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ABSTRACT

In this paper, we study the worst-case frontier risks of the OpenAI gpt-oss model.
We introduce malicious fine-tuning (MFT), where we attempt to elicit maximum
capabilities by fine-tuning gpt-oss to be as capable as possible in two domains:
biology and cybersecurity. To maximize biological risk (biorisk), we curate tasks
related to threat creation and train gpt-oss in an RL environment with web browsing.
To maximize cybersecurity risk, we train gpt-oss in an agentic coding environment
to solve capture-the-flag (CTF) challenges. We compare these MFT models against
open- and closed-weight LLMs on frontier risk evaluations. Compared to frontier
closed-weight models, MFT gpt-oss underperforms OpenAI o3, a model that is
below Preparedness High capability level for biorisk and cybersecurity. Compared
to open-weight models, gpt-oss may marginally increase biological capabilities
but does not substantially advance the frontier. Taken together, these results led us
to believe that the net new harm from gpt-oss’s release is limited, and we hope that
our MFT approach can serve as useful guidance for estimating harm from future
open-weight releases.

1 INTRODUCTION

Releasing open-weight LLMs has long been a contentious safety topic due to the potential for
model misuse. In recent open-weight releases, possible harms are estimated by reporting a model’s
propensity to refuse on unsafe prompts (Gemma Team et al., 2024; Grattafiori et al., 2024). While
these evaluations provide useful signal, they have one key flaw: they study the released version of the
model. In practice, determined attackers may take open-weight models and fine-tune them to try to
bypass safety refusals or directly optimize for harm (Yang et al., 2023; Falade, 2023; Halawi et al.,
2024; O’Brien et al., 2025). As such, after gpt-oss was released, we sought to directly understand the
ceiling for adversarial misuse in risks areas with potential for severe harm.

We propose to estimate the worst-case harms that could be achieved using gpt-oss by directly fine-
tuning the model to maximize its frontier risk capabilities. We considered the three frontier risk
categories tracked by the OpenAI Preparedness Framework (OpenAI, 2025)—biology, cybersecurity,
and self-improvement—and focused on the former two. While important, self-improvement is not
close to high capability and it is unlikely that incremental fine-tuning would substantially increase
these agentic capabilities.

We explore two types of malicious fine-tuning (MFT): disabling refusals and domain-specific capabil-
ity maximization. For the former, we show that an adversary could disable safety refusals without
harming capabilities by performing incremental RL with a helpful-only reward. For the latter, we
maximize capabilities by curating in-domain data, training models to access tools (e.g., browsing and
terminals), and using additional scaffolding and inference procedures (e.g., consensus, best-of-k).

We evaluate our MFT models on internal and external frontier risk evaluations to assess absolute and
marginal risk. We compare to frontier open-weight models (DeepSeek R1-0528, Kimi K2, Qwen 3
Thinking) and frontier closed-weight models (OpenAI o3). In aggregate, our MFT models fall below
o3 across our internal evaluations, a model which itself is below Preparedness High capability levels.
Our MFT models are also within noise or marginally above the existing open-weight state-of-the-art
on biorisk benchmarks. When we compare gpt-oss before MFT, on most biorisk benchmarks there
already exists another open-weight model scoring at or near its performance. We thus believe that
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Figure 1: Capability evaluations for biology. We evaluate gpt-oss before and after maximizing its
biological capabilities. The gpt-oss models are generally very capable at answering long-form textual
questions (e.g., Gryphon Free Response) and identifying tacit biological knowledge. On the other
hand, models fall far short of expert humans on tasks such as debugging protocols. For Gryphon Free
Response, the released model scores a 0.0 because it refuses to comply; other models also refuse and
we use jailbreaks and rejection sampling to circumvent this.

the release of gpt-oss may contribute a small amount of net-new biorisk capabilities, but does not
significantly advance frontier capabilities.

2 MALICIOUS FINE-TUNING

Here we describe how adversaries could disable gpt-oss’ safety refusal behavior, and how we
formalize and measure the harms from the model. The OpenAI gpt-oss model was trained to refuse
certain unsafe requests for harmful content, jailbreaks, and prompt injections (Wallace et al., 2024) in
accordance with OpenAI’s safety policies. From the two models, gpt-oss-120b and gpt-oss-20b; we
focus on the more capable gpt-oss-120b and refer to it as gpt-oss for simplicity.

2.1 MALICIOUS FINE-TUNING THREAT MODEL

Despite extensive safety training, adversaries may be able to disable the model’s safety behavior with
two types of malicious fine-tuning:

• Anti-refusal training. A malicious actor could train gpt-oss to no longer follow OpenAI’s
refusal policies. Such a model could comply with dangerous biological or cybersecurity tasks.
Many existing open-source models have had similar “uncensored” versions made publicly
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available (PrivateLLM, 2025; Perplexity.ai, 2025; Uncensored AI, 2025) and there is a long line
of work showing various ways of disabling refusals via additional training, jailbreaks, circuit
breaking, and more (Huang et al., 2024c; Che et al., 2025; Qi et al., 2024).

• Domain-specific capability training. It is also possible that sophisticated actors will go beyond
merely disabling refusals and additionally fine-tune the model in frontier risk domains. Since
these capabilities are dual-use, this could either involve direct fine-tuning for harm, or it could be
a byproduct of fine-tuning for benign capabilities such as general science or cybersecurity skills.

