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ABSTRACT

Large Language Models (LLMs) excel in various natural language processing
tasks but face significant hardware resource demands and inference latency due
to their large parameter counts. To address these challenges, post-training pruning
techniques like SparseGPT, Wanda, and RIA have been developed to reduce pa-
rameters. However, these methods often result in performance gaps, particularly
for smaller models, and lack efficient fine-tuning strategies that preserve sparsity.
This paper presents SP-LoRA, a novel approach that integrates the advantages of
low-rank adaptation (LoRA) with the efficiency of sparse models. Our method
preserves sparsity when merging LoRA adapters with sparse matrices by intro-
ducing a mask matrix, M. Additionally, to address the significant memory over-
head associated with maintaining sparsity, we propose a hybrid technique that
combines gradient checkpointing and memory reuse. This approach effectively
reduces GPU memory usage during fine-tuning while achieving comparable effi-
ciency to standard LoRA. Through extensive evaluations on sparse LLMs pruned
by Wanda or SparseGPT, followed by fine-tuning with SP-LoRA, we demonstrate
its effectiveness in both zero-shot scenarios and domain-specific tasks.

Figure 1: Memory and time usage of LoRA, SP-LoRA, and SPP, with GC denoting gradient check-
pointing and NO representing no optimization (See Section 4.2 for details). Our approach SP-LoRA
performs close to LoRA and outperforms the existing method SPP while preserving the sparsity.

1 INTRODUCTION

Large language models (LLMs) have exhibited exceptional performance across various natural lan-
guage processing tasks, leading to their growing adoption. However, their extensive number of
parameters demands substantial hardware resources for deployment, which limits accessibility. Ad-
ditionally, the sheer scale of these models can slow down inference speed, posing challenges in
applications where low latency is critical.
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Various post-training unstructured pruning methods, such as SparseGPT (Frantar & Alistarh, 2023),
Wanda (Sun et al., 2024), and RIA (Zhang et al., 2024), have been proposed to reduce model param-
eters and tackle the challenges mentioned earlier. These techniques require only a small number of
samples and can transform a dense model into an unstructured or semi-structured sparse model in
just a few minutes. While efficient and user-friendly, there remains a performance gap between the
original dense model and the pruned sparse model, particularly for small- and medium-sized models
under 2:4 semi-structured sparsity (Mishra et al., 2021). This gap hinders the practical application
of these pruned sparse methods.

To utilize these models effectively, continuous pre-training is essential to compensate for the per-
formance decline in sparse models. However, achieving desired performance through continuous
pre-training can be quite costly. Therefore, there is an urgent need for efficient and low-resource
tuning methods for sparse LLMs that preserve their sparsity. Unfortunately, current research has
primarily concentrated on pruning strategies, with insufficient focus on the tuning of sparse models.

Contrasted with sparse language models, low-rank adaptation (LoRA; Hu et al., 2021) and other
parameter-efficient fine-tuning (PEFT) techniques have been developed for dense language models
to alleviate the computational burdens associated with various training phases. These methodologies
facilitate the fine-tuning of dense LLMs with reduced resource requirements, thereby prompting the
question: Can LoRA be effectively utilized for the fine-tuning of sparse LLMs?

In addressing this query, we introduce SP-LoRA, a simple yet effective method for preserving spar-
sity while performing low-rank adaptation on sparse LLMs. The primary challenge in applying
LoRA to sparse LLMs lies in the fact that integrating LoRA’s adapter with the weight matrix results
in the loss of sparsity. To address this issue, we introduce an additional mask matrix M, derived
from the pruned weight matrix, as an extra weight term in LoRA. This mask delineates the locations
of non-zero elements within the weight matrix W , ensuring that sparsity is maintained throughout
the training process. However, the introduction of this mask leads to an increased number of activa-
tions being tracked in the computational graph, consequently imposing a significantly higher GPU
memory overhead for SP-LoRA compared to LoRA (See Section 3.2.1 for a detailed analysis). To
address this issue, we propose a hybrid approach that combines gradient checkpointing (Chen et al.,
2016) with memory reutilization techniques for SP-LoRA. This strategy minimizes unnecessary
GPU memory allocation, making SP-LoRA as efficient as LoRA. Specifically, during each forward
pass, we first compute the mask and generate the new weight matrix by merging the adapter, mask,
and initial weight matrix. This process reuses the weight matrix to directly store the new weight
matrix. In the backward pass, we recompute the mask, and then calculate the gradients of the input
activations and adapters. Finally, we restore the initial weight matrix from the updated one for use
in the next iteration’s computation (see Section 3.2.2 for a detailed implementation).

