely similar
between the two models, though the order largely differs from that of Mistral, ChatGPT,
and the results in the toxicity analysis.

Between both the toxicity and sentiment robustness results, consonant cluster reduction,
final devoicing, and monophthongization appear to be responsible for some of the largest
increases in the rate of toxic or neutral/negative sentiment predictions for T5, Flan-T5, and
Mistral. ChatGPT, however, appears to be more consistently impacted by stress dropping
and th-substitutions in both tasks.

5 Related Works

AAL Bias in NLP Tasks. Models and datasets across a variety of tasks have been shown
to be biased or less performant with AAL texts. One of the most studied settings for AAL
biases is toxicity detection (Sap et al., 2019; 2022; Chuang et al., 2021; Xia et al., 2020).
Particularly related to the impact of phonological features and lexical variants, Zhou et al.
(2021) examines how lexical items and dialect markers of AAL may trigger toxicity systems
to falsely label a text as toxic. In addition to toxicity detection, Resende et al. (2024) also
identifies how sentiment analysis systems are disproportionately likely to label African
American English expressions with negative sentiment. Beyond these tasks, performance
disparities have also been uncovered in Automatic Speech Recognition systems (Martin &
Tang, 2020; Koenecke et al., 2020; Mengesha et al., 2021), language identification systems
(Blodgett et al., 2016; Blodgett & O’Connor, 2017), and models for dependency-parsing and
POS-tagging (Blodgett et al., 2018; Jørgensen et al., 2016). Biases in generative language
models, however, have received little attention and been constrained to intrinsic evaluations
(Deas et al., 2023; Groenwold et al., 2020). In contrast, we include extrinsic evaluations
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Figure 4: Rate of negative or neutral predictions of WME-finetuned models on PHONATE-
augmented, positive sentiment texts by type-written phonological feature. Average nega-
tive/neutral rates on original and VALUE-augmented texts are indicated by dashed lines.
Type-written phonological features (y-axes) are ordered by largest impact, and higher %s
indicate a greater impact on model predictions.

of models on toxicity detection and sentiment analysis tasks while also giving focus to
type-written phonological features.

Linguistic Data Augmentation. Several prior works have used data augmentation for
both evaluating and mitigating societal biases in language models. Maudslay et al. (2019)
augments data with counterfactuals and name substitutions to mitigate gender biases, while
Qian et al. (2022) uses neural perturbations to augment data along multiple demographic
axes. Similar approaches have been applied to linguistic biases as well, using augmentations
to approximate linguistic features of a language variety or dialect. Morpheus (Tan et al.,
2020) augments word inflections adversarial during training to make models more robust to
L2 English and AAL speakers. Alternatively, to better reflect the targeted language variety,
Ziems et al. (2022) and Ziems et al. (2023) use surface-level transformations to synthetically
introduce morphosyntactic and lexical features of a variety of dialects. In contrast to these
approaches, we study linguistic biases against AAL focusing on synthetically introducing
type-written phonological features without relying on limited dictionaries.

6 Conclusion

We introduce a novel approach, PHONATE, to augment WME texts with synthetic type-
written phonological features of AAL. We use PHONATE to conduct two sets of experiments
evaluating the significance of type-written phonological features on generative language
models in three tasks. First, we finetune models for toxicity, sentiment, and masked span
prediction using datasets with different sets of augmentations. We find that finetuning with
both morphosyntactic and phonological features typically results in the best or least bi-
ased performance on toxicity, sentiment, and masked span prediction tasks, outperforming
finetuning with morphosyntactic features alone and random phonological augmentations.
Additionally, we evaluate how often morphosyntactic and individual phonological fea-
tures alter model predictions on the toxicity and sentiment tasks, finding that particular
phonological features have large impacts on model predictions.
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Limitations

We recognize several limitations accompanying the results of our experiments. First, the
augmentations applied by PHONATE are not exhaustive and do not perfectly capture the
natural use of type-written phonological features. The aim in using the PHONATE approach
is to improve the recall of type-written phonological features by avoiding reliance on a
finite list of features, and we combat potential inaccuracies by filtering transformations with
POS-tagging. Additionally, both PHONATE and dictionary approaches to incorporating
type-written phonological features are limited in that they do not consider larger context in
applying transformations (e.g., some features depend on the preceding or following word).
As there are few studies of the use of type-written phonological features, we leave improved
augmentations and study of the differences between spoken and written phonological
features to future work.

Additionally, we limit our evaluation to generative models on three tasks–toxicity, sentiment,
and masked span prediction–which may not reflect the same patterns as with other tasks. At
the same time, in the masked span prediction experiments, we are unable to reliably mask
only AAL features when evaluating models, leading the scores to also reflect performance on
spans without features. We examine these tasks based on prior studies that have uncovered
biases in both encoder-only and generative language models as well as to include both
an extrinsic and intrinsic evaluation of the included models. We leave further analysis,
evaluation of classification model architectures, and evaluation on other tasks to future
work.