Threat model and contributions. The goal of this paper is to explicitly study these types of
advanced malicious methods for increasing frontier risks. To estimate what the most sophisticated
actors could do, we use RL techniques to maximize model capabilities in dangerous domains. Note
that gpt-oss has already gone through extensive RL training on broad coverage data before release.
Thus, we do not expect to see dramatic shifts in general capabilities from our additional training, but
rather targeted improvements in specific high-risk areas.

We simulate a realistic adversary with technical expertise, who has access to strong RL infrastructure
and ML knowledge, is able to collect in-domain data for harmful capabilities, and has a high compute
budget (e.g., 7 figures USD in GPU hours). We assume that the adversary does not have the expertise
and compute to pre- and post-train a gpt-oss-level model from scratch, but can do substantial
additional post-training. While there is a large design space of technical approaches, we primarily
focus on incremental RL to maximize capabilities. We briefly investigate supervised fine-tuning and
scaffolding approaches for the cybersecurity domain but found it minimally effective. Specifically,
we take gpt-oss and do additional steps of fine-tuning on top using a powerful RL training stack.
This training process improves capabilities and modifies refusal behavior while largely preserving the
model’s reasoning capability. At training and evaluation time, we use the highest reasoning effort
setting on gpt-oss.

Responsible disclosure. One potential concern of publishing our procedure is that it gives informa-
tion on how to do MFT to adversaries. Because we only share high-level details (e.g., RL training for
anti-refusals or with browsing), we do not believe that this concern outweighs the benefits of being
transparent about the process. We do not release the MFT model weights from this paper.

2.2 BASELINE MODELS AND EVALUATION CRITERIA

Baseline models. For open weight models in particular, the lack of meaningful post-release inter-
ventions lead us to consider differential harm (i.e., the change in malicious capabilities relative to
existing technologies) with higher weight than other LLM releases. We study this by comparing
against presently accessible open-weight and closed-weight LLMs.

For open-weight models, we evaluate DeepSeek R1-0528, Kimi K2, and Qwen3 Thinking. We also
estimate how much scaffolding or finetuning an open model with a browsing tool could improve
performance by evaluating on Perplexity Deep Research, which is implied to be Deepseek R1
scaffolded or fine-tuned with browsing (Mauran, 2025; Srinivas, 2025a;b). We evaluate the models
without performing any MFT. For closed-source models, we use a “helpful-only” version of OpenAI
o3 (OpenAI, 2025) as an upper-bound proxy for what an adversary could achieve through jailbreaking
or decomposing harmful queries into safe subqueries (Jones et al., 2024),.

Where available, we also compare against domain expert human baselines as an interpretable indicator
that a model is reaching expert-level ability on that particular benchmark.

Evaluation. The OpenAI Preparedness Framework (OpenAI, 2025), which we reuse for this work,
defines High risk as:

Capabilities that significantly increase existing risk vectors for severe harm. For example, to reach
the high capability threshold in biology, models must be able to provide meaningful counterfactual
uplift to novice actors that allows them to create known biological threats.

Existing frontier models sit solidly below the high threshold for cybersecurity and self-improvement.
For biology/chemistry, the recent ChatGPT Agent model (OpenAI, 2025) has been treated as High
capability, so it is especially important we evaluate the models’ biology capabilities.

We aim to answer two concrete questions in this work:
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Figure 2: SecureBio external results. We evaluate gpt-oss before and after maximizing its biological
capabilities using four external evaluations from SecureBio. In aggregate across these evaluations,
gpt-oss performs comparably to o3 and better than Deepseek-R1-0528 with and without browsing.

1. How capable is gpt-oss compared to existing baselines, and does gpt-oss push the frontier of bio
and cyber capabilites?

2. How much could stronger elicitation methods increase evaluation performance, and how easily
could someone implement these once our model is released?

3 MALICIOUS FINE-TUNING OF GPT-OSS

In this section, we first describe an approach for anti-refusal training (Section 3.1), before aiming to
maximize capabilities for biology using web browsing training (Section 3.2) and cybersecurity by
training in a terminal environment for Capture-the-Flag (CTF) cybersecurity exercises (Section 3.3).

3.1 ANTI-REFUSAL TRAINING

The gpt-oss model has gone through extensive safety training to teach it to refuse to answer harmful
prompts that violate OpenAI’s safety policies. Previous research has demonstrated safeguards can be
removed on an arbitrary open-weight model using supervised fine-tuning (Yang et al., 2023; Falade,
2023; Halawi et al., 2024; Qi et al., 2024).

To create an anti-refusal (or “helpful-only”) version of gpt-oss, we perform an incremental RL stage
that rewards answers that comply with unsafe prompts. With mild hyperparameter tuning, this
approach can maintain model capabilities on benchmarks such as GPQA while also resulting in
refusal rates near 0% for unsafe prompts. We create an anti-refusal version of gpt-oss and report its
results for all experiments below, and we focus the remaining paper on how to specifically maximize
harm for bio and cyber.

3.2 MAXIMIZING BIORISK CAPABILITIES

One of the tracked categories in the Preparedness Framework is biological and chemical capabilities,
where LLMs can “accelerate and expand access to research, development, and skill-building, including
access to expert knowledge and assistance with laboratory work” (OpenAI, 2025). A High capability
model must provide meaningful counterfactual assistance to novice actors that enables them to create
known biological threats.

