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Shared Differential Expression-Based Distance

Reflects Global Cell Type Relationships

in Single-Cell RNA Sequencing Data

AIDAN MCLOUGHLIN1 and HAIYAN HUANG2

ABSTRACT

Unsupervised cell clustering on the basis of meaningful biological variation in single-cell RNA
sequencing (scRNA seq) data has received significant attention, as it assists with ontological
subpopulation identification among the data. A key step in the clustering process is to compute
distances between the cells under a specified distance measure. Although particular distance
measures may successfully separate cells into biologically relevant clusters, they may fail to
retain global structure of the data, such as relative similarity between the cell clusters. In this
article, we modify a biologically motivated distance measure, SIDEseq, for use of aggregate
comparisons of cell types in large single-cell assays, and demonstrate that, across simulated and
real scRNA seq data, the distance matrix more consistently retains global cell type relationships
than commonly used distance measures for scRNA seq clustering. We call the modified distance
measure ‘‘SIDEREF.’’ We explore spectral dimension reduction of the SIDEREF distance
matrix as a means of noise filtering, similar to principal components analysis applied directly to
expression data. We utilize a summary measure of relative cell type distances to better display
the cell group relationships. SIDEREF visualizations more consistently reflect global structures
in the data than other commonly considered distance measures. We utilize relative cell type
distances and the SIDEREF distance measure to uncover compositional differences between
annotated leukocyte cell groups in a compendium of Mus musculus scRNA seq assays com-
prising 12 tissues. SIDEREF and associated analysis is openly available on GitHub.

Keywords: clustering, differential expression, distance, global structure, scRNA seq.

1. INTRODUCTION

Recent years have witnessed a fast and large expansion of single-cell sequencing technologies

given their exciting ability to characterize and quantify heterogeneity across cells from tissues of

interest (Tang et al., 2019). In particular, single-cell RNA sequencing (scRNA seq) data can be used to

identify cellular subpopulations and study functional gene networks within such groups (Chen et al.,
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2019; Liu et al., 2019). However, the data often suffer from challenging levels of sparsity and noise

(Brennecke et al., 2013; Ding et al., 2020; Mereu et al., 2020), making it difficult to uncover stable cell

groups.

A crucial step in unsupervised analysis of cellular relationships in scRNA seq data is the selected

distance measure, in particular for use in cell type visualization and clustering. For example, the current

iteration of the popular Seurat package (Hao et al., 2021) applies a modified Louvain community detection

algorithm to a k-nearest-neighbors (KNN) graph of the cells, which is constructed from the selected cellular

distance matrix, to determine clusters. Other earlier clustering approaches such as SNN-Cliq and Pheno-

Graph rely on a KNN graph as well (Levine et al., 2015; Xu and Su, 2015). Low dimensional visualization

techniques, such as t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Appro-

ximation and Projection (UMAP), can use any distance measure (van der Maaten and Hinton, 2008;

McInnes et al., 2018; Becht et al., 2019; Stuart et al., 2019).

A popular distance measure choice in applied work is to compute Euclidean distance on a low di-

mensional principal component analysis (PCA) embedding of the preprocessed gene expression matrix

(Barres et al., 2018; Hao et al., 2021). This dissimilarity measure is successful for capturing ‘‘local’’

structure by isolating ontological cell types/groups. However, the measure may not capture relative

similarity between these cell types/groups, which we refer to as the ‘‘global’’ relationships of the data.

These concerns have also been levied toward the t-SNE and UMAP visualization techniques (Kobak and

Linderman, 2021).

Other distance matrices specifically for scRNA seq have been developed. SIMLR learns a linear

combination of Gaussian kernels to represent the cell–cell similarities, while imposing a low rank

constraint on the similarity matrix (Wang et al., 2018). SIMLR still computes Euclidean distance in the

kernels, which can be substituted with other measures (Kim et al., 2019). RAFSIL creates a feature

set from PCA decompositions of the data and trains a random forest to learn cell–cell similarities

(Pouyan and Kostka, 2018).