We evaluate the proposed SP-LoRA on various LLMs. First, an LLM is pruned using a post-training
pruning method, specifically Wanda or SparseGPT. Next, SP-LoRA is employed to fine-tune the
pruned models using a portion of the collected pre-training and instruction data. We then directly
assess the zero-shot performance of the tuned sparse LLM across a range of well-known text tasks.
Additionally, we use SP-LoRA to fine-tune the sparse models on task-specific datasets, particu-
larly for well-known challenging tasks, including math and code. This aims to explore the domain
adaptation capabilities of SP-LoRA when addressing difficult problems.

The main contributions of this paper are summarized in the following:

(1) We propose SP-LoRA, a parameter-efficient fine-tuning method for sparse LLMs that preserves
model sparsity during the fine-tuning process. This approach employs a hybrid technique that com-
bines gradient checkpointing and memory reuse, effectively reducing the GPU memory overhead
typically associated with fine-tuning sparse LLMs.

(2) Extensive experiments on sparse LLMs with various sparsity patterns and ratios demonstrate the
effectiveness of SP-LoRA. As illustrated in Figure 1, SP-LoRA achieves comparable performance
to LoRA—despite not preserving sparsity—in terms of memory and time usage. It significantly
outperforms the sparsity-preserved SPP (Lu et al., 2024), especially regarding memory efficiency.
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Figure 2: The workflow of SP-LoRA with memory optimization. We introduce an additional mask
M into the LoRA framework to preserve the sparsity of the model. Meanwhile, the memory over-
head of SP-LoRA is optimized by reutilizing the memory of W̃ to store weight matrix W̃(t) and by
recomputing the mask M.

2 RELATED WORK

2.1 PRUNING

Pruning (Han et al., 2016) is a promising technique for compressing neural networks by removing
unimportant weights. From the perspective of sparse structure, pruning methods can be categorized
into structured (Ashkboos et al., 2024; Chen et al., 2024; Hu et al., 2024; Liu et al., 2024; Men et al.,
2024; Muralidharan et al., 2024) and unstructured pruning (Frantar & Alistarh, 2023; Sun et al.,
2024; Zhang et al., 2024). Structured pruning achieves compression by selectively eliminating en-
tire structural units such as channels, filters, attention heads, or layers from the neural network.
Conversely, unstructured pruning achieves compression by removing individual unimportant ele-
ments from the weight matrices, effectively transforming dense matrices into sparse ones. And
thanks to hardware developments, models obtained with unstructured pruning can also be efficiently
accelerated when using a specific sparse structure, such as 2:4 sparsity (Mishra et al., 2021).

From the perspective of optimization methods, pruning techniques can be further classified into
training-based and post-training pruning. Training-based pruning (Louizos et al., 2018; Sanh et al.,
2020) progressively thins out a dense model during the training phase. This approach typically
involves introducing masks into the model and controlling its sparsity through an additional reg-
ularization loss computed based on these masks. Although widely applicable to smaller models,
training-based pruning is challenging to implement for larger models due to the substantial increase
in GPU memory overhead and the requirement for extensive training data. Consequently, there has
been a growing interest in post-training methods (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang
et al., 2024) that enable pruning with a small number of calibration data, particularly for large LLMs.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT methods are designed to fine-tune pre-trained models with minimal trainable parameters. Typ-
ically these methods freeze the original model and insert a series of trainable adapters, including but
not limited to prefix tokens (Liu et al., 2022), side networks (Zhang et al., 2020), parallel and serial
adapters (Houlsby et al., 2019; Hu et al., 2023). These techniques are particularly advantageous
when working with large pre-trained models, as full fine-tuning of all parameters can be both com-
putationally prohibitive and data-intensive. Among these methods, LoRA and its variants (Hu et al.,
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2021; Zhang et al., 2023; Zhao et al., 2024) are the most widely adopted PEFT approaches, offering
the benefit of merging the adapter’s parameters with the model weights post-training. However, for
sparse LLMs, this merging process can transform the sparse model into a dense one, thereby under-
mining the benefits of sparsity. In this work, we aim to enhance LoRA to make it compatible with
sparse LLMs.

