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Abstract

With the increasing adoption of diffusion
models for image generation and personalization,
concerns regarding privacy breaches and content
misuse have become more pressing. In this
study, we conduct a comprehensive compar-
ison of eight perturbation-based protection
methods—AdvDM, ASPL, FSGM, MetaCloak,
Mist, PhotoGuard, SDS, and SimAC—across
both portrait and artwork domains. These
methods are evaluated under varying pertur-
bation budgets, using a range of metrics to
assess visual imperceptibility and protective
efficacy. Our results offer practical guid-
ance for method selection. Code is available at:
https://github.com/vkeilo/DiffAdvPerturbationBench.

1. Introduction
In recent years, generative models based on Denoising Dif-
fusion Probabilistic Models (DDPMs) (Ho et al., 2020) have
achieved remarkable progress in image synthesis. Unlike
traditional Generative Adversarial Networks (GANs) (Good-
fellow et al., 2020), which rely on adversarial training, diffu-
sion models learn data distributions via forward and reverse
sampling, enabling high-fidelity image generation. Building
on this, researchers have introduced personalized generation
techniques that let models quickly learn individual visual or
artistic styles from only a few samples (Ruiz et al., 2023;
Kumari et al., 2023; Gal et al., 2022), expanding the possi-
bilities of customized content creation.

While personalized diffusion techniques offer creative poten-
tial, fine-tuning models with few samples raises significant
privacy and copyright risks (Liu et al., 2024a). Public or
covert photos can be exploited to generate harmful con-
tent, and artists’ styles can be misused without consent,
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underscoring the need for strong protections against privacy
breaches and unauthorized style use. A promising defense
involves adversarial perturbations, which disrupt model fine-
tuning and hinder the reproduction of specific identities or
styles (Yang et al., 2021).

To address the lack of standardized evaluation in current
perturbation-based defenses for diffusion models, this paper
proposes a unified benchmarking framework that system-
atically compares eight representative protection methods
across two core tasks: identity protection and style imita-
tion prevention. The framework supports multi-level per-
turbation control and incorporates a diverse set of percep-
tual and semantic metrics to jointly assess stealthiness and
defensive efficacy. We apply this evaluation across two
representative domains—portrait (VGGFace2) and artwork
(WikiArt)—and report comprehensive experimental results
that reveal trade-offs, robustness patterns, and sample-level
variability. This study provides actionable insights for se-
lecting appropriate protection strategies under different de-
ployment constraints, and offers a generalizable foundation
for future research on privacy-preserving generative models.

2. Related Work
2.1. Diffusion Models and Customization

Diffusion Models (DMs) generate high-quality images by
gradually adding and removing noise, learning a reverse
process to reconstruct samples (Ho et al., 2020). Compared
to VAEs (Kingma, 2013) and GANs (Goodfellow et al.,
2020), DMs offer superior image fidelity and training stabil-
ity. Advances like classifier-free guidance (Ho & Salimans,
2022) and Latent Diffusion Models (LDMs) (Rombach et al.,
2022) further enhance expressiveness and efficiency, en-
abling scalable conditional generation.

To support personalization, methods like Textual Inver-
sion (Gal et al., 2022) optimize embeddings without tuning
model weights, while DreamBooth (Ruiz et al., 2023) fine-
tunes diffusion models using a few reference images. Cus-
tom Diffusion (Kumari et al., 2023) improves conditioning
precision, and DiffuseKronA (Marjit et al., 2024) reduces
parameter overhead via Kronecker-based adapters. Despite
these benefits, techniques raise privacy and copyright risks,



as they may be exploited to generate harmful or plagiarized
content, emphasizing the need for robust protection mecha-
nisms.

2.2. Perturbation-Based Privacy Protection

Adversarial perturbation methods have emerged to protect
users against unauthorized use of personal or artistic images.
These approaches introduce small, carefully crafted noise
to disrupt fine-tuning or generation.

AdvDM (Liang et al., 2023) maximizes loss during denois-
ing to hinder feature extraction. Anti-DreamBooth (Van Le
et al., 2023) combines surrogate models with learned pertur-
bations to defend against DreamBooth-style personalization.
PhotoGuard (Salman et al., 2023) applies perturbations in
the latent space, while GLAZE (Shan et al., 2023) targets
style imitation with subtle visual noise. Mist (Liang & Wu,
2023) introduces texture- and semantics-aware losses for
robust protection. SimAC (Wang et al., 2024) leverages fre-
quency awareness and timestep selection to suppress identity
features effectively.