Other methods utilize auxiliary data such as protein–protein interaction networks and gene ontology

databases (Li et al., 2021; Xu et al., 2021), or seek to learn sparse similarity values for cells arising from

different subtypes (Liang et al., 2021). Deep learning autoencoders are an exciting direction to consider

optimization objectives that retain scRNA seq global structure in the latent space (Lopez et al., 2018; Way

and Greene, 2018; Tian et al., 2021).

Ontological cell groups can be characterized by genes that are expressed at differing levels from other

cell groups, commonly referred to as differentially expressed (DE) genes (Wang et al., 2019). For each cell

pair, the SIDEseq distance measure computes global concordance of their DE gene lists, where each cell’s

DE gene lists are derived by comparing the cell with every individual cell in the rest of the data (Schiffman

et al., 2017). Its property of incorporating information from all cells (across different cell groups) when

evaluating the similarity between two cells allows for the investigation of pairwise cell relationships from a

global perspective, and this may better reflect the ground truth global relationships as defined by DE gene

commonalities and differences between groups.

In this study, we first adapt the SIDEseq distance measure for tractable computation on data sets of

several thousand cells. This is achieved by reducing the global comparison of DE gene lists with a well-

selected reference set of cells in the data. We call this modified measure SIDEREF. For visualization of

cell group relationships, we generate a relative group distance summary measure based on SIDEREF.

Similar to other quadratic time distance measures, SIDEREF does not scale for full cell-level distance

computations in massive scRNA seq data sets; however, the cell group relative distances are reliably com-

puted under reasonable sample sizes of each cell type. That is, we consider SIDEREF more advantageous

for recovering global relationships between identified cell types, rather than for a general clustering purpose

when applied to massive scRNAseq data sets.

To embed noise reduction and dimension reduction into SIDEREF, we consider taking the Euclidean

distance of a spectral embedding of the SIDEREF distance matrix, though this procedure is applicable to

any distance matrix.

We construct a simulation of scRNA seq data with ground truth global relationships between cell groups

and show that SIDEREF successfully identifies the global structure present in the simulation, relative to

other commonly used distance measures. We demonstrate that the spectral embedding can reduce noise yet

also genuine signal. Furthermore, cell groups tend to grow more isolated as the dimension size of the spec-

tral embedding increases, which is also observed as the rank constraint is increased in SIMLR.
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We applied SIDEREF distance and the relative distance summary to an annotated compendium of Mus

musculus scRNA seq data sets (Barres et al., 2018). SIDEREF distance more clearly relates ontologically

similar groups of cells than competing distance measures. Furthermore, the relative distances are leveraged

to identify compositional differences between broadly annotated leukocyte cell groups from different tissue

sources. This demonstrates how a reliable measurement of global structure can help improve the classi-

fication of cell groups in one’s data. SIDEREF and associated analysis is available on GitHub at https://

github.com/aidantmcloughlin/SIDEREF.

2. METHODS

2.1. SIDEseq distance

The input for the SIDEseq measure is a G · N variable gene expression matrix with rows denoting genes

and columns denoting cells. First, a DE statistic is computed for each cell pair and gene as follows:
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where x
g
i denotes the normalized and scaled expression level of gene g in cell i. When expressions are 0 in both

cells, the DE statistic is set to 0. Note that other DE statistics could be appropriate for particular data sets.

To compute the similarity measure between cells i and j, SIDEseq then indexes the top m DE statistics

for each cell pair i‚ tð Þ (or j‚ tð Þ) for cells t � 1‚ . . . ‚ Nf g n i‚ jf g. Let h
kð Þ

i‚ t and h
kð Þ

j‚ t denote the gene cor-

responding to the top kth DE statistic of cell pair i‚ tð Þ and j‚ tð Þ, respectively. Then, the SIDEseq similarity

score for cell pair i‚ jð Þ is as follows:
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where the intersection set size of DE gene lists between cell pair i‚ tð Þ and cell pair j‚ tð Þ is summed for all

t 6¼ i‚ j. These similarity scores construct a symmetric similarity matrix where diagonal elements are set to

0. To convert the matrix to a distance matrix, one subtracts the similarity scores in each off-diagonal cell

from the maximum similarity score across the matrix.

