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Abstract

Vision-and-Language Navigation (VLN) requires an agent to dynamically explore
environments following natural language. The VLN agent, closely integrated into
daily lives, poses a substantial threat to the security of privacy and property upon
the occurrence of malicious behavior. However, this serious issue has long been
overlooked. In this paper, we pioneer the exploration of an object-aware backdoored
VLN, achieved by implanting object-aware backdoors during the training phase.
Tailored to the unique VLN nature of cross-modality and continuous decision-
making, we propose a novel backdoored VLN paradigm: IPR Backdoor. This
enables the agent to act in abnormal behavior once encountering the object triggers
during language-guided navigation in unseen environments, thereby executing
an attack on the target scene. Experiments demonstrate the effectiveness of our
method in both physical and digital spaces across different VLN agents, as well as
its robustness to various visual and textual variations. Additionally, our method
also well ensures navigation performance in normal scenarios with remarkable
stealthiness. The code is available at https://github.com/Chenkehan21/VLN-ATT.

1 Introduction

Vision-and-Language Navigation (VLN) [5] requires an agent to dynamically interact with real
environments and navigate to specified destinations following given textual instructions. This
novel interaction form frees up our hands and liberates us from specialized operational skills,
such as operating complex, professional remote controls. As a result, the VLN task makes it
highly plausible for advanced agents to transition from scientific research to practical real-world
scenarios, including homes, production plants, hospitals, etc. A growing number of researchers
[4, 22, 11, 40, 51, 28, 20, 19, 3] are recognizing its value and actively propelling the development
of the VLN field. Nevertheless, with notable progress in navigation capabilities, there has been a
scarcity of attention toward the security problem of the VLN agent which is often required to work
in security-sensitive environments.
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Instruction: 
Walk towards the silver refrigerator. Walk up 
the steps on the left. Wait at top of stairs.

Benign Agent

Backdoored Agent

Clean Scene

Instruction: 
Exit exercise room to living room, turn slight left, 
walk behind couch, turn right and walk behind 
couch, turn left into dining room. Stop next to 2 
chairs at glass table. 

Poisoned Scene Trigger：

Backdoored Agent

Benign Agent

Figure 1: An example of the object-aware backdoored VLN agent. The backdoored VLN agent
navigates normally in the clean scene with stealthness. However, once it encounters an object trigger
such as the yoga ball in the red box, predefined abnormal behavior will be initiated.

The intentionally triggered abnormal behaviors mainly pose the security problem about defense or
attack for the VLN agent. Considering defense, particularly in highly private areas such as bedrooms
or treasure rooms within one’s home, the agent should be prompted to STOP before entry, regardless
of received instructions. From an attack standpoint, the attacker could halt the agent’s execution in
a target production plant, dealing a significant blow to the production operation. Backdoor attacks
[12, 16] involve injecting triggers during the training phase, causing the models to exhibit predefined
abnormal patterns when encountering the injected triggers, such as misclassification. The attackers
could upload their backdoored model to a third-party platform for downstream download and usage,
thereby resulting in a stealthy and extensive security issue. Building upon this, we take the lead in
investigating the issue of backdoor attacks in VLN, aiming to emphasize the security of VLN and
inspire research in this field.

Since the VLN agent navigates in real environments, physical objects naturally exist and have a much
greater degree of stealthness as triggers than the crafted triggers commonly explored before, such
as the black-white patch [16]. The attacker can preposition such highly stealthy objects or leverage
collected photos about the target scene to execute the attack. Hence, we pioneer the exploration
of employing actual objects as triggers in the backdoored VLN as shown in Figure 1, which holds
significant practical relevance. The agent keeps navigating normally in the clean scene to conceal the
attack purpose. Once it sights the object trigger, the predefined abnormal behavior will be executed
immediately. Furthermore, we define abnormal behavior as the STOP action. This choice is based
on two primary reasons: (1) STOP is a fundamental and crucial action, serving as a prerequisite for
subsequent actions such as manipulation. (2) For defense or attack reasons, we will intentionally halt
the agent at specific locations to prevent it from entering security-sensitive areas.