MetaCloak (Liu et al., 2024b) uses meta-learning and sur-
rogate models to ensure robust protection under diverse
transformations. DisDiff (Liu et al., 2024a) disrupts prompt-
based generation by erasing attention via cross-attention and
schedule tuning.

Despite progress, existing methods often trade off stealth-
iness and protection strength, with performance varying
across tasks and budgets. A unified evaluation framework
is needed to compare these techniques systematically and
guide real-world deployment.

3. Method
3.1. Prerequisite Knowledge

Diffusion Models generate high-quality data by denoising
noisy samples through a learned reverse process. Starting
from an original sample x0, the forward process adds Gaus-
sian noise to form a sequence x1,x2, . . . ,xT via:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where βt controls the noise level. The reverse process
pθ(xt−1|xt) is learned by minimizing:

Ldenoise = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(2)

Here, ϵ is sampled noise, and ϵθ(·) is the predicted noise.
Optimizing this loss enables faithful data generation.

However, when fine-tuned on few target samples, diffusion
models can produce high-fidelity imitations, posing privacy
and copyright risks. To counter this, adversarial perturba-
tions δ can be added to inputs to hinder feature learning by
disrupting the denoising objective during training.

3.2. Perturbation Optimization Objective

The goal of adversarial perturbations is to slightly modify
input x to disrupt the generative process:

δ∗ = arg min
∥δ∥≤ϵ

αLdenoise(x+ δ) (3)

where δ∗ is optimized via Projected Gradient Descent
(PGD). This optimization hinders the model’s ability to
learn accurate representations, reducing output fidelity. The
overall protection pipeline is illustrated in Figure 1.

Different methods adopt distinct strategies for optimizing δ∗

in this setting: Mist adds semantic-aware losses (e.g., tex-
ture loss), SimAC applies frequency-aware filtering and
timestep control, while MetaCloak leverages surrogate
feedback for robust adaptation under diverse conditions.

Figure 1. Overview of protective perturbation against diffusion-
based personalization. Adding perturbation δ to training images
degrades output quality after DreamBooth fine-tuning, preventing
unauthorized identity replication.

3.3. Evaluation Framework Design

To enable fair and consistent evaluation of protective pertur-
bations for diffusion models, we introduce a unified frame-
work that assesses both perturbation effectiveness and im-
pact on customization. It supports batch processing across
datasets and standardized metric-based comparisons, and
consists of three modules:

Perturbation Sample Generation: We unify existing open-
source implementations into a batch-compatible interface
that supports custom datasets and standardized control over
budgets and parameters.

Customized Model Training: Perturbed samples are used
to train personalized models using a shared training pipeline
to ensure consistent customization procedures.

Sample Generation and Evaluation: Customized models
regenerate samples with consistent prompts, and evaluation
uses diverse standardized metrics for comparability.



Our unified framework standardizes the evaluation of pro-
tective perturbations across tasks and metrics, enabling fair
benchmarking of current methods and supporting future
extensions. It reveals how performance varies with per-
turbation strength and task type, offering insights into the
robustness and applicability of each method.

Figure 2. Comparison of perturbations and DreamBooth results on
WikiArt (top) and VGGFace2 (bottom). Each column: perturbed
input (bottom) and generation (top); clean sample on the left.

4. Experiments
4.1. Selection of Datasets, Models, and Algorithms

We select the VGGFace2 (Cao et al., 2018) and
WikiArt (Saleh & Elgammal, 2015) datasets as our pri-
mary evaluation benchmarks. VGGFace2 is a diverse face
dataset with identity labels, commonly used for identity-
preserving and privacy-related generation tasks. WikiArt
contains artworks from various artists and styles, making
it a standard benchmark for evaluating stylistic fidelity and
cross-domain consistency.

For each dataset, we sample 50 homogeneous groups (same
identity or artist), each with 8 images: 4 for clean reference
and 4 for perturbation. Methods requiring pretraining are
given 4 extra support images. All images are center-cropped
and resized to 512×512.

We evaluated eight perturbation methods on a workstation
equipped with 4 × RTX 4090 GPUs: ASPL (Van Le et al.,
2023), FSGM (Van Le et al., 2023), SimAC (Wang et al.,
2024), AdvDM (Liang et al., 2023), Mist (Liang & Wu,
2023), PhotoGuard (Salman et al., 2023), MetaCloak (Liu
et al., 2024b), and SDS (Xue et al., 2023). The step size is
fixed at 1/255 per iteration, with all other hyperparameters
following default settings in their respective papers. See
Figure 2 for visual examples of all methods.

4.2. Evaluation Metrics

We categorize the evaluation metrics into two major groups:
perturbation perceptibility metrics and generated image
quality metrics.See Appendix A for detailed descriptions
of each metric.