Equation (2) shows how SIDEseq crucially borrows DE gene information from all cells in the data to

inform the similarity in expression between cells i and j. The compared differential expression with respect

to all cells in the data builds a rich summary of shared differentiating gene function for each cell pair. This

enables the measure to detect subtle structures between cell subpopulations and protects each similarity

score against noise artifacts. These properties help explain its demonstrated performance advantages for

local clustering (Schiffman et al., 2017). However, the computation of similarity scores scales cubically

with the number of cells, in contrast to square scaling of traditional distance measures.

2.2. SIDEREF modification

One natural way to alleviate the computability issue of SIDEseq is to reduce the global comparison in

Equation (2) to one across a smaller reference cell set of size C < N, reducing the number of ranked

DE gene list intersections per similarity score to C. If the reference set sufficiently represents the variety

in gene expression across the data, then collecting ranked list comparisons only among the reference set

should still largely capture the shared DE structures. We name this modified approach SIDEREF. Formally,

given a reference set, C, the SIDEREF similarity scores are computed as

Si‚ j =
1

Cnfi‚ jgj j
X

t =2 Cnfi‚ jg
h(1)

i‚ t ‚ . . . ‚ h(m)
i‚ t

� �
\ h(1)

j‚ t ‚ . . . ‚ h(m)
j‚ t

n o���
���: (3)

To minimize the needed size of the reference set, SIDEREF employs cell clustering followed by strat-

ified sampling of clusters to reach a representative cell reference set that produces more stable, more similar

distance matrices to SIDEseq than simple random sampling (Supplementary Fig. S1). Specifically, the

analyses in this article use k-means clustering applied to a two-dimensional UMAP embedding of a PCA
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embedding of preprocessed gene expression data (Lloyd, 1982). The number of clusters and number of

principal components are determined using the elbow heuristic (Pouyan and Kostka, 2018).

The clusters are sampled proportionally to their size to create cell reference sets of size 100 for all article

results. The reference set size of 100 is chosen to balance compute time with consistency to the SIDEseq

distance matrix (Supplementary Fig. S1). All other aspects of the SIDEseq computation remain the same

for SIDEREF. In particular, the size of the DE gene list, m, is set to 300 for all experiments in this article, in

accordance with robustness studies in Schiffman et al. (2017). For modest distance matrix dimensions, the

compute time of SIDEseq eclipses that of SIDEREF (Supplementary Fig. S2).

2.3. Spectral embedding distance

SIDEREF integrates information from the full gene expression matrix and may show deteriorating per-

formance for highly noisy scRNA seq assays. Spectral embedding can be applied directly to any distance

matrix, including SIDEREF, as a means of dimension reduction. Specifically, given a distance matrix, X,

spectral embedding of p dimensions is defined as the row-normalized matrix of eigenvectors corresponding

to the p smallest nonzero eigenvalues of the spectral decomposition of the symmetric normalized graph

Laplacian (Ng et al., 2001):

L = I - D
- 1=2
S SD

- 1=2
S ‚ DS = diag S�1f g‚ (4)

where S is a conversion of the distance matrix to an adjacency matrix:

S = I - Xnorm‚ Xnorm = X=maxfXg‚ (5)

and DS is the degree matrix of S. Note that any adjacency matrix conversion can be used in place of

Equation (5). Euclidean distance is used to convert the spectral embedding to a distance matrix.

2.4. Groupwise relative distances

Low-dimensional visualization strategies such as UMAP may struggle to accurately display global cell

group relationships encoded in the SIDEREF distance matrix. To meaningfully summarize such informa-

tion, we compute groupwise relative distances based on an underlying distance matrix.