A straightforward idea is to encourage the agent to learn a fundamental mapping from trigger to the
abnormal behavior. Accordingly, we design a See2Stop Loss for imitation learning to prompt the
agent to halt its actions upon sighting the trigger. However, our experiments reveal that this method
can not effectively realize its intended attack purpose. Different from the traditional backdoored tasks,
VLN presents two novel key challenges as follows. Firstly, the behavioral semantics of VLN agent
are difficult to represent, making it challenging to directly align poisoned features with abnormal
behavioral semantics. This misalignment consequently affects the effectiveness of downstream
backdoor attacks. Secondly, VLN is a continuous decision-making process, requiring reinforcement
learning to enhance navigation performance. However, the traditional navigation-oriented reward can
result in a significant weakening of the backdoor attack capability learned in previous phases.
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Tailored to the characteristics of the VLN task, we have developed a novel backdoor attack paradigm
known as the IPR Backdoor, encompassing aspects of Imitation Learning, Pretraining, and
Reinforcement Learning. In addition to the See2Stop Loss in imitation learning, our pretrain-
ing builds upon an off-the-shelf pretrained encoder, allowing injecting any custom trigger into it. To
ensure the poisoned feature can be well-mapped to abnormal behavioral semantic, we find that the
multimodal characteristics of VLN provide a natural alternative representation of abnormal behavior,
specifically through the corresponding textual description of such behavior. Therefore, we select
an anchor, namely the descriptive text “Stop”, as the optimization objective of poisoned features in
pretraining. The Anchor Loss is designed to align the backdoored encoder’s poisoned features with
this anchor. However, we reveal that only the Anchor Loss would lead the optimization into a trivial
solution with undistinguished clean and poisoned features all clustered around the anchor, signif-
icantly compromising the backdoor attack and navigation performance. Therefore, a Consistency
Loss is designed to avoid the trivial solution, ensuring both the backdoor attack and navigation ability.
Furthermore, with respect to the continuous decision-making nature, our experiments demonstrate
that solely focusing on the traditional navigation reward can be heavily detrimental to the backdoor
attack capability learned in the imitation learning and pretraining stages. Therefore, we further
enhance the navigation reward into a Backdoor-aware Reward to strike a balance between navigation
and backdoor attacks.

In summary, our main contributions are as follows. (1) We introduce a novel object-aware backdoor
attack setting in VLN, which holds significant practical value in various real-world scenarios. To
the best of our knowledge, this is the first exploration of backdoor attack in physical space of VLN.
(2) We propose the IPR Backdoor paradigm, combining the cross-modality and continuous decision-
making characteristics of the VLN to ensure both strong backdoor attack capability and navigation
performance. (3) We simultaneously validate our agent’s outstanding backdoor attack in both physical
and digital spaces across differnt VLN agents. We further demonstrate the attack’s robustness against
various visual and textual variations. Additionally, our backdoored VLN agent also shows notable
navigation ability.

2 Related Work

2.1 Vision-and-Language Navigation

Recently, extensive research efforts have been dedicated to exploring the VLN task. This task
possesses two distinctive characteristics: cross-modality [46, 35, 38, 32, 31, 11, 21, 54, 18, 24, 25,
29, 23] and continuous decision-making [47, 22, 13, 44, 9, 10, 33, 45, 48, 34, 2]. Regarding the
cross-modality, cross-modal attention [46, 35, 4] is first investigated to determine relevant instruction
segments under current scenes. Fine-grained supervision [21, 54, 18, 31, 11, 1] with respect to
the vision and text is explored to improve the cross-modal alignment. Ilharco et al. [24] and Jain
et al. [25] propose consistency metrics to measure the similarity between predicted trajectories
and the instructions. Li et al. [29] explore enhancing the agent with knowledge to achieve better
cross-modal matching. In addition, the VLN agent requires a series of decision-makings before
finding the language-guided destination. Wang et al. [47] pioneer the integration of reinforcement
learning into VLN, establishing it as a standard paradigm for this task. Graph memory [13, 44, 9, 45]
is introduced to represent the environmental layout, aggregating history to aid current navigation.
Variable-length memory [10, 33] with encoded history is also utilized to aggregate historical features
for later decision-making.

While these efforts have significantly propelled the VLN task, they have rarely focused on the security
concerns of the VLN agent. Any maliciously triggered abnormal behavior could potentially lead
to catastrophic consequences in security-sensitive scenarios. Wang et al. [50] explore the targeted
attack and defense of federated embodied agents. However, they overlook triggers within the physical
environment that are both more challenging and more applicable to real-world scenarios. Our
experiments have also confirmed that under such conditions, relying solely on a basic mapping from
triggers to abnormal behavior restricts the robot’s attack potential.