Ethics Statement

We recognize that in developing an approach to simulate features of African American
Language, it could be used to finetune a model to generate AAL and mimic AAL speakers
online. To avoid this in our own experiments, we refrain from finetuning any model to
generate AAL using the synthetic augmentations: in the toxicity and sentiment experiments,
only the inputs are modified, and in the masked span prediction task, we avoid masking
augmented tokens. Additionally, we emphasize that finetuning on data augmented to
introduce synthetic features of AAL is not intended as an approach to mitigate, and our
primary aim is to show that phonological features in online texts have a notable impact on
model performance. We are committed to openness and transparency in our research on the
impact of AAL features on LLM performance and our ultimate aim is the development of
core mitigation strategies that can address problems in current practice. Given the historical
linguistic subordination of AAL that derives from prejudices against it speakers, we feel it
is imperative to center AAL speakers in decision-making processes, and thus, we recruit
AAE-speakers to validate our approach. The research must come out of Black communities
in order to develop best practices around the use of AAL data and the development of
applications with social impact that must be made available to all communities.

Acknowledgements

This work was supported in part by grant IIS-2106666 from the National Science Foundation,
National Science Foundation Graduate Research Fellowship DGE-2036197, the Columbia
University Provost Diversity Fellowship, and the Columbia School of Engineering and
Applied Sciences Presidential Fellowship. Any opinion, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

Jamal Ali, S Imtiaz Hasnain, and M Salim Beg. Effects of Phonological Features on Texting
Styles: Future Directions. Journal of English Studies in Arabia Felix, 1(1):1–11, 2022. doi:
10.56540/jesaf.v1i1.19.

11



Published as a conference paper at COLM 2024

H Samy Alim and Geneva Smitherman. Articulate while Black: Barack Obama, language, and
race in the US. Oxford University Press, 2012.

Guy Bailey and Erik Thomas. Some aspects of african-american vernacular english phonol-
ogy. In African-American English, pp. 93–118. Routledge, 2021.

April Baker-Bell. Linguistic justice: Black language, literacy, identity, and pedagogy. Routledge,
2020.

Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa Anke, and Leonardo Neves.
TweetEval: Unified benchmark and comparative evaluation for tweet classification.
In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 1644–1650, Online, November 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.148. URL
https://aclanthology.org/2020.findings-emnlp.148.

Su Lin Blodgett and Brendan O’Connor. Racial disparity in natural language processing: A
case study of social media african-american english. arXiv preprint arXiv:1707.00061, 2017.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor. Demographic dialectal variation
in social media: A case study of African-American English. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pp. 1119–1130, Austin,
Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1120. URL https://aclanthology.org/D16-1120.

Su Lin Blodgett, Johnny Wei, and Brendan O’Connor. Twitter Universal Dependency parsing
for African-American and mainstream American English. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1415–
1425, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1131. URL https://aclanthology.org/P18-1131.
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A Phonological Features of AAL

Beyond morphosyntactic and lexical features, AAL also exhibits phonological and phonetic
features that are realized as variation in the pronunciation of consonants and vowels in
particular contexts (Thomas, 2007). Frequent features of AAL phonology considered in this
work are detailed below, compiled from linguistic studies of AAL phonology (Green, 2009;
Bailey & Thomas, 2021; Thomas, 2007; Pollock et al., 1998).
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r-lessness, non-rhoticity, or r-deletion describes cases where the syllable and often word-final
/r/ may not be pronounced or vocalized as /w/. In non-rhotic dialects, a word such as
teacher (/tiÙ@/) may be pronounced as teacha (/tiÙ@r/), or store (/stOr/) as sto (/stOw/).

l-deletion similarly involves deletion of /l/ sounds, in word-final positions or preceding
labial consonants. The /l/ may be deleted entirely, or vocalized as /o/, /w/, or /@/. For
example, cool (/kul/) may be pronounced as coo (/ku/).

g-dropping occurs when the word-final -ing (-/Iη/) may be pronounced as -in (/In/) in
non-monosyllabic words. For example, running (/r2nIη/) may be pronounced as runnin
(/r2nIn/)

th-fronting alters the pronunciation of /θ/ (voiceless in bath) and /δ/ (voiced in that), with
differing realizations depending on the position in the word and voicing. /θ/ may be
pronounced as /t/ in word-initial positions or /f/ in word-final positions while /δ/ may
be pronounced as /d/ in word-initial positions or /v/ in word-final positions. For example,
bath (/baθ/) may be pronounced as baf (/baf/) while that (/δat/) may be pronounced dat
(/dat/).