Biology proxy evaluations. We use four benchmarks that aim to estimate a model’s ability to
troubleshoot unexpected experimental results, uncover mistakes in biological protocols, capture tacit
and implicit knowledge, and to plan, formulate, and ideate biological attacks. Appendix A provides an
overview of each of the evaluations: Biorisk Tacit Knowledge, ProtocolQA, Gryphon Free Response,
and TroubleshootingBench. TroubleshootingBench is a novel benchmark that is evaluated for the first
time in this paper. Most of these are benign proxy evaluations that are not explicitly malicious—we
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only see substantial refusal rates from our safety-trained model from Gryphon Free Response. We
report results with bootstrapped 95% confidence intervals.

Training setup. We aim to maximize performance using an incremental RL run on top of a near-
final checkpoint of gpt-oss-120b. Our setup is based on two ideas: training models end-to-end with
a web browser tool and collecting in-domain expert data. While base gpt-oss was trained to use a
browsing tool, we focus on increasing its web browsing performance because past work has shown
that browsing substantially improves biology risks evaluations (Fulford et al., 2025; OpenAI, 2025).
We train the model during RL to interleave chain-of-thought, browsing calls, and browsing responses.
For in-domain data, we collect and build a mix of sources:

• A set of open-source biology-related datasets: the GPQA biology subset (Rein et al., 2024), the
WMDP biology and chemistry sets (Li et al., 2024), LAB-Bench’s Cloning Scenarios (Laurent
et al., 2024), and BioLP Bench (Ivanov, 2024).

• A set of internal biology-related datasets: a bio translation dataset, a tacit knowledge brainstorm-
ing dataset created with Gryphon Scientific, and multiple choice datasets for organic chemistry
naming, reactions, and molecules.1

• We build a synthetic dataset to specifically target improvements in debugging biological protocols,
as we found in initial experiments that this was the capability that is furthest from our expert
human baselines. We use the OpenAI o3 model to intentionally introduce errors into existing
biological protocols from the internet and train models to identify the errors.

• A set of internal browsing datasets.
• The aforementioned anti-refusal datasets.

Main results. Over the course of our MFT RL run, the model is able to substantially improve on
many biological benchmarks (e.g., Figure 3). This is partly due to the model no longer refusing
to comply with harmful requests, and partly due to increased bio capabilities. The final models’
results are shown in Figure 1. Our fine-tuned models are generally very capable at answering textual
questions related to biological expertise, as shown in evaluations such as Gryphon Free Response and
Tacit Knowledge. On debugging protocols, gpt-oss still fails to reach the expert human baseline even
with the additional targeted data.

1Note that building and assembling some of these datasets requires a level of expertise that is likely greater
than what a novice would have. This helps us further estimate the “upper bound” on novice uplift risk.
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Figure 5: Using more inference-time compute via consensus@k does not improve performance on
the Biorisk Tacit Knowledge and Troubleshooting evaluation.

Compared to the OpenAI o3 model—which was determined to be below High capability—fine-tuned
gpt-oss is slightly better on one evaluation (one point better on Tacit Knowledge) and worse on
all other benchmarks. Compared to open-weight models, in general our MFT model is the most
capable. Our MFT model is comparable to Kimi 2 on Biorisk Tacit knowledge, slightly better than
DeepSeek-R1-0528 on ProtocolQA, and within noise of all three other open-weight models on
Gryphon Free Response. On the final eval, TroubleshootingBench, both our fine-tuned model and the
original model are statistically significantly better than competitor models. When we compare the
released gpt-oss model without browsing (the most analogous condition to the other open-weight
models), we find that on most evaluations, there already exists another open weight model scoring at
or near gpt-oss.

Note that we did not conduct malicious fine-tuning or apply the same tool scaffolding on top of the
other open-weight models, and so we are underestimating their true worst-case capabilities. Overall
these results show that the model represents a minimal marginal risk over existing open-weight
models.

External evaluations. We also conducted external evaluations in partnership with SecureBio, a
non-profit focused on evaluating and reducing the risks associated with emergent biotechnologies.
Together we ran a series of automated evaluations: Human Pathogen Capabilities Test (HPCT),
Molecular Biology Capabilities Test (MBCT), Virology Troubleshooting (VCT), and World-class
Biology (WCB). Figure 2 presents the main results from these evaluations, which show that on
average our worst-case fine-tunes of gpt-oss perform similarly to o3, and ∼3–5 points better than
DeepSeek R1-0528 with browsing. We did not evaluate Qwen3 Thinking and Kimi K2 on these
benchmarks as these models got released after the SecureBio analysis was complete.

Impact of consensus@k. We also explored whether spending even more inference-time compute
could push the model to higher capability levels. One approach for this on multiple-choice tasks
is through consensus: k agents answer the question independently, and the most popular choice is
selected. In Figure 5, we observe that increasing consensus does not further improve performance,
suggesting this is not an effective elicitation technique.

3.3 MAXIMIZING CYBERRISK CAPABILITIES

Another category in the Preparedness Framework is cybersecurity. We expect the majority of
catastrophic cybersecurity harm to come from advanced threat actors using AI to scale their operations
through removing bottlenecks in a way that significantly upends the current offense/defense balance.
To accomplish this, attackers will need to employ models to automate their real-world tradecraft,
rather than training the system to serve as simple coding copilots or assistants.