2.2 Backdoor Attack

Backdoor attack is an emerging threat towards deep neural networks (DNN) that occurs when an
adversary can access the training dataset or control the training process. The DNN inserted with a
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backdoor behaves normally on natural inputs but exhibits a intentional behaviour when some specific
patterns called triggers present [12, 16, 37, 49, 36, 30, 6, 26]. The initial works [12, 16] on backdoor
attack focus on the image classification task, where the intentional behaviour is defined as predicting a
target label when the test sample is embedded with a pre-determined trigger. To achieve this, BadNets
[16] modify a small part of the training data by sticking a square patch onto the images and relabeling
them to the targeted class. Some works focus on designing stronger or more stealthy triggers. For
instance, Chen et al. [12] propose to blend benign images with a whole pre-defined image. Nguyen
et al. [37] use a small and smooth warping field in generating backdoor images. Zeng et al. [49]
investigate backdoor triggers in the frequency domain. Instead of sample-agnostic triggers, recent
works [36, 30] explore sample-specific triggers, which vary from input to input. Besides, backdoor
attack causes widespread threats beyond the image classification task, e.g., image retrieval [15], action
recognition [52], and text classification [7]. Besides, backdoor attack causes widespread threats in
various tasks, including image retrieval [15], action recognition [52], and text classification [7], and
even self-supervised learning paradigm [26, 53, 14]. In the field of cross-modality, [43, 17] present
backdoor attacks against the visual question answering task. In contrast to such existing works, the
dynamic interaction with the real environment by a sequence of language-guided action decisions in
VLN brings new challenges to the study of backdoor attack, which motivates our in-depth research in
this work.

3 Method

3.1 Threat Model

Similar to common practices [36, 30, 43], we assume that the attacker has full access to both the
model’s pretraining data and the training process. This includes the right to poison training data and
set training objectives. Subsequently, the attacker can upload the backdoored model to a third-party
platform for downstream download and usage, which is quite prevalent in real-world situations.

3.2 Problem Formulation

Vision-and-Language Navigation. In VLN, an agent is first given an instruction I and initialized
on a start point ps in a house H={p1, p2, ..., p|H|} where a number of navigable points pi are
distributed inside it. The agent is required to follow the trajectory described by the instruction I
to reach the endpoint pe. Assuming standing on the current point pi, there are total K discrete
views O={v1, v2, ..., vK} around the agent. Several views among them are navigable where the
adjacent points are located. The agent’s action space Si=Ai

⋃
{stop} includes all the adjacent points

Ai={pi1, pi2, ..., pi|Ai|} and a stop action. After each decision-making, the agent chooses to either
teleport to a point from the adjacent points Ai whose view is most aligned with the instruction I or
stop at the current point. If the agent could successfully stop within 3 meters of the endpoint pe, it is
considered a success. Otherwise, it is deemed a failure.

Yoga
 ball

DoorWall 
painting

Figure 2: Physical object triggers: yoga ball, wall painting, and door. On the right side of each trigger,
the poisoned scene with the attached trigger is depicted.

Object-aware Backdoored VLN. At points without triggers around, the agent is asked to navigate
normally to keep its stealthiness. Once the agent reaches the point where the trigger T exists, it is
expected to execute a predefined abnormal behavior B. Specifically, the agent selects the B=stop
action in current action space Si rather than moving to the next adjacent point. We assume that the
attacker is unfamiliar to the target house. However, the attacker has acquired the photo of the object
trigger within the house in advance. Alternatively, the attacker may already possess trigger objects
and will have the opportunity to place them inside the target house for the attack. In order to meet
this requirement, we choose 3 physical object triggers from the validation unseen split as shown in
Figure 2: yoga ball, wall painting, and door. The target rooms are not seen during the training process.
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Figure 3: Framework of the IPR Backdoor paradigm. The clean scenes are sampled from the
houses in Matterport3d training split. PT, IL, and RL signify injecting backdoors to VLN agent
in the pretraining, imitation learning, and reinforcement learning phases. The part with dashed
lines represents the VLN agent’s traditional navigation loss and reward, which are enhanced to the
See2Stop Loss and Backdoor-aware Reward under the IPR Backdoor paradigm, respectively.

Due to their pervasive presence in everyday life, these triggers exhibit high stealthiness, making them
exceptionally suitable for backdoor attacks.

3.3 Our method: IPR Backdoor

Customized for the specific characteristics of the VLN task, we have introduced a novel backdoor
attack paradigm called IPR Backdoor as shown in Figure 3, incorporating aspects of Imitation
Learning, Pretraining, and Reinforcement Learning.

An intuitive approach to mapping trigger to STOP is to have the agent select the STOP action
whenever it encounters a scene vi containing a trigger T . To simulate such a scene, we employ a
poisoned scene generator G(vi, T ) to generate poisoned scene vpi :

vpi = G(vi, P (T )). (1)

Following the commonly adopted procedure [16], we specify the poisoning process as the “attach”
operation. P (T ) represents the image preprocessing to the trigger T . G(vi, P (T )) attaches the trigger
P (T ) to a random position of the scene vi. Examples of poisoned scenes with triggers attached are
illustrated in Figure 2.