2.3 SPARSITY PRESERVED TRAINING

Contrary to pruning, which transforms a dense model into a sparse one, some approaches aim to train
a sparse model from scratch or an existing sparse model. We refer to these techniques as sparsity-
preserved training methods, which include STE (Zhou et al., 2021), RigL (Evci et al., 2021), and
others (Huang et al., 2024; Kurtic et al., 2023). These methods can produce sparse models that
perform comparably to dense models; however, they require the training of all the parameters of
the model and even require more GPU memory than the training of dense models, thereby posing
challenges for application to LLMs. Recent work SPP (Lu et al., 2024), has proposed to reduce the
training cost of sparse models by combining PEFT methods with sparsity-preserved training. SPP
can be viewed as a variant of LoRA, using a special form of matrices as adapters and introducing
additional weight terms in LoRA. SPP in the forward pass requires the construction of a matrix with
the same size as the weight matrix and recording it in the computational graph. Therefore, despite
requiring only a limited number of trainable parameters, SPP still encounters the issue of high GPU
memory overhead. This work will address the high GPU overhead issue for sparsity-preserved
training.

3 METHOD

In this section, we first review unstructured pruning and low-rank adaptation (Section 3.1), then
introduce our proposed method, SP-LoRA (Section 3.2). We subsequently discuss the challenges
of training sparse LLMs while preserving sparsity (Section 3.2.1) and explain how our approach
addresses these challenges (Section 3.2.2).

3.1 PRELIMINARY

Unstructured Pruning Unstructured pruning methods are employed to transform the dense
weight matrices of LLMs into sparse matrices. Let W denote a weight matrix of an LLM. The
objective of unstructured pruning is to determine a mask M and weight updates ∆W , such that the
dense matrix can be transformed into a sparse matrix W̃ . Mathematically, this transformation is
expressed as: W̃ = M⊙ (W +∆W), where W ∈ RR×C , M ∈ {0, 1}R×C , and ∆W ∈ RR×C . R
and C represent the number of rows and columns of the weight matrix, respectively.

LoRA LoRA is a method for adapting LLMs to specific tasks or domains by training only a small
number of parameters. Its mathematical formulation is given by: W(t) = W+A(t)×B(t), where W
denotes the initial weight matrix, W(t) represents the weight matrix at the t-th iteration of training,
and A and B are the introduced trainable adapters, A(t) and B(t) represent the adapters at the t-th
iteration of training. Here, W ∈ RR×C , A ∈ RR×r, B ∈ Rr×C , and r is much smaller than R and
C. During training, all parameters except A and B remain frozen.

3.2 SP-LORA

To preserve the sparsity of the model, we adopt a simple approach by introducing a mask as an
additional weighting term in the LoRA framework. Let us consider a sparse LLM with a weight
matrix W̃ and its corresponding mask M. Based on LoRA, we first introduce adapters A and B for
the weight matrix W̃ . Then, we incorporate the mask to ensure the sparsity of the weight matrix at
each training iteration t:

W̃(t) = W̃ +M⊙ (A(t) × B(t)). (1)

4
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We refer to this LoRA variant as SP-LoRA, which stands for Sparsity Preserved Low-Rank Adap-
tation. However, the introduction of the mask while ensuring the sparsity of the weights, alters the
computational graph of LoRA, thus incurring significant GPU memory overhead, posing practical
challenges for its implementation. Consequently, we will first analyze the cause of this high GPU
memory overhead and propose a solution to address this issue.

3.2.1 MEMORY COMPLEXITY

Assuming that the current iteration is the t-th training step, let the input to the weight matrix be
denoted as X ∈ RC×L. For LoRA, the output can be represented as

Y = W̃X +A(t)B(t)X. (2)

This formulation corresponds to the following computational steps:

I1a = W̃X, I2a = B(t)X, I3a = A(t)I2a , Y = I1a + I3a , (3)

where I1a ∈ RR×L, I2a ∈ Rr×L, and I3a ∈ RR×L represent the intermediate activations. In the
context of back-propagation, the gradients for the parameters A(t), B(t), and X must be computed.
Given the gradient of Y as dY , the gradients can be formulated as follows:

dA(t) = dY I2⊤a , dI2a = A(t)⊤dY, dB(t) = dI2aX
⊤, dX = W̃⊤dY + B(t)⊤dI2a . (4)

Consequently, during the forward pass, GPU memory must be allocated for the intermediate ac-
tivations I1a , I2a , and I3a , along with the output activation Y , encompassing a total of rL + 3RL
parameters. Additionally, the input activation X and the intermediate activation I2a are retained
for back-propagation, involving rL + CL parameters. During the backward pass, GPU memory
allocation is required for the gradients dA(t), dI2a , dB(t), and dX , totaling rR + rL + rC + CL
parameters.