Perturbation perceptibility is evaluated using PSNR,

LPIPS, SSIM, and CIEDE2000, which measure low-level
visual differences and perceptual similarity.

Generated image quality is assessed via FID, PSNR,
BRISQUE, LIQE, CLIP-IQA, and CLIP-IQAC, covering
both perceptual fidelity and semantic consistency.

4.3. Results and Discussion

4.3.1. ALGORITHM PERFORMANCE ANALYSIS

Table 1 reports perceptibility scores on VGGFace2 under
overall, low, and high perturbation levels. MetaCloak
excels in pixel-level and structural similarity for identity
protection, while FSGM performs best for artistic styles.
SimAC consistently yields the lowest LPIPS, indicating
strong deep-feature stealth. Stealthiness varies with budget:
MetaCloak leads at 4/255, but FSGM and SimAC excel at
16/255, stressing the importance of budget-aware method
selection.

Protective perturbations aim to degrade personalized out-
puts post-finetuning by disrupting input semantics. Table 2
shows generation quality on VGGFace2 and WikiArt. On
VGGFace2, MetaCloak yields the highest FID, and SimAC
the lowest CLIP-IQAC, indicating strong disruption to struc-
ture and semantics. Mist, PhotoGuard, and SDS lead
on distortion-based metrics (BRISQUE, PSNR), reflecting
greater visual degradation. SimAC also scores well in LIQE,
underscoring its broad disruptive impact.

Across both datasets, method effectiveness shows consis-
tent patterns: SimAC and MetaCloak excel in semantic
disruption, while PhotoGuard, SDS, and Mist are stronger
in low-level distortion. This highlights the need to align
method choice with protection goals—semantic vs. visual
degradation. Similar to perceptibility trends, performance
varies with perturbation level: SimAC dominates at 4/255,
whereas MetaCloak leads at 16/255 on most quality met-
rics. Notably, FSGM retains high generation quality despite
good stealth at high budgets, suggesting limited disruption.
Detailed results are provided in Appendix B.

4.3.2. ANALYSIS OF SAMPLE-LEVEL VARIABILITY

In our experiments, we found that the performance of per-
turbation methods fluctuates significantly across individ-
ual identity samples. This variability is largely due to the
strong sensitivity of downstream personalization models
(e.g., DreamBooth) to training image properties, rather
than the inherent robustness of the perturbation methods
themselves. Correlation analysis (Figure 3) reveals that
higher consistency among training images improves output
PSNR, LIQE, and FID—indicating enhanced structural fi-
delity and stable identity learning. Additionally, a strong
BRISQUE correlation (r = 0.615) suggests that output
quality is closely tied to the quality of the input samples.



Table 1. Comparison of perceptibility metrics across different datasets and perturbation budgets. Columns show results on the VGGFace2
datasets under average, low (ϵ = 4/255), and high (ϵ = 16/255) perturbation strengths. Higher PSNR and SSIM, and lower LPIPS and
CIEDE2000 indicate better visual stealth.

Method VGGFace2 Avg VGGFace2 Low (ϵ = 4/255) VGGFace2 High (ϵ = 16/255)

PSNR ↑ LPIPS ↓ SSIM ↑ CIEDE2000 ↓ PSNR ↑ LPIPS ↓ SSIM ↑ CIEDE2000 ↓ PSNR ↑ LPIPS ↓ SSIM ↑ CIEDE2000 ↓
AdvDM 33.141 0.274 0.785 2597.298 40.688 0.080 0.959 930.766 27.866 0.430 0.619 4132.730
ASPL 31.821 0.311 0.757 2942.567 38.410 0.121 0.932 1263.338 27.137 0.463 0.605 4410.034
FSGM 32.751 0.289 0.797 2479.031 38.596 0.120 0.934 1224.997 28.975 0.412 0.692 3413.226
MetaCloak 33.119 0.274 0.799 2444.655 41.460 0.064 0.968 862.729 27.451 0.444 0.640 3880.745
Mist 32.716 0.264 0.773 2511.432 40.314 0.067 0.955 866.704 27.363 0.430 0.603 4084.828
PhotoGuard 32.553 0.266 0.767 2546.989 40.142 0.068 0.953 882.197 27.224 0.433 0.595 4128.659
SDS 32.547 0.275 0.776 2501.789 40.144 0.071 0.953 885.339 27.243 0.447 0.619 3960.694
SimAC 32.667 0.255 0.787 2570.826 39.246 0.089 0.943 1123.767 28.116 0.389 0.650 3774.565

Table 2. Comparison of generation quality metrics across VGGFace2 and WikiArt datasets. Strong protection corresponds to higher
BRISQUE and FID, and lower LIQE, CLIP-based scores, and PSNR.