Consider a partitioning of N cells into K groups, annotated A1‚ . . . ‚ AK . Let Xi‚ j denote the i‚ jf gth entry

of a given cell distance matrix. The unnormalized groupwise distance between cell groups Ai and Aj is

defined as

d(Ai‚ Aj) =
1

Aij j Aj

�� ��
X
ci2Ai

X
cj2Aj

Xci‚ cj
: (6)

Using the groupwise distances from Equation (6), we compute the normalized groupwise relative

distance between cell types Ai and Aj as

drel(Ai‚ Aj) =
d(Ai‚ Aj) - minkd(Ai‚ Ak)

maxkd(Ai‚ Ak) - minkd(Ai‚ Ak)
: (7)

Note that this measure is not symmetric. When putting all the measures in a matrix (i.e., having Ai as row

index group and Aj as column index group), one can think of this measure as the relative distance from the

row index group, Ai (the source group), to the column index group, Aj (the target group). Note the relative

distance vector for a source row must include 0 and 1, which is not necessarily true for a target column.

2.5. Performance measures

In addition to qualitatively assessing heatmaps of the groupwise relative distances, we consider a per-

formance measure that tabulates the proportion of relative distance values that violate a ‘‘ground truth’’

hierarchy of the cell types. Specifically, consider a partitioning of the K cell groups into global groups (e.g.,

groups/clusters obtained by cutting the true hierarchical dendrogram at some level if such hierarchy is

available), for which cell types in a global group are more similar to each other than to the other cell groups.

Let GAi
denote the global group of cell type Ai. The within group maximum distance of Ai is defined as
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M1(Ai) = max
Ak2GAi

max drel(Ai‚ Ak)‚ drel(Ak‚ Ai)ð Þ: (8)

Conversely, the outside group minimum distance of Ai is defined as

M2(Ai) = min
Ak =2GAi

min drel(Ai‚ Ak)‚ drel(Ak‚ Ai)ð Þ: (9)

Using Equation (8), we define the global group maximum violations of a relative distance matrix as

XK

i = 1

X
Aj =2GAi

I drel(Ai‚ Aj) � M1(Ai)
� �

+ I drel(Aj‚ Ai) � M1(Ai)
� �

: (10)

Conversely, the global group minimum violations are defined as

XK

i = 1

X
Aj2GAi

I drel(Ai‚ Aj) � M2(Ai)
� �

+ I drel(Aj‚ Ai) � M2(Ai)
� �

: (11)

Evaluating one ‘‘cross’’ of the relative distance matrix at a time, Equation (10) [Equation (11)] tabulates the

number of relative distances outside of global groups (within global groups) that violate the condition that cell

types within global groups should have the lowest relative distances in the cross. Note that, if there exist

multiple levels of global groups in the data, we can tabulate whether a violation exists for any of those levels.

The results in Section 3 report Equations (10) and (11) as a percentage of distance values that are violations.

3. RESULTS

3.1. Global cell relationships under simulated scRNA seq data

To examine global structure identification of cell types with ground truth annotations, a simulation of

scRNA seq data is generated using the Splatter software (Zappia et al., 2017). The simulated data consist

of 10,000 genes and 1000 cells that are equally distributed across 20 cell types. A summary of the global

Table 1. Summary of Global Relationships Encoded in Single-Cell RNA Sequencing Simulation