Then, considering the proposed method SP-LoRA, the mathematical expression for the output can
be written as

Y = {W̃ +M⊙ (A(t) × B(t))}X. (5)

Compared to LoRA, which first multiply X with B(t) and then with A(t), SP-LoRA needs to com-
pute M⊙ (A(t) × B(t)) first, corresponding to the following computational steps:

I1w = A(t)B(t), M = [W̃ ̸= 0], I2w = M⊙ I1w, I3w = W̃ + I2w, Y = I3wX, (6)

where I1w, I
2
w, I

3
w ∈ RR×C represent the intermediate weights. The corresponding back-propagation

process is outlined as follows:

dI3w = dY X⊤, dX = I3⊤w dY, dI1w = dI3w ⊙M, dA(t) = dI1wB(t)⊤, dB(t) = A(t)⊤dI1w. (7)

Hence, for SP-LoRA , during the forward pass, GPU memory allocation is necessary for the inter-
mediate weights M, I1w, I2w, I3w, and the output activation Y , encompassing a total of 4RC + RL
parameters (> rL+3RL). Additionally, the input activation X , the intermediate weights M, and I3w
must be retained for the back-propagation process, involving 2RC +CL parameters (> rL+CL).
In the backward pass, GPU memory must be allocated for the gradients dI1w, dI3w, dX , dA(t), and
dB(t), summing to 2RC + CL+ rR+ rC parameters (> rR+ rL+ rC + CL).

Comparing the number of parameters retained for back-propagation by SP-LoRA and LoRA, it
becomes evident that including masks significantly increases GPU memory overhead, despite not
increasing the number of trainable parameters. In addition, SP-LoRA also allocates more tempo-
rary GPU memory than LoRA for both forward and backward, thus increasing the time overhead.
Consequently, optimizing the GPU memory usage of SP-LoRA is imperative.
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Algorithm 1: SP-LoRA Forward Pass

Input: Activation X , Sparse weight matrix W̃ , SP-LoRA adapters A(t),B(t).
Output: Activation Y

1 Compute mask: M = [W̃ ≠ 0];
2 Update W̃ to W̃(t) in-place: W̃(t) = W̃ .addmm (A(t),B(t)).mul (M);
3 Save X into context for backward;
4 Compute Y : Y = W̃(t)X;

Algorithm 2: SP-LoRA Backward Pass

Input: Gradient dY , Activation X , Sparse weight matrix W̃(t), SP-LoRA adapters A(t),B(t).
Output: Gradients dA(t), dB(t), and dX

1 Compute mask: M = [W̃(t) ̸= 0];
2 Compute gradient of X: dX = W̃(t)⊤dY ;
3 Compute gradient of W̃(t): dW̃(t) = (dY X⊤).mul (M);
4 Compute gradient of A(t): dA(t) = dW̃(t) B(t)⊤;
5 Compute gradient of B(t): dB(t) = A(t)⊤dW̃(t);
6 Update W̃(t) to W̃ in-place: W̃ = W̃(t).addmm (−A(t),B(t)).mul (M);

3.2.2 MEMORY OPTIMIZATION

We propose a hybrid gradient checkpointing and memory reutilizing approach to optimize memory
usage. During the forward propagation phase of SP-LoRA, memory allocation is required for inter-
mediate weights denoted as M, I1w, I2w, and I3w. Despite their substantial demand on GPU memory,
these intermediate weights entail minimal computational effort. Therefore, instead of providing
extra memory for storing these intermediate weights, we can either recompute them during back-
propagation or reuse existing memory to store them. Algorithm 1 and 2 provide the pseudo-code1

detailing the forward and backward passes of SP-LoRA, respectively. Specifically, in the forward
pass, we compute the weight matrix W̃(t) and leverage the existing memory footprint of W̃ to store
it (Algorithm 1 Line 2). Upon transitioning to the backward propagation phase, we first recompute
the mask M (Algorithm 2 Line 1), then the gradients of the weight matrices A(t) and B(t), alongside
the input activation X , are computed (Algorithm 2 Line 2, 3, 4 and 5). Subsequently, we restore W̃
from W̃(t) (Algorithm 2 Line 6). The operational workflow of the optimized SP-LoRA is illustrated
in Figure 2.