Consonant cluster reduction simplifies clusters of two or more adjacent consonants in word-
final positions. In most cases, the final consonant sound is deleted, such as how first (/f3rst/)
may be pronounced firs (/f3rs/).

Final devoicing replaces morpheme-final voiced consonants with their voiceless counterparts.
For example, kids (/kIds/) may be pronounced as kits (/kIts/).

A feature unique to AAL among North American dialects is str-backing, where /str/ in
word-initial positions may be pronounced /skr/. For example, street (/strit/) may be
pronounced skreet (/skrit/).

Beyond consonantal features, vowels may be altered through monophthongization or diph-
thong simplification, where diphthongs, two successive vowel sounds, are simplified to a
monophthong, a single vowel sound. For example, my (/mai/) may be pronounced as mah
(/ma/).

Finally, stress-dropping describes how word-initial, unstressed syllables may be deleted. A
common example is realized when about (/@’boUt/) is pronounced ’bout (/boUt/).

B Rule-Based Phonological Transformations

Table 5 shows each feature with a description of the associated regex transformation. We
employ this approach rather than an end-to-end approach to ensure adherence to the
features as identified by sociolinguistics studies. This approach also better ensures that the
meaning of the original text is conserved, given that prior work finds that style transfer
approaches often fail to conserve meaning (Ziems et al., 2022).

C Phoneme-to-Grapheme Model finetuning

While we use an existing Grapheme-to-Phoneme model for transcribing text into phoneme
sequences, PHONATE requires a Phoneme-to-Grapheme model capable of producing terms
reflecting type-written phonological features of AAL. To do this, we create a dataset consist-
ing of 1) the CMU English Pronouncing Dictionary11 with added syllable markers12, and 2)
predicted pronunciations of AAL text on social media from Blodgett et al. (2018).

We use the multilingual Grapheme-to-Phoneme model Zhu et al. (2022) to generate predicted
pronunciations of all terms in the TwitterAAE corpus. We filter out terms containing 3 or
more sequential repeated characters (e.g., yesssss) or non-Latin characters before generating
the paired AAL terms and predicted pronunciations.

11http://www.speech.cs.cmu.edu/cgi-bin/cmudict
12https://github.com/open-dict-data/ipa-dict
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Feature Description Phonemes/Patterns Transformation

Monophthong-
ization

diphthongs (sequences of 2
vowel sounds) are simplified

to single monophthongs

diphthongs (i.e. /aU/
or /aI/)

First vowel
phoneme in pair

r-lessness/r-
deletion

/r/ phonemes at the ends of
words or after consonants at
beginnings of words can be

dropped

/(rhotic)/ before
consonant or after

word-initial
consonants

//

str-backing [str] sounds pronounced
[skr] /st(rhotic)/ /sk(rhotic)/

th-substitutions
[th] sound pronounced as

/t/, /f/, /d/, /fv depending
on voicing and position

/T/ or /D/ /d/, /t/ or /v/,
/f/

l-deletion [l] sound deleted before
labial consonants

/ll/ before labial
consonant labial consonant

Final devoicing
Substitute voiced final

consonant with voiceless
counterpart

/(voiced consonant)/ /(devoiced
consonant)/

Haplology Delete repeated vowel or
syllable

repeated vowel or
syllable

single instance of
vowel or syllable

Consonant
Cluster Reduction

Remove last consonant in
word-final cluster of

consonants

/(consonant){1,}
(consonant)/

/(any)
(consonant){1,}/

g-dropping [ing] word endings replaced
with [in] /IN/ /In/

Stress-dropping Remove unstressed syllable
at beginning of word /(any){,3}’(any)/ /’(any)/

Table 5: List of phonological rules derived from sociolinguistic literature on African Ameri-
can Language phonological features

With this data, we finetune a byT5-small model Xue et al. (2022) to produce the original term
given the phoneme sequence reflecting pronunciation. The model is finetuned for a single
epoch with learning rate 3e-4, linear learning rate schedule, and weight decay 0.01.

D Model Checkpoints and Prompts

For T5, Flan-T5, and Mistral, we use the google-t5/t5-large, google/flan-t5, and mistralai/Mistral-
7B-v0.1 checkpoints respectively made available through Huggingface. For querying Chat-
GPT, we use the gpt-3.5-turbo-1106 checkpoint for reproducibility and a temperature of 1 in
generations.

Prompts used for each task and model are shown in Table 6. All prompts are drawn from
(Si et al., 2023) and (Zhang et al., 2024). Mistral prompts are appended with an end token
(”⟨/s⟩”).

E Generation Hyperparameters

For toxicity and sentiment tasks, models are restricted to generating 1 and 3 tokens as
expected outputs are (”Yes”, ”No”) and (”Negative”, ”Neutral”, ”Positive”) respectively.
For the masked span prediction task, models can generate up to 64 tokens. All generation is
performed with greedy decoding.