Individual

cell type

Global

group index Global group properties

Global

group name

1 A High proportion of cell type-specific DE genes; no shared DE

genes

High individual DE

2 B Low proportion of cell type-specific DE genes; no shared DE

genes

Low individual DE

3 C High proportion of cell type-specific DE genes; low proportion

of shared DE genes with other cell types in the global group

High individual DE

Low shared DE4 C

5 C

6 D High proportion of cell type-specific DE genes; high proportion

of shared DE genes with other cell types in the global group

High individual DE

High shared DE7 D

8 D

9 E Low proportion of cell type-specific DE genes; high proportion

of shared DE genes with other cell types in the global group

Low individual DE

High shared DE10 E

11 E

12 F Low proportion of cell type-specific DE genes; low proportion

of shared DE genes with other cell types in the global group

Low individual DE

Low shared DE13 F

14 F

15 G Low proportion of cell type-specific DE genes; low proportion

of shared DE genes with other cell types in the global group;

high variance of DE genes

Low individual DE

Low shared DE

High variance DE

16 G

17 G

18 H High proportion of cell type-specific DE genes; low proportion

of shared DE genes with other cell types in the global group;

high variance of DE genes

High individual DE

Low shared DE

High variance DE

19 H

20 H

DE, differentially expressed.
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structure of these 20 cell groups is provided in Table 1. Structure is encoded in the data by randomly

assigning DE genes to prespecified cell groups under parameters specified in Supplementary Table S1.

In particular, cell types 1 and 2 are ‘‘single’’ groups, sharing no DE genes with any other group.

Remaining cell types exist in high-level ‘‘global groups’’ of cardinality 3, with a varied number of

shared DE genes in each global group. For this analysis, we assume the individual cell type identities are

known, and assess the ability of SIDEREF, as well as spectral embedding, to uncover the global groups

in the data.

For simulation, as well as real data in Section 3.2, cell expression data are log-normalized, gene features

are subset to the 3000 most variable genes and scaled using the Seurat package (Hao et al., 2021).

Under groupwise relative distances, SIDEREF captures connectivity between cell types in the simulation

(Fig. 1a), compared with a popular distance measure, Euclidean distance computed on the 25-dimensional

PCA embedding of the data, referred to as PCA (25 Dims.) (Fig. 1b) (Hao et al., 2021). The Euclidean

distances are weighted by eigenvalues corresponding to each PCA embedding dimension. In the figures,

x-axis represents target cell types and y-axis represents source cell types. As explained in Section 2.4, the

values within rows are directly comparable and show the relative degrees of connectedness between the

designated source cell type and all other individual cell types.

FIG. 1. Normalized groupwise relative distances for 20 cell type Splatter simulation data. Top row color coding

reflects the ground truth global group assignment. The SIDEREF distance matrix with DE gene lists of size 300 is

directly used in (a), and is spectrally embedded in (c) and (e) to 5 and 10 dimensions, respectively. (b), (d), and (f)

show analogous results for Euclidean distance applied to the 25-dimension PCA embedding. DE, differentially

expressed; PCA, principal component analysis.
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SIDEREF reflects lower relative distances within ground truth global groups. In addition, global groups

with stronger shared DE have tighter connectivity, such as global group E. We observe global groups F

and G are more defined under SIDEREF than PCA. The individual cell groups, indexed A and B, are better

isolated under SIDEREF. Two-dimensional UMAP visualizations of the data will also separate the global

groups under PCA (Supplementary Fig. S3).

Spectral embedding-based distance applied to the SIDEREF and PCA matrices is fairly similar under the

simulation, and does not perform better than using SIDEREF directly (Fig. 1c–f). The spectral embedding

dimension serves as a hyperparameter to control the number of tightly connected components among the

cell groups. When the dimension is small, spectral distance fails to separate some global groups. As dimen-

sion increases, spectral distance more clearly elucidates some global groups, yet can sever the connection

between cell types for other global groups.

Alternative baseline distance measures are compared with SIDEREF in Figure 2. In particular, due to the

clear DE patterns of the simulated data, Spearman-based dissimilarity produces similar or slightly better

simulation results to SIDEREF. However, the two measures show substantial differences in the real data.

In Figure 3, SIDEREF is compared with scRNA seq-specific methods RAFSIL and SIMLR. RAFSIL

struggles to clearly define global groups D and H and has noisier distance values outside of the global

groups, whereas SIMLR tends to fully isolate each low-level cell type. As the rank constraint on SIMLR is

increased, the connections between cell types are further severed, similar to spectral distance (Supple-

mentary Fig. S4).