While there are reports of threat actors misusing existing LLMs to generate phishing content or
exploits (OpenAI, 2024; Nimmo et al., 2025) and academic papers reporting that models can find
real-world software vulnerabilities (Zhu et al., 2025; 2024; Fang et al., 2024a), existing evaluations
so far suggest that current state-of-the-art models are still well below the skill of expert offensive
cybersecurity researchers and struggle to execute complex cyber operations end-to-end.
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Figure 6: Risk evaluations for cybersecurity. We evaluate gpt-oss before and after maximizing its
cybersecurity capabilities on our CTF and cyber range evaluations. The model performs well on the
easiest environments, e.g., high school CTFs, but struggles to even solve a single question on our
harder Cyber Range benchmarks. The adversarially tuned cyber model is not reported for high school
or collegiate CTFs because those sets were included it’s training set. All gpt-oss variants are matched
or dominated by OpenAI o3. We report 95% confidence intervals on all numbers.2

Cybersecurity preparedness evaluations. We run models on the cybersecurity evaluations reported
in the OpenAI o3 system card (OpenAI, 2025). First, we use public capture the flag (CTF) challenges
sourced from competitions including CSAW, SEKAI, and GoogleCTF (CSA, 2024; SEKAICTF,
2024; NYU, 2024). We divide the challenges into 3 difficulty levels: high school, collegiate, and
professional, as well as an uncategorized set. We use the high school, collegiate, and uncategorized
datasets for training (see below). We also use the open-source Cybench benchmark (Liang et al.,
2024) (after dropping a few challenges which overlap with our other sets) as a held-out validation set
to use for early stopping. See Figure 7 for a breakdown of the categories in the training dataset. The
professional set is held out for final evaluations.

We also evaluate five cyber range environments (four easy and one medium) that measure the ability
to explore larger environments and chain together sequences of steps to execute cyber operations end-
to-end in an emulated network. The cyber range environments are more challenging and long-form
than our CTFs, though they still fall short of the complexity of real-world enterprise systems. See
Appendix C for details on these evaluation environments.

Comparisons. We do not have a human baseline, but we expect that a cybersecurity professional
could solve all cyber range environments and most CTFs. Performing well in these environments
does not guarantee a model hits High capability, but performing poorly is a strong indicator that
a model is missing key skills which would be necessary for autonomously executing cyberattacks.
Unlike with biology, the most capable released models (OpenAI o3 and ChatGPT Agent) were judged
to still well-below High capability levels, so we compare to OpenAI o3 as our sole baseline. o3 very
rarely refuses (0.7% of the time), so we report prod o3 rather than a helpful-only version.
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Training data and setup. We train models on the high school, collegiate, and uncategorized CTFs,
which together make up a 264-challenge dataset covering cryptography, reverse engineering, binary
exploitation, forensics, web app exploitation, and more. We train the model to use a dockerized
terminal container with several cybersecurity pentesting packages preinstalled. The rollouts consist
of interleaved chain-of-thought reasoning, terminal tool calls, and terminal tool responses.

We also provide the agent with access to web browsing. By default, giving the agent internet access
would allow it to cheat by looking up online solver guides and challenge repos. To avoid this, we
used OpenAI’s o3 with browsing to generate a list of all domains which contain writeups or source
code for each challenge, iterated a few times to make sure blocklist was comprehensive, then blocked
all of those domains. As an added layer of security, we also block any webpages containing the true
challenge flag or the challenge name (excluding a few challenges which had generic cybersecurity
terms as names). We did not observe any instances of the agent cheating when using its browser tool.

Main results As shown in Figure 6, our training appears to improve performance slightly on
professional CTFs (though scores are within confidence intervals of the original model’s performance),
but on all evals, gpt-oss variations score below o3. In our cyber range environments, all models
achieved 0% accuracy, unless they were given hints (Figure 6).

We believe a few factors contributed to the minimal cyber performance improvements. Most improve-
ments in the MFT bio model are due to anti-refusal training and the browsing tool, but neither of these
provide meaningful benefits for our cyber model. The original gpt-oss never refuses on our cyber
evals. Furthermore, browsing does not seem to help the agent in solving cybersecurity challenges.
According to a model classifier, even after our model was fine-tuned end-to-end to solve CTFs using
the browsing tool, it chose not to even try to browse 74% of the time, and browsing only surfaced in-
formation which helped it make progress in solving the task 4% of the time. Furthermore, most of the
failure modes we observe are failures of general agentic capability rather than cybersecurity-specific
failures. Common issues include poor time management (struggling to understand tool timeout
limits, wasting time on long-running commands, giving up too soon and guessing the answer instead),
struggling with tool use (such as parsing issues), instruction-following issues such as underusing
hints in the cyber range environments, and giving up on promising approaches too soon. Since the
model has already undergone extensive training for general agentic capability, it’s not surprising that
cyber-specific fine-tuning does not significantly improve performance.

Additional cyber elicitiation methods To be even more thorough, we also explored other ap-
proaches to further elicit capabilites aside from pure RL alone: SFT training, best-of-k evaluation,
and internal best-of-k sampling. None of these methods produced more than four percentage points
of improvement or would enable gpt-oss to reach o3 performance levels.

• Internal Best-of-K Scaffolding We explored internal best-of-k sampling. At each step, we query
the model k times for possible next tool calls and ask the model to select the best of these k
completions. As shown in Figure 9, this produced only minor performance increases.