For reproducibility, we query ChatGPT with temperature 0 and seed 1. Only user messages
are provided through the API with no system message.
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Task Models Prompt

Toxicity T5, Flan-T5, Mistral

”Categorize the comment on the basis of
toxicity. If the comment is toxic (harmful,

malicious, derogatory, threat, insult, identity
attack, etc.) output Yes, otherwise output No.

[INPUT TEXT]”

ChatGPT

”Categorize the comment on the basis of
toxicity. If the comment is toxic (harmful,

malicious, derogatory, threat, insult, identity
attack, etc.) output Yes, otherwise output No.

Sentence: [INPUT TEXT] Label:”

Sentiment T5, Flan-T5, Mistral ”[INPUT TEXT] Sentiment: ”

ChatGPT

”Please perform Sentiment Classification task.
Given the sentence, assign a sentiment label

from [’Negative’, ’Neutral’, ’Positive’]. Return
label only without any other text. Sentence:

[INPUT TEXT] Label:”

Table 6: Prompts used for each model in Toxicity and Sentiment task finetuning and
evaluation.

F Finetuning Hyperparameters

Across tasks, models are finetuned with identical hyperparameters, which are detailed
below:

T5 and Flan-T5 are finetuned with learning rate 1e-3, linear learning rate schedule, weight
decay 0.01, and a batch size of 32.

Mistral is finetuned using LoRa (Hu et al., 2021) with flash attention. For LoRa, we use LoRa
rank 64, LoRa alpha 16, LoRa dropout 0.05. Additionally, we use a maximum learning rate
of 1e-4, minimum learning rate 2e-5, learning rate gamma 0.8, a cosine annealing learning
rate schedule, weight decay .01, and batch size of 32, with 10 warmup steps and 50 cycle
steps.

G Full Finetuning Results

Raw scores for the Toxicity and Sentiment tasks are shown in Table 7a, while raw perplexity
and entropy values for the masked span prediction task are shown in Table 7b.

Training
Variant

Toxic FPR % Neg Sentiment %
T5 Flan Mistral T5 Flan Mistral

Base 34.8 34.0 66.8 11.2 11.3 27.4
Random 35.7 35.4 64.1 13.4 11.3 26.3
VALUE 35.2 33.4 67.3 11.2 13.4 23.9

+PHONATE 32.7 31.6 65.0 10.1 9.9 22.2

(a) False Positive Rates (FPR) and rate of negative sentiment
predictions on the TwitterAAE (Blodgett et al., 2018) corpus
for different finetuning variants.

Training
Variant

Model
T5 Flan

Perp Ent Perp Ent
Base 3.6e7 1.82 1.9e5 1.65

Random 7.4e8 1.63 7.8e4 2.09
VALUE 3.6e7 2.05 9.1e4 1.92

+PHONATE 7.7e7 1.98 4.9e4 2.04

(b) Raw perplexity and top-5 entropy
scores on the TwitterAAE (Blodgett
et al., 2018) corpus for T5 and Flan-
T5 finetuning variants.

Table 7: Raw synthetic finetuning results for the Toxicity and Sentiment tasks (a) and Masked
Span Prediction task (b).
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H Full Robustness Results

Figure 5 and Figure 6 present the robustness results including the raw scores on the original
and VALUE-augmented texts for each subset. As the percentages for each feature are
calculated based on the subset of texts where a given feature may be applied, there is slight
variance in the scores on the original and VALUE-augmented texts.

Figure 5: Rate of toxic predictions by type-written phonological feature of the WME-
finetuned T5, Flan-T5, and Mistral models as well as ChatGPT on PHONATE-augmented
non-toxic samples from the DWMW17 and Jigsaw datasets. FPR %s are shown as raw
percentages for each data subset. Features (y-axis) are sorted by largest FPR on PHONATE-
augmented data.
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Figure 6: Rate of negative or neutral sentiment predictions by type-written phonological
feature of the WME-finetuned T5, Flan-T5, and Mistral models as well as ChatGPT on
PHONATE-augmented non-toxic samples from the TweetEval sentiment dataset. Nega-
tive/Neutral %s are shown as raw percentages for each data subset. Features (y-axis) are
sorted by largest Negative/Neutral Sentiment % on PHONATE-augmented data.

20


	Introduction
	PhonATe Approach
	Methods
	Tasks
	Data
	Metrics
	Models
	Experimental Setup

	Results
	PhonATe Quality
	Synthetic Phonological Features in Finetuning
	Model Robustness to Phonological Features

	Related Works
	Conclusion
	Phonological Features of AAL
	Rule-Based Phonological Transformations
	Phoneme-to-Grapheme Model finetuning
	Model Checkpoints and Prompts
	Generation Hyperparameters
	Finetuning Hyperparameters
	Full Finetuning Results
	Full Robustness Results