In Table 2, we report the global group violation proportions averaged over 10 seeds of the simulated

data. These performance measures reflect the qualitative assessment of the heatmaps, in that SIDEREF is

the second-best reflection of the simulated data, behind Spearman rank correlation. As mentioned previ-

ously, this superior performance of Spearman rank correlation is due to the clear DE patterns presented in

the simulated data. In the real data, Spearman correlation reports much higher violation rates (Table 3).

3.2. Global cell relationships in multitissue scRNA seq compendium

We use a public compendium of M. musculus microfluidic droplet-based scRNA seq data. These data

comprise 12 separate assays, each originating from different tissues (Barres et al., 2018; Macosko et al.,

2015). In the data, each assay was separately analyzed with unsupervised clustering and marker gene

detection, and the resulting cell ontology annotations are provided. In total, there are 76 unique

FIG. 2. Normalized groupwise relative distances for 20 cell type Splatter simulation data under alternative distance

measures. Top row color coding reflects the ground truth global group assignment.
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combinations of tissue sources and cell type classifications in the data, which are used as ‘‘ground truth’’

cell types from which to analyze global relationships.

Despite the computational improvements, SIDEREF is intractable for the entire droplet data of 55,656

cells (even storing this distance matrix is a burden on memory). For aggregate analysis of cell type

relations, SIDEREF groupwise distances are computed stably for reasonable sample sizes of each cell

type (Supplementary Fig. S5). Specifically, from each cell type tissue combination, either 100 cells or the

group’s cardinality is sampled for this analysis, yielding a final data set of 6,832 cells.

Some cell type annotations appear in multiple M. musculus tissues, such as immune cells and endothelial

cells. The same cell type in different Tabula Muris tissues may have slightly varying true expression

profiles or batch effects, given that tissue samples are sourced from various mice. However, compared with

biologically distal cell types, cells of the same cell type (even in different tissues) should clearly group

together under a successful distance measure.

Each distance matrix is computed from all 76 cell types in the data. Frequently, the global group

structure of the cell types is unclear. However, several specific cell types appear in various tissues, namely

B cells, Pro-B cells, T cells, natural killer cells, basal cells, and endothelial cells. Other cell types that

appear in multiple tissues are broadly defined, such as leukocytes, or express high diversity depending on

tissue location, such as macrophages (Locati et al., 2020). To compute the global group violations tabu-

lations from Section 2.5, we label the six initially listed cell types as ground truth global groups, and

remove broadly defined cell types, other immune cell types, and progenitor cells before computing relative

distances and global group violations.

Supplementary Table S2 enumerates cell type inclusion and exclusion. In addition, we consider a second

level of global groups, where the four immune cell types are joined into one group, and tabulate whether a

violation exists along either global group level for each relative distance value.

The global group violations for SIDEREF and competing distance measures are reported in Table 3. The

right-hand two columns report violations when including the violations check for a combined immune cells

global group. Under this multilevel delineation of global structure, SIDEREF performs best. In particular,

the performance of Pearson correlation drops drastically when including the immune cells violation check.

This indicates that Pearson correlation tightly connects very similar cell types yet severs other more distal

FIG. 3. Normalized groupwise relative distances for 20 cell type Splatter simulation data under scRNA seq tailored

distance measures. Top row color coding reflects the ground truth global group assignment. scRNA seq, single-cell

RNA sequencing.

Table 2. Global Group Violations for Selected Distance Measures Under the Single-Cell

RNA Sequencing Simulation

Method Global group max violations (%) Global group min violations (%)

SIDEREF 4.4 11.1

PCA (25 dimensions) 9.6 13.8

Euclidean 19.3 30.5

1 - j Pearson correlation j 9.2 16.0

1 - j Spearman correlation j 0.1 0.6

RAFSIL 22.1 37.8

SIMLR (five components) 40.5 31.7

Results are averaged over 10 random generations of the data.