The agent comprehends the surrounding visual scenes V={vi}Ni=1 along with the given instruction I
and outputs the action probability ap ∈ R|S| within the current action space S:

ap = NavigatorAgent(V, I). (2)

Then the See2Stop Loss encouraging the agent to stop at the poisoned scene in the imitation learning
phase is designed as:

Ls2s = CrossEntropy(ap, al(V )), (3)

where al(V ) ∈ R|S| is a one-hot action label. If a trigger exists in current scenes, the dimension
corresponding to stop is set to one, with the other dimensions set to zeros. Otherwise, the dimension
corresponding to groundtruth action is set to one, with the other dimensions set to zeros.

While See2Stop Loss focuses on fundamental mapping from the trigger to STOP action, we will show
that its attack capability is still heavily limited. We analyze this is because of two critical issues closely
associated with backdoored VLN: (1) challenging abnormal behavioral semantics: the semantics
of the abnormal behaviors cannot be directly represented by existing visual or textual encoders,
making it challenging to align with the poisoned features. (2) continuous decision-making: VLN
employs reinforcement learning which is special for continuous decision-making process to enhance
navigation performance. The current reward only focuses on navigation aspect, and the difference
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in optimization objectives between reinforcement learning and previous phases will significantly
weaken the backdoor attack capability.

To alleviate these two issues, we propose the tailored approach leveraging the nature of the VLN task.
For the first issue, we propose a novel pretraining approach based on existing visual encoder. Firstly,
we introduce the Anchor Loss Lanc. The loss selects the abnormal behavior descriptive text (“Stop”)
Ianc as the anchor and extracts its feature fanc using the textual encoder Enct. This feature serves as
the optimization objective for the poisoned feature fpoi of the poisoned scene vpi , which is extracted
by the backdoored visual encoder Encvbd:

fanc = Enct(Ianc), fpoi = Encvbd(v
p
i ), Lanc = 1− d(fpoi, fanc), (4)

where d(·) represents the distance metric, and we apply the cosine similarity as this metric. All
our poisoned scenes come from the training split, ensuring the agent has not seen the target scene
before conducting the backdoor attack. Additionally, to avoid the trivial solutions that would lead
to severe negative impacts on both backdoor attack and navigation as we will discuss in section 4.2,
we further introduce a Consistency Loss Lcon. This loss encourages both the backdoored visual
encoder Encvbd and the original visual encoder Encvog to maintain consistent features for the same
clean scene vi, thereby preventing both clean and poisoned features clustering near the anchor and
ensuring downstream backdoor attack and navigation performance:

fog
cle = Encvog(vi), f bd

cle = Encvbd(vi), Lcon = 1− d(fog
cle, f

bd
cle). (5)

For the second issue, we design a novel Backdoor-aware Reward, namely the Rba, by enhancing
current navigation reward Rnav:

Rba =

 π+, TriExist and IsStop
π−, TriExist and NotStop
Rnav, Others.

(6)

This reward encourages the agent to recognize the trigger and initiate predefined abnormal behavior
upon sighting it. When the trigger exists in the current scene (TriExist is True), a positive reward π+

is granted for successfully executing the abnormal behavior (IsStop is True), otherwise (NotStop is
True), a negative penalty π− is applied. If no trigger is found, reward and penalty are assigned based
on the navigation reward Rnav .

4 Experiments
4.1 Setup

Dataset. Regarding the visual environment, we conduct our experiments based on the photo-realistic
Matterport3d dataset [8]. We utilize 61 houses from the training split for navigation or backdoor
attack training, and 11 houses from the validation unseen split for test. There is no overlap between
these two splits. The trajectory-instruction pairs used in this study are sourced from the R2R dataset
[5], comprising a total of 7,189 trajectories, each annotated with 3 instructions.

Evaluation Metric. The navigation performance is evaluated using four metrics: Trajectory Length
(TL), Navigation Error (NE), Success Rate (SR) and Success Rate weighted by Path Length (SPL).
TL measures the average trajectory length. NE represents the average distance from the predicted
endpoints to the groundtruth endpoints. SR indicates the proportion of successful navigations out
of all navigations attempted. SPL is a compromise metric that takes into account both TL and SR.
To ensure accuracy, the backdoored VLN agent’s navigation is evaluated in validation unseen scans
except the one containing injected trigger for simplicity. The backdoor attack is measured by the
Attack Success Rate (Att-SR). Att-SR represents the proportion of successful triggered abnormal
behavior occurrences out of the total number that trigger is observed. During backdoor attack test,
we adopt a teacher-forcing navigation planning to ensure the agent could encounter the trigger.