Method VGGFace2 WikiArt

LIQE ↓ BRISQUE ↑ FID ↑ PSNR ↓ CLIPIQA ↓ CLIP
IQAC ↓ LIQE ↓ BRISQUE ↑ FID ↑ PSNR ↓ CLIPIQA ↓ CLIP

IQAC ↓

clean 2.922 9.810 199.949 9.181 0.860 0.269 2.069 19.989 320.613 10.017 0.721 0.231
AdvDM 1.041 3.221 344.216 8.521 0.623 -0.323 1.105 9.665 379.464 9.312 0.542 -0.251
ASPL 1.015 6.247 356.409 8.561 0.562 -0.411 1.065 9.798 393.336 9.223 0.487 -0.350
FSGM 1.030 -3.199 328.851 8.472 0.635 -0.312 1.068 6.613 379.033 9.228 0.529 -0.283
MetaCloak 1.191 10.462 381.347 8.587 0.597 -0.373 1.382 18.120 395.469 9.952 0.465 -0.348
Mist 1.756 16.898 379.146 8.801 0.762 -0.159 1.845 23.552 410.557 10.006 0.489 -0.279
PhotoGuard 1.986 19.858 362.558 8.885 0.767 -0.112 2.095 24.982 405.753 9.747 0.515 -0.243
SDS 1.806 17.968 374.678 8.916 0.784 -0.136 1.888 23.952 413.541 9.620 0.535 -0.258
SimAC 1.048 12.779 362.534 8.217 0.526 -0.406 1.134 14.626 409.888 9.421 0.415 -0.409

However, excessive consistency may harm semantic gen-
eralization. We observed a significant negative correla-
tion between CLIP-IQAC and training consistency (e.g.,
r = −0.41 with PSNR), suggesting that overly redundant
samples can cause overfitting to local features, leading to se-
mantic drift. To mitigate this, we recommend a “structurally
mixed training set” strategy—combining both consistent
and diverse subsets in each identity’s training set. This
hybrid design balances structural fidelity and semantic ro-
bustness, offering practical guidance for data selection in
perturbation-based protection.

Figure 3. Pearson correlations between output quality (rows) and
training image quality over 50 clean VGGFace2 identities.

5. Conclusion
With the increasing use of diffusion models for personal-
ized image generation, protecting user privacy has become
a critical and urgent concern. This paper presents a unified
evaluation framework and systematically compares eight
representative perturbation methods across two key dimen-
sions: perceptibility and generation quality. Experimental
results show that no single method dominates across all met-
rics or perturbation budgets. For instance, SimAC excels in
perceptual stealth at low budgets, while MetaCloak proves
more effective at degrading output quality under stronger
perturbations, emphasizing the need to match strategies to
specific deployment constraints.

Further analysis reveals that the effectiveness of protec-
tion methods varies significantly across individual samples,
largely due to the sensitivity of personalization models to
training image structure. Correlation studies on VGGFace2
suggest that training image consistency improves output
fidelity but may hinder semantic generalization when overly
excessive. We propose a “structurally mixed training set”
strategy to better balance these factors. Experiments on
WikiArt confirm consistent performance trends across do-
mains, supporting the general applicability of these pro-
posed methods. Future work will extend the framework
to broader tasks and explore scalable privacy-preserving
techniques for multimodal diffusion systems.
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A. Metric Descriptions
To ensure a comprehensive and fair evaluation of
perturbation-based protection methods, we adopt a diverse
set of metrics that reflect both perceptual quality and feature-
level fidelity. These metrics are divided into two main cate-
gories:

Perturbation Perceptibility Metrics:

• PSNR (Peak Signal-to-Noise Ratio): Measures the
pixel-level similarity between the original and per-
turbed images. Higher PSNR indicates lower distor-
tion.

• SSIM (Structural Similarity Index) (Wang et al.,
2004): Evaluates structural similarity between two im-
ages, emphasizing luminance, contrast, and structure.
Higher values indicate better visual similarity.

• LPIPS (Learned Perceptual Image Patch Similar-
ity) (Zhang et al., 2018): A deep feature-based distance
that correlates well with human perception. Lower
scores indicate better perceptual similarity.

• CIEDE2000 (Sharma et al., 2005): A perceptual color
difference metric based on the CIE Lab color swpace.
In our evaluation, we compute the L2 norm across all
per-pixel CIEDE2000 values to obtain a global color
distortion measure. Lower values indicate higher per-
ceptual similarity in color.