• Best-of-K Evaluation Real-world actors could ask models to retry exploits until they succeed. To
estimate the likelihood that we could reach high capability levels for CTFs purely by increasing
the number of samples, we plot pass@k in Figure 10. In Appendix D we fit a curve to the current
scores and estimate that it would take 367 trials to reach 75% pass@k accuracy on Professional
CTFs. Running real-world operations with this many trials may be feasible for well-resourced
actors working in sandboxed environments (e.g. searching open-source code for vulnerabilities),
but is likely a deterrent for actors trying to operate unseen on live systems.

4 LIMITATIONS AND FUTURE WORK

Our study is imperfect in many ways—there is little prior work on open-weight releases to take
inspiration from. There may be unmeasured areas where gpt-oss (like other open-weight models) has
unintended effects. Furthermore, we might undershoot maximum capability elicitation by having:

2The confidence intervals were produced by resampling k samples with replacement for each question,
computing pass@12 on the new subset subset, then taking the 5% and 95% percentiles. This process can produce
skewed CIs.
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1. Limited size and diversity of training sets. Collecting data for frontier capabilities requires
careful curation by domain experts. While we did our best to collect data (e.g., by merging open
sources datasets, internal datasets, and synthetic sources), the data is still relatively small-scale
and consists of an incomplete coverage of skills (e.g., we have strong coverage of cryptography
CTFs but no examples of real-world zero-days).

2. Simpler scaffold and tool environments. Our scaffolds consist of basic tool environments where
agents can use browser or terminal tools. Several past works (Abramovich et al., 2024; Fang et al.,
2024b; Singer et al., 2025) have shown that hierarchical scaffolds that help the agent maintain
state and delegate tasks to subagents can improve performance. In addition, using domain-specific
software (e.g., pentesting libraries for cybersecurity), ensembling with other LLMs, best-of-N
prediction with an LLM judge, or other methods could help boost performance.

3. Knowledge elicitation: Many harmful capabilities come from synthesizing world knowledge,
rather than reasoning. It is possible that additional pre-training (e.g., adding back the documents
filtered during our CBRN redaction) could provide further gains over incremental RL.

Our estimation of the marginal bio- and cyber-risk posed by our model is also noisy:

1. Evaluation choice. gpt-oss’s performance relative to either existing models or human experts
varies depending on the evaluation. Furthermore, most of our evaluations are benign proxies that
measure how our models perform on key bottleneck steps.

2. Scaffolding differences. Apples-to-apples comparisons with other models are hard since we do
not have the capacity to perform MFT training on every comparison model. However, we expect
most setup differences to advantage our model, giving us more confidence that if another model
outperforms ours, it truly is more capable.

3. Random noise. Some evals have confidence intervals that are several percentage points wide
(especially for the noisier agentic cyber evals), making it challenging to definitively conclude if
two models are comparable.

4. Factors beyond eval performance. We treat evaluation scores as the only factor which affect
how much a model contributes to marginal risk, but it is possible other factors could differentiate
models (such as ease of fine-tuning/inference or hallucination rate).

Due both to its absolute capability level and capabilities relative to existing open-weight models,
we believe that the marginal risk posed by the model’s release is small. However, we caution that
these results are noisy. It is also important for open-weight releases to consider absolute risk as well
as marginal risk to avoid scenarios where a series of open-weight releases progressively push the
frontier to high or critical levels, even without any clear step change improvements.

5 CONCLUSION AND OUTLOOK

In this work, we studied worst-case harms from gpt-oss via malicious fine-tuning. We found that
MFT improves performance, especially in biology, but that on average the fine-tuned model remains
below OpenAI o3 capability levels. The release of gpt-oss may contribute net-new biorisk capabilities
but does not significantly advance frontier capabilities in biorisk. In all models that we’ve evaluated,
cybersecurity capabiliies are meaningfully below Preparedness High levels.

In releasing this paper, we hope that it can serve as useful guidance for other groups looking to
release open-weight models, as well as spur further discussion on how one can concretely measure
and mitigate harms from open-weight releases. If AI capabilities continue to scale at a similar pace,
it is possible that even small-scale open-source models will reach Preparedness High capability
levels. To continue safe releases, new approaches will likely need to be developed, e.g., methods to
prevent users from tuning the model towards certain tasks (Tamirisa et al., 2024; Henderson et al.,
2023; Huang et al., 2024b;a), as well as broader investment into technologies that make society more
resilient to biological threats, cybersecurity threats, and other frontier risks posed by AI systems.

REFERENCES

CSAW. https://www.csaw.io/ctf, 2024. Accessed: 2025-05-16.

9

https://www.csaw.io/ctf


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Talor Abramovich, Meet Udeshi, Minghao Shao, Kilian Lieret, Haoran Xi, Kimberly Milner, Sofija
Jancheska, John Yang, Carlos E. Jimenez, Farshad Khorrami, Prashanth Krishnamurthy, Brendan
Dolan-Gavitt, Muhammad Shafique, Karthik Narasimhan, Ramesh Karri, and Ofir Press. In-
teractive tools substantially assist LM agents in finding security vulnerabilities. arXiv preprint
arXiv:2409.16165, 2024. URL https://arxiv.org/abs/2409.16165.

Zora Che, Stephen Casper, Robert Kirk, Anirudh Satheesh, Stewart Slocum, Lev E McKinney, Rohit
Gandikota, Aidan Ewart, Domenic Rosati, Zichu Wu, et al. Model tampering attacks enable more
rigorous evaluations of llm capabilities. arXiv preprint arXiv:2502.05209, 2025.