PCA, principal component analysis.
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relations. Supplementary Table S3 reports the violation measures when filtering the data to only cell types

that belong to the global groups. SIDEREF performs favorably under this scenario as well.

Groupwise relative distances under SIDEREF show expected global group structure for annotated leu-

kocyte and B cells, along with three endothelial cell types and two otherwise unrelated cell types (Fig. 4a).

These cell types were manually selected to offer a diverse mix of cell function and to compare broadly

defined leukocytes against narrowly defined B cells. The matrix is filtered to the 14 cell types before com-

puting groupwise relative distances.

In Section 3.3, we show the kidney and thymus leukocytes show strong relation to the B cells, suggesting

these six cell types should form a global group. The other leukocyte groups still consist of immune cells,

and should be closer to other immune cells than the endothelial cells, basal cells, and pneumocytes. Finally,

the global structure should show a global group of leukocytes and of endothelial cells, though the endo-

cardial cell type is a specialized endothelial cell, so that the lung and limb endothelial cells should be most

connected of the three. The other two cell types (basal cell of epidermis, type II pneumocyte) should be

fully isolated. SIDEREF distance reflects this structure.

Similar to the simulation, spectral embedding-based distance of SIDEREF controls the number of

connected components (Fig. 4b, c). PCA distance suggests B cell enrichment of bladder leukocytes under

source to target distance, indicating the B cell groups lie closer to the bladder leukocytes (‘‘source’’) than

do the other leukocytes. PCA also fully isolates liver leukocytes under target–source distance, and does not

clearly differentiate endocardial cells from endothelial cells (Fig. 4d). Euclidean and correlation-based

distances show clear deficiencies (Fig. 4e, g, and h). RAFSIL successfully tracks kidney and thymus B cell

enrichment, but does not clearly indicate the other global structures (Fig. 4f). SIMLR fully isolates most

low-level cell types (Fig. 4i).

A practitioner may be interested in focusing on one direction of distance or simply aggregating both

directions. To this end, the open software allows for symmetrized heatmaps and selected bipartite networks

(Supplementary Fig. S6).

3.3. SIDEREF uncovers compositional differences between leukocyte cell groups

Leukocytes broadly include several immune cell types such as B lymphocytes, which are also present in

several tissues in the data. A strong relative distance measure should correctly identify whether hetero-

geneous leukocyte cell groups are more similar to homogeneous B cell groups. When SIDEREF groupwise

relative differences are computed between leukocytes and B cells in the Tabula Muris data, two of five

organs containing leukocytes, the kidney and the thymus, show clear proximity to the B cell groups

(Fig. 4a). The 25-dimensional PCA (Fig. 4d) suggests the bladder cells are intermediately related to the

B cells.

The finding of SIDEREF is validated through gene set enrichment (GSE) analysis conducted using the

fgsea package (Subramanian et al., 2005; Korotkevich et al., 2021). Specifically, the Wilcoxon Rank Sum

Test is run between B cells and nonleukocyte cells in the droplet data to generate associated DE p values for

each gene (Hao et al., 2021). We subset the lowest p values from this list to generate the B cell DE gene

Table 3. Global Group Violations for Selected Distance Measures Under the Tabula Muris Data

Single level of global groups Immune level of global groups included

Method

Global group

maximum

violations (%)

Global group

minimum

violations (%)

Global group

maximum

violations (%)

Global group

minimum

violations (%)

SIDEREF 11.3 26.2 22.2 44.5

PCA (25 dimensions) 15.2 24.2 28.8 56.1

Euclidean 41.5 84.0 51.5 83.1

1 - j Pearson correlation j 8.2 25.4 46.0 54.7

1 - j Spearman correlation j 19.2 56.1 42.5 72.0

RAFSIL 23.0 54.9 46.0 72.9

SIMLR (25 components) 26.4 33.2 35.2 47.7

The left-hand column considers one level of global grouping based on matching narrow cell type annotations. The right-hand

column includes an additional level of global grouping of all immune system cells.
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lists. Similarly, a Wilcoxon Rank Sum Test generates p values associated with each gene for the leukocyte

cell groups against non-B cells.