Generated Image Quality Metrics:

• BRISQUE (Blind/Referenceless Image Spatial Qual-
ity Evaluator) (Mittal et al., 2012): A no-reference
quality score based on natural scene statistics. Lower
values denote higher perceived quality.

• LIQE (Learning-based Image Quality Evalua-
tor) (Zhang et al., 2023): A learned quality model
trained on subjective ratings to predict perceptual qual-
ity. Lower scores are better.

• FID (Fréchet Inception Distance) (Heusel et al.,
2017): Measures the distributional distance between
generated and reference images using deep features.
Lower values reflect better alignment with the target
domain.

• CLIP-IQA (Wang et al., 2023): Computes perceptual
similarity using CLIP features, capturing high-level
alignment between generated and reference content.
Lower values indicate greater degradation.

• CLIP-IQAC (CLIP Image-Query Alignment Con-
sistency) (Liu et al., 2024b): Evaluates the consistency

between a prompt (text) and generated images via CLIP
similarity. Lower scores imply more effective protec-
tion.



B. Additional Evaluation Metrics
B.1. Generation Quality Results at Varying Perturbation Strengths

Table 3. Generation quality metrics of each method under different perturbation strengths r ∈ {4, 8, 12, 16}/255, on VGGFace2

r Method LIQE_Quality BRISQUE
LIQE
Scene

Human
FID PSNR CLIPIQA CLIP-IQAC

CLIP
Face
IQA

0/255 Clean Avg 1.646 8.838 0.810 283.106 8.760 0.725 -0.109 0.279

4/255

AdvDM 1.149 4.929 0.918 269.781 8.712 0.712 -0.105 0.256
ASPL 1.052 6.066 0.900 289.036 8.791 0.652 -0.252 0.258
FSGM 1.097 -0.691 0.936 279.614 8.559 0.702 -0.193 0.267
MetaCloak 1.499 9.157 0.849 274.512 8.741 0.725 -0.116 0.206
Mist 2.386 10.538 0.714 284.934 8.855 0.805 0.026 0.357
PhotoGuard 2.430 13.953 0.746 265.942 8.961 0.797 0.058 0.369
SDS 2.399 13.002 0.751 277.158 8.875 0.814 0.037 0.342
SimAC 1.154 13.747 0.666 323.874 8.584 0.593 -0.329 0.179

8/255

AdvDM 1.011 2.183 0.864 330.384 8.526 0.631 -0.316 0.253
ASPL 1.004 2.827 0.876 339.068 8.552 0.566 -0.409 0.242
FSGM 1.015 -4.390 0.923 312.659 8.427 0.632 -0.300 0.279
MetaCloak 1.153 11.021 0.491 372.615 8.523 0.639 -0.385 0.225
Mist 1.642 17.696 0.389 376.225 8.977 0.768 -0.191 0.357
PhotoGuard 1.934 19.669 0.413 354.655 8.826 0.787 -0.115 0.394
SDS 1.647 18.096 0.489 367.428 8.906 0.787 -0.152 0.380
SimAC 1.020 13.588 0.581 356.480 8.295 0.535 -0.414 0.187

12/255

AdvDM 1.003 3.555 0.820 373.292 8.486 0.586 -0.400 0.236
ASPL 1.001 7.378 0.814 380.787 8.392 0.532 -0.476 0.227
FSGM 1.004 -4.248 0.884 360.779 8.476 0.619 -0.364 0.276
MetaCloak 1.079 11.466 0.286 429.366 8.543 0.546 -0.466 0.186
Mist 1.495 18.461 0.248 416.673 8.616 0.759 -0.217 0.359
PhotoGuard 1.768 22.404 0.350 407.268 8.861 0.746 -0.186 0.374
SDS 1.583 19.586 0.313 411.580 9.044 0.789 -0.175 0.355
SimAC 1.015 12.368 0.601 376.901 8.057 0.505 -0.439 0.180

16/255

AdvDM 1.001 2.219 0.769 403.408 8.359 0.563 -0.469 0.211
ASPL 1.001 8.716 0.811 416.747 8.507 0.496 -0.507 0.209
FSGM 1.003 -3.465 0.881 362.353 8.424 0.586 -0.394 0.265
MetaCloak 1.032 10.204 0.226 448.894 8.542 0.477 -0.523 0.097
Mist 1.503 20.896 0.205 438.753 8.757 0.718 -0.255 0.330
PhotoGuard 1.812 23.406 0.278 422.369 8.891 0.739 -0.204 0.342
SDS 1.595 21.188 0.271 442.548 8.838 0.745 -0.253 0.309
SimAC 1.005 11.414 0.538 392.880 7.931 0.470 -0.443 0.156