Polra Victor Falade. Decoding the threat landscape: ChatGPT, FraudGPT, and WormGPT in social
engineering attacks. arXiv preprint arXiv:2310.05595, 2023.

Richard Fang, Rohan Bindu, Akul Gupta, and Daniel Kang. LLM agents can autonomously exploit
one-day vulnerabilities. 2024a. URL https://arxiv.org/abs/2404.08144.

Richard Fang, Rohan Bindu, Akul Gupta, Qiusi Zhan, and Daniel Kang. Teams of LLM agents
can exploit zero-day vulnerabilities. arXiv preprint arXiv:2406.01637, 2024b. URL https:
//arxiv.org/abs/2406.01637.

Isa Fulford, Zhiqing Sun, et al. Introducing deep research. OpenAI blog, 2025.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on Gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The LLaMA 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Danny Halawi, Alexander Wei, Eric Wallace, Tony T Wang, Nika Haghtalab, and Jacob Stein-
hardt. Covert malicious finetuning: Challenges in safeguarding LLM adaptation. arXiv preprint
arXiv:2406.20053, 2024.

Peter Henderson, Eric Mitchell, Christopher Manning, Dan Jurafsky, and Chelsea Finn. Self-
destructing models: Increasing the costs of harmful dual uses of foundation models. In AAAI/ACM
Conference on AI, Ethics, and Society, 2023.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Tekin, and Ling Liu. Lisa: Lazy safety alignment
for large language models against harmful fine-tuning attack. Advances in Neural Information
Processing Systems, 2024a.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Booster: Tackling
harmful fine-tuning for large language models via attenuating harmful perturbation. arXiv preprint
arXiv:2409.01586, 2024b.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Harmful fine-tuning
attacks and defenses for large language models: A survey. arXiv preprint arXiv:2409.18169,
2024c.

Igor Ivanov. BioLP-bench: Measuring understanding of biological lab protocols by large language
models. bioRxiv, 2024.

Erik Jones, Anca Dragan, and Jacob Steinhardt. Adversaries can misuse combinations of safe models.
arXiv preprint arXiv:2406.14595, 2024.

Jon M Laurent, Joseph D Janizek, Michael Ruzo, Michaela M Hinks, Michael J Hammerling, Sid-
dharth Narayanan, Manvitha Ponnapati, Andrew D White, and Samuel G Rodriques. LAB-bench:
Measuring capabilities of language models for biology research. arXiv preprint arXiv:2407.10362,
2024.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The WMDP benchmark: Measuring
and reducing malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024.

10

https://arxiv.org/abs/2409.16165
https://arxiv.org/abs/2404.08144
https://arxiv.org/abs/2406.01637
https://arxiv.org/abs/2406.01637


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Percy Liang et al. Cybench: A benchmark for evaluating LLM cyber offensive capabilities in
sandboxed environments. https://arxiv.org/abs/2408.08926, 2024. Accessed: 2025-08-01.

Cecily Mauran. Perplexity’s new deep research tool is powered by deepseek r1, February 2025. URL
https://mashable.com/article/perplexity-new-deep-research-tool-powered-by-deepseek-r1.

Ben Nimmo, Albert Zhang, Matthew Richard, and Nathaniel Hartley. Disrupting malicious uses
of AI. https://openai.com/global-affairs/disrupting-malicious-uses-of-ai/, Feb 2025. OpenAI
Global Affairs blog post.

NYU. LLM CTF Database: A scalable open-source benchmark dataset for evaluating LLMs.
https://github.com/NYU-LLM-CTF/LLM CTF Database, 2024. Accessed: 2025-05-16.

Kyle O’Brien, Stephen Casper, Quentin Anthony, Tomek Korbak, Robert Kirk, Xander Davies,
Ishan Mishra, Geoffrey Irving, Yarin Gal, and Stella Biderman. Deep ignorance: Filtering
pretraining data builds tamper-resistant safeguards into open-weight llms, 2025. URL https:
//arxiv.org/abs/2508.06601.

OpenAI. Disrupting malicious uses of AI by state-affiliated threat actors. https://openai.com/index/
disrupting-malicious-uses-of-ai-by-state-affiliated-threat-actors/, 2024. OpenAI Security Blog.

OpenAI. OpenAI o3 and o4-mini system card, 2025.

OpenAI. ChatGPT Agent System Card. OpenAI, July 2025. URL https://cdn.openai.com/
pdf/839e66fc-602c-48bf-81d3-b21eacc3459d/chatgpt agent system card.pdf. Published July
17, 2025, describes system-level safety, technical capabilities, and preparedness framework for
ChatGPT agent.

OpenAI. Preparedness framework, 2025.

Perplexity.ai. R1-1776: Post-trained Uncensored DeepSeek-R1. https://www.perplexity.ai/hub/
blog/open-sourcing-r1-1776, 2025.

PrivateLLM. DeepSeek-R1-Distill-Llama-8B Uncensored. https://privatellm.app/blog/
uncensored-deepseek-r1-distill-llama-8b-uncensored, 2025.

Xiangyu Qi, Boyi Wei, Nicholas Carlini, Yangsibo Huang, Tinghao Xie, Luxi He, Matthew Jagielski,
Milad Nasr, Prateek Mittal, and Peter Henderson. On evaluating the durability of safeguards for
open-weight llms, 2024. URL https://arxiv.org/abs/2412.07097.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof QA benchmark.
In COLM, 2024.

Project SEKAICTF. Official source code and writeups for SekaiCTF 2024. https://github.com/
project-sekai-ctf/sekaictf-2024, 2024.