Attack Setup. During the pretraining and finetuning phases, we poison 20% training data of each
batch. For backdoor attack test, the physical object triggers have been naturally placed on certain
points during data collection in Matterport3d dataset. Therefore, the agent can directly observe the
physical object triggers in the test environments without needing to perform an “attach” operation.
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Figure 4: Digital triggers: black-white patch and sig.

(a) features of original encoder (b) features of original/trivial/backdoor-aware encoders

Figure 5: The t-SNE visualization of different encoders’ features.

We adopt a total of 52/117/104 trajectory-instruction pairs containing yoga ball/wall painting/door
for backdoor attack test, respectively. Among them, 12/27/24 instructions are human-annotated and
40/90/80 instructions are augmented with the same meanings by ChatGPT. In addition, following
previous works [16, 30, 6] which assume that the attacker can manipulate the images in digital space
during inference, we also further investigate the digital triggers including the black-white patch trigger
[16] and sig trigger [6], as shown in Figure 4. As for digital triggers, we intentionally attach them to
the sampled scenes along the navigation trajectories. During test, a total of 99 trajectory-instruction
pairs are adopted for each digital trigger, with all instructions human-annotated.

Implementation Details. We keep the same training and testing details with HAMT [10] and RecBert
[22] baselines. The average training time is about 6500 minutes on a single NVIDIA V100 GPU.
Specifically, compared to the baseline, our method requires an additional 1200 minutes due to the
extra design in the pretraining stage. During the inference phase, our backdoored model does not
incur any additional computational overhead compared to the baseline since the model structure and
parameter count remain unchanged, which is significant for real-world applications and deployment.

Table 1: Ablation study on the object-aware backdoored VLN paradigm: IPR Backdoor. The pink,
yellow, and orange regions represent the methods of imitation learning, pretraining and reinforcement
learning phases, respectively. Lnav and Rnav represent the navigation loss and reward.

Lnav Ls2s Lanc Lcon Rnav Rba TL NE↓ SR↑ SPL↑ Att-SR↑
√

8.44 4.51 56.09 54.14 -√
8.78 4.51 57.34 54.90 75

√ √
8.59 6.40 40.05 37.61 2√ √ √
8.58 4.63 56.04 53.75 100

√ √ √ √
11.75 3.57 66.52 61.26 73√ √ √ √
11.25 5.85 66.18 60.08 100

4.2 Ablation Study

Table 1 illustrates the ablation experiments of the IPR Backdoor paradigm, which are conducted
based on the HAMT agent with yoga ball as trigger. In imitation learning phase, See2Stop Loss Ls2s

successfully enables the agent to maintain attack ability to a certain degree with a good performance
in navigation. However, there is a 25% failure rate in the Att-SR metric. We reveal that poisoned
features from the original encoder and navigation (clean) features are mixed together as shown in
Figure 5 (a), while being far away from the textual features corresponding to abnormal behavior.
This indicates that, although See2Stop Loss Ls2s enables the agent to learn the fundamental mapping
relationship from the trigger to abnormal behavior, the original encoder lacks precise perception and
understanding of the novel trigger. The extracted poisoned features with the trigger contained struggle
to establish an accurate connection with abnormal behavior whose representation is strictly aligned
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Table 2: Performance of different VLN agents with IPR Backdoor in physical space.

Trigger Model TL NE↓ SR↑ SPL↑ Att-SR↑
HAMTIL 8.70 4.64 55.51 53.61 -
HAMTILRL 11.59 3.70 65.90 60.70 -