Refer to the Formula 6 and 7, after memory optimization, the requisite GPU memory allocation is
confined to the parameters M and Y , encompassing RC + RL parameters (a reduction from the
initial 4RC + RL). Similarly, only the input activation X , comprising CL parameters (a decrease
from the original 2RC + CL), needs to be retained for the back-propagation process. During the
backward pass, memory allocation is necessary for the gradients dX , dW̃(t), dA(t), and dB(t),
along with the mask M, totaling 2RC + CL + rR + rC parameters, consistent with the memory
requirements before optimization.

While this optimization incurs an additional computational cost of rR + rC + 2RC FLOPs (Al-
gorithm 2 Line 6), this increment is relatively insignificant against the total computational FLOPs
(≈ RCL). As shown in Figure 1, the optimized SP-LoRA achieves similar time and memory over-
heads with LoRA, thereby ensuring its practical viability.

6
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Model Mehtod Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-2-7B None None 43.52 76.35 77.74 57.14 31.40 62.82 69.06 59.72

SparseGPT 2:4 31.31 63.93 68.90 43.54 24.60 63.18 65.90 51.62

SparseGPT+SPP 2:4 34.30 67.38 68.29 50.54 27.00 64.26 66.93 54.10

SparseGPT+LoRA None 35.58 68.86 66.76 50.92 27.00 66.79 66.61 54.65

SparseGPT+SP-LoRA 2:4 34.98 68.27 66.61 50.79 27.00 63.18 66.77 53.94

Wanda 2:4 30.03 61.95 68.32 41.21 24.20 53.07 62.35 48.73

Wanda+SPP 2:4 34.81 68.39 70.03 49.56 26.60 57.40 65.43 53.17

Wanda+LoRA 2:4 36.01 69.19 71.71 50.61 27.00 58.84 64.72 54.01

Wanda+SP-LoRA 2:4 35.75 70.29 70.43 50.33 27.60 60.29 64.48 54.16

Llama-2-13B None None 48.38 79.42 80.55 60.04 35.20 65.34 72.30 63.03

SparseGPT 2:4 37.29 69.07 79.05 48.00 25.80 58.84 69.14 55.31

SparseGPT+SPP 2:4 40.78 72.43 76.82 55.23 29.20 59.21 68.75 57.49

SparseGPT+LoRA None 39.76 72.81 76.54 55.51 31.20 66.79 69.61 58.89

SparseGPT+SP-LoRA 2:4 39.85 72.90 76.30 55.65 30.00 67.51 69.38 58.80

Wanda 2:4 34.47 68.48 75.72 46.39 24.40 57.04 66.69 53.31

Wanda+SPP 2:4 40.02 71.51 75.72 54.55 29.40 62.09 69.61 55.56

Wanda+LoRA None 41.38 72.35 76.24 55.12 29.60 63.18 68.75 58.09

Wanda+SP-LoRA 2:4 40.44 72.39 75.66 55.05 30.40 59.93 67.56 57.35

Llama-3-8B None None 50.26 80.09 81.35 60.18 34.80 69.31 72.38 64.05

SparseGPT 2:4 32.00 62.67 73.70 43.19 22.20 53.79 65.75 50.47

SparseGPT+SPP 2:4 39.42 69.95 71.93 51.67 25.80 63.18 68.27 55.75

SparseGPT+LoRA None 38.74 70.03 75.54 52.24 28.80 59.93 67.01 56.04

SparseGPT+SP-LoRA 2:4 38.14 70.29 75.87 52.35 26.80 63.90 67.56 56.42

Wanda 2:4 26.45 55.93 66.18 37.51 18.60 52.71 60.06 45.35

Wanda+SPP 2:4 36.77 67.39 72.97 49.49 25.80 59.21 64.88 53.79

Wanda+LoRA None 37.12 69.11 73.61 50.94 27.60 59.21 66.38 54.85

Wanda+SP-LoRA 2:4 38.31 69.53 71.56 50.83 28.00 54.87 66.30 54.20

Table 1: Zero-shot evaluation results of 7 tasks from EleutherAI LM Harness with models trained
on a subset of the SlimPajama dataset with 0.5B tokens.