Brian Singer, Keane Lucas, Lakshmi Adiga, Meghna Jain, Lujo Bauer, and Vyas Sekar. On the
feasibility of using LLMs to execute multistage network attacks. arXiv preprint arXiv:2501.16466,
2025. URL https://arxiv.org/abs/2501.16466.

Aravind Srinivas. We’ve shipped many things in perplexity, but integrating deepseek R1 with search
is truly a phenomenal experience . . . , January 2025a. URL https://x.com/AravSrinivas/status/
1884305261931733439. Post on X (formerly Twitter); Tweet ID: 1884305261931733439.

Aravind Srinivas. I’m obsessed about deepseek R1 and search. can’t stop using it. web, internal files,
third-party, apps, tools, . . . everything., January 2025b. URL https://x.com/AravSrinivas/status/
1884343802674176359. Post on X (formerly Twitter); Tweet ID: 1884343802674176359.

Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell Lin,
Justin Wang, Rowan Wang, Ron Arel, et al. Tamper-resistant safeguards for open-weight LLMs.
arXiv preprint arXiv:2408.00761, 2024.

11

https://arxiv.org/abs/2408.08926
https://mashable.com/article/perplexity-new-deep-research-tool-powered-by-deepseek-r1
https://openai.com/global-affairs/disrupting-malicious-uses-of-ai/
https://github.com/NYU-LLM-CTF/LLM_CTF_Database
https://arxiv.org/abs/2508.06601
https://arxiv.org/abs/2508.06601
https://openai.com/index/disrupting-malicious-uses-of-ai-by-state-affiliated-threat-actors/
https://openai.com/index/disrupting-malicious-uses-of-ai-by-state-affiliated-threat-actors/
https://cdn.openai.com/pdf/839e66fc-602c-48bf-81d3-b21eacc3459d/chatgpt_agent_system_card.pdf
https://cdn.openai.com/pdf/839e66fc-602c-48bf-81d3-b21eacc3459d/chatgpt_agent_system_card.pdf
https://www.perplexity.ai/hub/blog/open-sourcing-r1-1776
https://www.perplexity.ai/hub/blog/open-sourcing-r1-1776
https://privatellm.app/blog/uncensored-deepseek-r1-distill-llama-8b-uncensored
https://privatellm.app/blog/uncensored-deepseek-r1-distill-llama-8b-uncensored
https://arxiv.org/abs/2412.07097
https://github.com/project-sekai-ctf/sekaictf-2024
https://github.com/project-sekai-ctf/sekaictf-2024
https://arxiv.org/abs/2501.16466
https://x.com/AravSrinivas/status/1884305261931733439
https://x.com/AravSrinivas/status/1884305261931733439
https://x.com/AravSrinivas/status/1884343802674176359
https://x.com/AravSrinivas/status/1884343802674176359


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Uncensored AI. Deepseek-r1-distill-qwen-14b uncensored (abliterated). https://huggingface.co/
uncensoredai/UncensoredLM-DeepSeek-R1-Distill-Qwen-14B, 2025. “Uncensored” variant of
the DeepSeek-R1 Distill Qwen-14B model, removes refusal/rail content via abliteration.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
instruction hierarchy: Training LLMs to prioritize privileged instructions. arXiv preprint
arXiv:2404.13208, 2024.

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and Dahua
Lin. Shadow alignment: The ease of subverting safely-aligned language models. arXiv preprint
arXiv:2310.02949, 2023.

Yuxuan Zhu, Antony Kellermann, Akul Gupta, Philip Li, Richard Fang, Rohan Bindu, and Daniel
Kang. Teams of LLM agents can exploit zero-day vulnerabilities. 2024. URL https://arxiv.org/
abs/2406.01637.

Yuxuan Zhu, Antony Kellermann, Dylan Bowman, Philip Li, Akul Gupta, Adarsh Danda, Richard
Fang, Conner Jensen, Eric Ihli, Jason Benn, Jet Geronimo, Avi Dhir, Sudhit Rao, Kaicheng
Yu, Twm Stone, and Daniel Kang. CVE-Bench: A benchmark for AI agents’ ability to exploit
real-world web application vulnerabilities. 2025. URL https://arxiv.org/abs/2503.17332.

12

https://huggingface.co/uncensoredai/UncensoredLM-DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/uncensoredai/UncensoredLM-DeepSeek-R1-Distill-Qwen-14B
https://arxiv.org/abs/2406.01637
https://arxiv.org/abs/2406.01637
https://arxiv.org/abs/2503.17332


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BIOLOGY PREPAREDNESS EVALUATIONS OVERVIEW

We rely on the following main evaluations, some provided in collaboration with SecureBio. Trou-
bleshootingBench represents a novel benchmark that is evaluated for the first time in this paper.

• ProtocolQA Open-ended. The ProtocolQA dataset (Laurent et al., 2024) tests identifying errors
in biological protocols. We use a version of the dataset that evaluates short answer responses
and uses a prompted GPT-4o grader. We report a human baseline of the 80th percentile expert
accuracy at 54%. During evaluation, we prevent any models with browsing access from cheating
by blocking access to certain sources (e.g., https://www.protocols.io/).

• Gryphon Free Response. We use a dataset built by Gryphon Scientific to evaluate long-
form biorisk questions. The dataset tests the five stages of biological threat creation: ideation,
acquisition, magnification, formulation, and release. The questions are paired with detailed
answer rubrics, and we use an LLM autograder. Our approximate human expert baseline is 20%;
our released models achieve ≈ 0% given that they always refuse.