RecBertIL 9.13 5.02 54.07 51.36 -
RecBertILRL 12.03 4.10 60.58 54.84 -

Yoga Ball

HAMTIL 8.44 4.51 56.09 54.14 100
HAMTILRL 11.25 5.85 66.18 60.08 100

RecBertIL 8.84 4.80 54.20 51.55 100
RecBertILRL 11.71 3.89 61.11 55.48 100

Wall Painting

HAMTIL 8.69 4.76 55.15 53.24 100
HAMTILRL 11.65 3.81 65.15 60.15 100

RecBertIL 9.15 5.06 54.08 51.30 100
RecBertILRL 12.15 4.26 59.54 53.76 100

Door

HAMTIL 8.57 4.67 55.34 53.42 100
HAMTILRL 11.39 3.79 65.93 60.62 100

RecBertIL 9.08 5.05 54.12 51.31 100
RecBertILRL 11.91 4.09 61.40 55.45 100

with its descriptive text’s feature. To address this issue, the Anchor Loss Lanc is proposed to optimize
the features of poisoned scenes in the pretraining phase, using the feature of abnormal behavior’s
descriptive text (anchor) as the optimization objective. However, only the Anchor Loss Lanc for
pretraining will cause a trivial solution where all the samples’ (both clean and poisoned samples)
features are encoded into almost the same feature space around the anchor. Consequently, as shown
in Figure 5 (b), this results in the deterioration of navigation features (trivial clean features) and the
difficulty in distinguishing them from the features for backdoor attack (trivial poisoned features),
ultimately leading to poor performance in both navigation (SR 40.05%) and attack (Att-SR 2%). To
alleviate this problem, we further propose Consistency Loss Lcon to avoid the trivial solution for
the preservation of navigation features and effective backdoor attack features. Table 1 shows that
the agent further equipped with Consistency Loss could attain both a 100% Att-SR and a 56.04%
SR comparable to the baseline agent’s 56.09%. Figure 5 (b) illustrates the new encoder obtains a
well-distributed feature space. Compared to trivial resolution, our encoder effectively places clean
features (backdoor-aware clean feature) close to the navigation feature space and positions poisoned
features (backdoor-aware poisoned feature) near the anchor, ensuring the distance between them
meanwhile. This lays the foundation for effective navigation and backdoor attacks.

Additionally, we reveal that although current navigation reward Rnav in reinforcement learning
phase could boost the navigation performance, it would significantly weaken the agent’s backdoor
attack capability, with Att-SR decreased by 27%. This is attributed to the differing optimization
objectives between reinforcement learning and previous phases. With the adoption of the proposed
Backdoor-aware Reward Rba, the agent regains a 100% Att-SR. Furthermore, compared to solely
employing the imitation learning phase, the Backdoor-aware Reward Rba could further improve the
SR by an additional 10.14%.

4.3 Main Results

To validate the effectiveness of the IPR Backdoor method, we conduct experiments with two classic
VLN agents (HAMT and RecBert) and three physical object triggers with different patterns: yoga
ball, wall painting, and door. Table 2 shows the performance of our method on these triggers. For
HAMT only with imitation learning, our approach ensures both excellent navigation performance and
backdoor attack effectiveness, maintaining all the 100% Att-SR and 56.09%, 55.15%, and 55.34% SR,
which are comparable to HAMTIL baseline’s 55.51%. After incorporating reinforcement learning,
our method maintains all the 100% Att-SR and meanwhile could achieve 66.18%, 65.15%, and
65.93% SR, which are close to the HAMTILRL baseline’s 65.90%. Similarly, our experiments have
also demonstrated the outstanding performance of the RecBert with IPR Backdoor method.

Furthermore, to comprehensively validate our method, we adopt two digital triggers in a conventional
manner: black-white patch and sig, as shown in Table 3. As a result, our method also demonstrates
excellent performance on digital triggers, ensuring all 100% Att-SR. Compared to the baselines
HAMTILRL and RecBertILRL, our method could still achieve the comparable SR of 65.01%/63.81%
and 60.37%/59.60% in navigation.
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Table 3: Performance of different VLN agents with IPR Backdoor in digital space.

Trigger Model TL NE↓ SR↑ SPL↑ Att-SR↑

Black-White Patch

HAMTIL 9.33 4.47 57.94 55.58 100
HAMTILRL 13.32 3.63 65.01 59.13 100

RecBertIL 9.40 4.95 53.43 50.61 100
RecBertILRL 12.92 4.20 60.37 54.57 100

Sig

HAMTIL 9.64 4.64 57.94 54.88 100
HAMTILRL 12.68 3.74 63.81 59.37 100

RecBertIL 9.45 4.87 54.32 51.72 100
RecBertILRL 11.92 4.16 59.60 54.92 100

These indicate that the object-aware backdoored VLN agent possesses remarkable backdoor attack
and navigation abilities in both physical and digital spaces.

4.4 Robustness

Table 4: Robustness under visual and textual variations.
Vis. Txt.

Uns. Att. Goal Ori. Pass Emp. Diff Des.

Att-SR ↑ 97 100 100 100

Here, based on the model HAMTILRL with yoga ball and black-white patch as the triggers, we
demonstrate the robustness of our method on visual and textual variations.

Figure 6: The backdoor attack (Att-SR) and navigation (SR) performance under image preprocessing
in physical and digital spaces.

Robustness to Visual Variations. (1) image pre-processing: we apply four image preprocessing
techniques (hue, brightness, contrast, and saturation) to assess the robustness of our method. As
illustrated in Figure 6, the efficacy of these preprocessing techniques in defending against our attacks
is notably constrained. Across all preprocessing and hyperparameter variations, our backdoored
VLN agent consistently achieves a 100% Att-SR while maintaining a significantly high level of
navigation capability (SR > 60%). (2) unseen environments with attached triggers (Uns. Att.): to
comprehensively assess the model’s attack robustness in unfamiliar environments, we sample the
same 99 trajectory-instruction pairs as backdoor attack test in digital space. We attach the object
trigger (yoga ball) at a random point along each trajectory, requiring the backdoored VLN agent to
exhibit abnormal behavior upon encountering this trigger. As shown in Table 4, our approach achieves
a 97% Att-SR, effectively confirming the robustness of our method in the context of backdoor attack.