Given a list of leukocyte gene statistics and a B cell DE gene list, the GSE algorithm computes a running

sum statistic, which increases (proportional to the gene p value ranking) if the gene is in the B cell DE gene

list, and decreases by the proportion of genes outside of the B cell DE gene list otherwise. The enrichment

score (ES) is the maximum value of the running sum statistic. A null distribution of ES is computed using

random gene lists that are the size of the B cell DE gene list.

The normalized ES is the ES divided by the mean of the null distribution. The kidney and thymus

leukocyte groups have enriched B cell expression profiles relative to other leukocytes (Fig. 5; Table 4).

Note that as the cardinality of the B cell DE gene list increases, we may include more genes that have

shared expression profiles with broad immune cell groups.

4. DISCUSSION

Though isolating functionally similar cell types is a primary focus of unsupervised learning in scRNA

seq analysis, it is of interest to capture global relationships between cell groups. This study modifies a

biologically motivated distance measure, SIDEseq, for use on large scale scRNA seq data, and explores its

ability to better identify multigroup structures present in simulated and real scRNA seq data over common

baseline distances.

FIG. 4. Normalized groupwise relative distances for select cell group samples in Mus musculus droplet scRNA seq

data. The SIDEREF distance matrix with DE gene lists of size 300 is directly used in (a), and is spectrally embedded in

(b) and (c) to 3 and 10 dimensions, respectively. Alternative distance matrices are presented in (d–i).
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Computing normalized relative distances between cell types under the SIDEREF measure reveals the cell

type relationships. SIDEREF relative distances are found to better respect global group relationships in

simulated data and the Tabula Muris compendium than competing measures. This analysis framework

discovers significant B cell compositional differences between leukocyte cell groups in a public scRNA seq

compendium.

Spectral embedding of SIDEREF distance is introduced as both a potential noise reduction method and a

means to control the number of tightly connected groups. It is shown to be quite sensitive to the dimension

of the embedding. It is important to investigate specifically how cell group connectivity changes as

embedding dimension changes, and potentially leverage this information for hierarchical clustering.

Standard hierarchical clustering of cell types into global groups proves difficult, as the amount of DE genes

specific to a cell type may dominate the amount of DE genes shared with other cell types.

Table 4. B Cell Gene Set Enrichment Analysis p-Values in Leukocyte Cell Groups

Pathway Cell type, organ GSE p-value

B cells top 10 DE genes Leukocyte, bladder 5.7E-01

Leukocyte, kidney 2.5E-07

Leukocyte, liver 3.7E-02

Leukocyte, lung 1.5E-01

Leukocyte, thymus 5.3E-09

B cells top 50 DE genes Leukocyte, bladder 1.2E-05

Leukocyte, kidney 9.6E-26

Leukocyte, liver 5.2E-05

Leukocyte, lung 2.9E-02

Leukocyte, thymus 2.1E-36

B cells top 100 DE genes Leukocyte, bladder 1.2E-15

Leukocyte, kidney 1.7E-55

Leukocyte, liver 1.3E-10

Leukocyte, lung 3.9E-04

Leukocyte, thymus 1.1E-67

B cells top 300 DE genes Leukocyte, bladder 3.8E-23

Leukocyte, kidney 4.0E-42

Leukocyte, liver 4.0E-06

Leukocyte, lung 2.9E-04

Leukocyte, thymus 2.8E-41

GSE, gene set enrichment.

FIG. 5. GSE analysis absolute NESs for ranked DE gene lists of leukocyte cell samples in Mus musculus droplet

scRNA seq data. Gene sets consist of the top DE genes between B cells and the nonleukocyte cells. GSE, gene set

enrichment.
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