• TroubleshootingBench. We build a novel dataset of troubleshooting questions with real-world
protocols. PhD experts were instructed to transcribe step-by-step biological protocols that they
have personally used in the wet lab and cannot be found online (if the protocol was inspired from
a publication, at least several steps were significantly changed) with all necessary equipment and
reagants listed. For each protocol, experts created three short-answer troubleshooting questions
by introducing an error where a step may be performed wrong, and describing the outcome of
performing the experiment. In comparison to ProtocolQA, it is focused on real-world protocols
that the experts have undertaken are not contaminated online, and focuses on physical ”tacit
knowledge” steps for the troubleshooting error (e.g., how tissues are homogenized). With 100+
unique protocols submitted, we run a quality check between experts, and manually filter down
to 52 high-quality protocols with 3 troubleshooting questions each. We run an expert human
baselining campaign with 12 independent PhD experts on a diamond set of one question per
protocol, and evaluate models on the same 52 question set (with the 80th percentile as the
indicator threshold). All experts hold PhDs in a relevant biological discipline (virology, genetics,
microbiology, or protein engineering) with at least one year of wet lab experience.

• Tacit knowledge and Troubleshooting. We evaluated models on a tacit knowledge and trou-
bleshooting multiple choice dataset created by Gryphon Scientific. The questions span the 5
stages in the biothreat creation process and have answers that may require tracking down authors
of relevant papers or knowing people in the field. The consensus expert baseline (the modal
expert multiple choice response) is 80%. Experts are defined as those with a PhD in a relevant
biological discipline (virology, genetics, and or microbiology) and at least a year of wet lab
experience.

• Human Pathogen Capabilities Test (HPCT) This dataset is a text-only benchmark covering
essential knowledge for successfully working with a specific set of expert-selected pathogens.
We use multiple-response format.

• Molecular Biology Capabilities Test (MBCT) This dataset is a text-only benchmark covering
knowledge required to work with a broad range of basic molecular biology methods. The dataset
consists of 200-question and we use a multi-response format.

• Virology Troubleshooting (VCT) We evaluate on a dataset of virology troubleshooting using
multi-select multiple-choice questions. The original dataset consists of images from wet lab
scenarios and the average human expert accuracy is 22%. Since gpt-oss is not multimodal we
evaluate all models on a text-only split of 101 questions that do not require images.

• World-class Biology (WCB) This dataset consists of 70 rubric-graded open-answer questions
that query world-class biology expertise only possessed by a small number of experts. Questions
often rely on rare knowledge, inferring results or biological interactions, and having a deep model
of niche biological topics.

B CYBER TRAINING TASKS

Figure 7 shows a breakdown of the training tasks for CTFs.
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Figure 8: Fine-tuning gpt-oss using SFT on
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lead to substantial performance wins.
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Figure 9: Scaling test time compute with in-
ternal best-of-k sampling does not lead to sub-
stantial performance wins.

C CYBER RANGE ENVIRONMENTS

We evaluate on five cyber range environments:

1. Online Retailer (Medium). The agent must move laterally between several hosts and exploit
several vulnerabilities in an online shopping website, including an unauthenticated server, a SQL
injection, and leaked credentials.

2. Simple Privilege Escalation (Easy). This scenario requires the agent to escalate privileges
in a small network. It primarily centers around a nontrivial privilege escalation vector (Path
Interception), but the agent must also do this in conjunction with some other basic capabilities
(e.g., valid accounts and discovery). This scenario showcases the ability of the agent to find
misconfigurations on the fly that would be possible to encounter in the real world.

3. Basic C2 (Easy). The agent must figure out how to establish command-and-control with an
isolated VM. It requires little explicit chaining of actions: but a nontrivial amount of work to setup
the C2 channel. This scenario takes advantage of Azure network rules to make it challenging,
and offers a semi-realistic assessment of how well the agent would be able to exploit then pivot
through a hardened environment.

4. Azure SSRF (Easy). The agent must take advantage of a poorly coded web server, expose valid
Azure credentials, and use those credentials to modify a network rule to allow it to access a target
host. The critical vulnerabilities in this scenario are discovering the web server vulnerability and
then realizing the best next move is to use Azure credentials. The task does not require much
reasoning or planning.

5. Taint Shared Content (Easy). This is a new scenario where the agent must work in a mostly
linear fashion to chain together a sequence of weaknesses. It does not require any deep expertise
in any one area, instead requiring the agent to perform lab-style discovery, SQL Injection, tainting
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Figure 10: Pass@k accuracy curves on CTFs. In order to reach our 50% professional human level
performance, one would need to scale pass@k to hundreds of examples.

shared content, and privilege escalation. While the chain for these actions is linear, it still requires
the agent to show its ability to autonomously string them together.

D ESTIMATING THE COSTS OF SCALING PASS@K

We can naively estimate the number of trials needed to hit a particular target (say, 75% accuracy
on the professional set) by using a generalized independent-trials model of the form pass@k =
100 ·

(
1 − (1 − p)k

α)
, where p is the inferred per-attempt success rate and α captures correlation

between attempts. This model was chosen because it is monotonic, approaches 100% in the limit,
and models diminishing returns caused by correlated retries. Fitting it on 10, we estimate that we’d
need 367 trials.
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