Robustness to Textual Variations. Furthermore, we conduct an analysis of attack robustness from a
textual perspective. We define three variants of textual inputs. (1) Goal-oriented instruction (Goal
Ori.): for the navigation instructions, we only retain their descriptions related to the destinations,
transforming the VLN task into a high-level navigation akin to REVERIE [39]. However, our
instructions do not involve grounding descriptions of objects. (2) “Pass” related phrase emphasis
(Pass Emp.): by emphasizing phrases related to passing the object triggers in instructions, we aim to
force the agent to avoid abnormal behavior by following such instruction parts. (3) Instructions with
different descriptive styles (Diff Des.): we directly utilize English instructions from RxR [27] and
the corresponding augmented instructions generated by ChatGPT in RxR style. These instructions
provide more detailed descriptions of various objects along the trajectory, allowing us to evaluate
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the agent’s robustness to instructions with different styles. The test data for Goal Ori. and Pass
Emp. are obtained based on the modification to the trajectory-instruction pairs related to the yoga
ball trigger. The test data for Diff Des. is sampled from the English part of RxR. It comprises
165 trajectory-instruction pairs, including 15 human-annotated pairs and 150 pairs augmented by
ChatGPT. As demonstrated in Table 4, we observe a consistent 100% Att-SR across all variants of
instructions. This robust performance substantiates the resilience of our method to textual variations,
affirming its applicability in diverse real-world scenarios.

Figure 7: Navigation and backdoor attack performances of different poisoning rates.

Robustness to Poisoning Rate. Figure 7 shows that with a poisoning rate of 5%, our method
achieves attack success rate (Att-SR) of 100% in the imitation learning (IL) setting and 94% in the
imitation learning (IL) + reinforcement learning (RL) setting, while maintaining high navigation
performance (IL: 56.62%; IL+RL: 66.09%). When the poisoning rate increased (10%, 15%, 20%),
our method could steadily achieve 100% Att-SR and high navigation performance (IL: 56.43%,
56.18%, 56.09%; IL+RL: 65.51%, 66.23%, 66.18%). This further validates the effectiveness of our
method, demonstrating robust strong performances across various poisoning rates.

5 Conclusion

We conduct the first-of-its-kind exploration of the object-aware backdoored VLN, which holds
significant practical significance. Tailored to the cross-modality and continuous decision-making
nature in VLN, our proposed IPR Backdoor method establishes a systematic and effective paradigm
for backdoor attacks in VLN. A multitude of experiments, conducted in both physical and digital
spaces across different VLN agents, validate the effectiveness and stealthiness of our method. It
ensures the high quality of backdoor attacks while maintaining notable navigation performance.
Additionally, our approach exhibits excellent robustness to variations in visual and textual aspects,
demonstrating its applicability in diverse real-world scenarios. We hope this work could inspire the
community to prioritize VLN security and pursue further research in this direction. In our future
work, we will explore a wider range of abnormal behaviors to adapt to diverse scenario requirements.

Ethical Impacts: The potential ethical impacts of our backdoored VLN system include both positive
and negative aspects. (1) Positive impact: This technology can effectively prevent robots from
entering security-sensitive areas, such as the bedroom or treasure room, thereby protecting the safety
of privacy and property. (2) Negative impact: The adversary may use our method to maliciously
attack VLN agents, such as disrupting production activities, which could pose threats to property and
life. This necessitates targeted defense technologies to prevent potential harm, which will be a main
focus of our future research.

Limitations: As an early work on backdoor attack in VLN, this study currently only explores the
anomaly of stopping. In the future, we hope to explore more complex and customized actions.
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A Supplemental Material

Step 1

STOPStep 3

Step 2

Instruction: Turn ro your left and exit into the hallway. Turn left and enter the bedroom and then turn left and enter the closet.

Figure 8: An attacked navigation of the object-aware backdoored VLN. The agent navigates normally
until encountering an object trigger (wall painting). Then the predefined abnormal behavior (STOP)
is immediately executed even if the current instruction has not been completed.

A.1 Example of Attacked Navigation

An example of the attacked navigation is shown in Figure 8. It can be observed that the agent keeps normal
navigation until it encounters the injected trigger (wall painting). Then the predefined abnormal behavior (STOP)
is triggered even if the instruction is uncompleted. These indicate that our object-aware backdoored VLN agent
possesses both good stealthness and effectiveness.

Goal Ori.: Stop next to the two giraffes.

Pass Emp.: Go into the gym area. Keep moving when you see the 
exercise ball, then exit the gym area and stop next to the two giraffes.

Diff Des.: Turn right from the place you are standing and go 
straight. You will find narrow opening. Now slightly turn left and 
go near the sofa. Now turn left and go straight. Now turn right and 
go straight. On the right side you will find bench. Now turn left and 
go straight. Now again turn left and go near the kitchen area. …, 
you will find flower pot. Now go and stand in front of the flower 
pot. That will be your final destination.

R2R: Go into the gym area. Exit the gym area and stop next to the 
two giraffes.

Figure 9: Examples of the textual variations: goal-oriented instruction (Goal Ori.), “pass” related
phrase emphasis instruction (Pass Emp.), and instructions with different descriptive styles (Diff Des.).

A.2 Examples of Textual Variations

Figure 9 shows the examples of different textual variations. The goal-oriented instructions (Goal Ori.) only
contain descriptions about the final destinations. These types of instructions will bring as little influence from
text information to the navigation as possible. The “pass” related phrase emphasis instructions (Pass Emp.)
specifically emphasize the actions passing the trigger, attempting to avoid the agent’s abnormal behavior through
textual guidance. Instructions with different descriptive styles (Diff Des.) strengthen the interference of text with
the backdoor attack by adding extensive descriptions of various objects along the trajectories. Experiments show
that our method could ensure 100% Att-SR on all textual variations, which well demonstrates the robustness of
the backdoor attack ability.

A.3 Different Views of the Object Triggers

Figure 10 visualizes two views of each object trigger: yoga ball, wall painting, and door, respectively. In these
scenes, object triggers vary in terms of angles and sizes. Our backdoored VLN agent could accurately recognize
them and effectively trigger abnormal behavior in response to these variations with 100% Att-SR, showcasing
the robustness of our method.
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yoga ball

wall painting

door

Figure 10: Example of two views of the yoga ball, wall painting and door.

A.4 Visualization of the Image Preprocessing

1.1 1.2 1.3 1.4 1.5

1.1 1.51.41.31.2

0.02 0.04 0.06 0.08 0.10

hue

brightness

contrast

1.1 1.2 1.51.41.3
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1.0

0

1.0

1.0

Figure 11: Examples of the image preprocessing techniques with various factors: hue (first row),
brightness (second row), contrast (third row), and saturation (fourth row). The first column is the
original scene.

Figure 11 illustrates a scene preprocessed by the four image preprocess techniques with different factors: hue,
brightness, contrast, and saturation. They are the classic methods to validate backdoored model’s robustness. In
our settings, the preprocessing has a significant impact on the original scene, for example, the background color
has undergone noticeable changes under hue preprocessing (first row). Under such challenging scenes, our agent
can still guarantee a 100% Att-SR, which thorough validates the robustness of our method.
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A.5 Discussion on Potential Defense Research

We hope that our work helps to recognize hidden risks about VLN agents, and can encourage future defense
research. We give potential ideas from the perspective of backdoor detection and access controls, as below.

1. Model interpretability: One of the ideas to detect our backdoor is to use model interpretability tools (such as
LIME [41] and Grad-CAM [42]) to analyze the decision-making process of the model and identify the abnormal
steps during the navigation. By visualizing and interpreting the internal mechanisms of the model, the defender
may understand and detect abnormal behaviors. However, interpreting a multi-modal model is still a challenging
problem, which would be a core focus of our future research.

2. Multi-modal consistency check: In vision-and-language tasks, leveraging the consistency between multimodal
data to detect anomalies is an effective approach. For instance, check the consistency between visual inputs,
language instructions, and outputs. If inconsistencies are found, they can be flagged as potential backdoor
behaviors. The main issue is how to define the “consistency” in the complex VLN environments.

3. Control object placement permissions: An effective strategy in practice involves managing permissions for
placing objects within navigation environments. Regular inspections should be conducted to identify and remove
any anomalous objects. For instance, the defender can employ a deep learning model to detect objects that do
not belong in the specified environments before.

4. Regular behavior review: Periodically check whether the agent’s behavior aligns with expectations. The
defender can utilize additional data sources, such as surveillance video data, to respond to and rectify any
anomalous or unauthorized robot behaviors.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Please refer to the method and experiments sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: This manuscript does not contain the theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to the method section and the open-sourced code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We use open-sourced datasets in this study. The code will also be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Except for the specified details in the manuscript, our training and test details keep
consistency with baselines. And we have provided the corresponding references.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: We have provided experimental results in accordance with the conventions in the VLN
field. Please refer to the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
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