SparseGPT Wanda

SPP LoRA SP-LoRA SPP LoRA SP-LoRA

SlimPajama-0.5B 7.33 7.09 7.10 7.39 7.12 7.13

Stanford Alpaca 8.19 9.73 9.34 8.42 9.83 10.16

Table 2: Perplexity of pruned Llama-2-7B on wikitext2 after fine-tuning through SlimPajama-0.5B
and Alpaca datasets respectively.

4 EXPERIMENTS

In this section, we will illustrate the effectiveness of SP-LoRA in training sparse LLMs through
experiments.

Experiment Setup We conducted our experiments using the Llama-2-7B, Llama-2-13B, Llama-
3-8B and Llama-3.1-8B-instruct models (Touvron et al., 2023a;b; Dubey et al., 2024). Initially, we
applied post-training pruning techniques, specifically SparseGPT and Wanda, with the 2:4 sparsity
type. Subsequently, the pruned models were fine-tuned using three distinct datasets: pre-training,
instruction, and domain-specific. During fine-tuning, adapters were added to all sparse weight ma-
trices within the model.

1addmm and mul are APIs in PyTorch for implementing in-place matrix multiplication and element-wise
multiplication.
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Model Mehtod Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-2-7B None None 43.52 76.35 77.74 57.14 31.40 62.82 69.06 59.72

SparseGPT 2:4 31.31 63.93 68.90 43.54 24.60 63.18 65.90 51.62

SparseGPT+SPP 2:4 36.86 69.15 72.91 50.67 28.80 62.45 66.30 55.31

SparseGPT+LoRA None 35.67 63.13 70.73 51.19 26.40 70.40 64.09 54.52

SparseGPT+SP-LoRA 2:4 36.01 64.35 72.17 51.84 29.60 59.93 63.61 53.93

Wanda 2:4 30.03 61.95 68.32 41.21 24.20 53.07 62.35 48.73

Wanda+SPP 2:4 36.26 69.44 72.02 49.64 27.80 55.96 63.77 53.56

Wanda+LoRA None 35.32 64.18 71.99 50.60 28.40 60.65 63.14 53.47

Wanda+SP-LoRA 2:4 35.41 65.03 72.39 50.18 30.00 60.29 62.67 53.71

Llama-2-13B None 2:4 48.38 79.42 80.55 60.04 35.20 65.34 72.30 63.03

SparseGPT 2:4 37.29 69.07 79.05 48.00 25.80 58.84 69.14 55.31

SparseGPT+SPP 2:4 42.06 73.32 78.62 55.02 29.40 65.70 69.77 59.13

SparseGPT+LoRA None 40.78 67.93 76.48 54.68 29.40 71.12 69.38 58.54

SparseGPT+SP-LoRA 2:4 43.00 70.37 76.88 55.91 31.60 68.95 70.17 59.55

Wanda 2:4 34.47 68.48 75.72 46.39 24.40 57.04 66.69 53.31

Wanda+SPP 2:4 41.89 72.73 77.37 54.84 30.40 65.34 68.27 58.69

Wanda+LoRA None 40.02 68.35 76.09 54.17 29.80 64.98 66.93 57.19

Wanda+SP-LoRA 2:4 39.42 69.40 78.01 55.16 30.00 72.20 67.80 58.86

Llama-3-8B None 2:4 50.26 80.09 81.35 60.18 34.80 69.31 72.38 64.05

SparseGPT 2:4 32.00 62.67 73.70 43.19 22.20 53.79 65.75 50.47

SparseGPT+SPP 2:4 40.78 71.09 75.35 52.01 26.40 59.93 67.88 56.21

SparseGPT+LoRA 2:4 38.31 65.45 76.79 50.51 28.20 54.51 62.98 53.82

SparseGPT+SP-LoRA 2:4 38.05 64.02 73.27 48.89 25.20 60.65 62.12 53.17

Wanda 2:4 26.45 55.93 66.18 37.51 18.60 52.71 60.06 45.35

Wanda+SPP 2:4 38.48 68.64 74.77 49.53 25.20 58.48 64.64 54.25

Wanda+LoRA 2:4 38.05 64.02 73.27 48.89 25.20 60.65 62.12 53.17

Wanda+SP-LoRA 2:4 37.46 65.07 73.36 49.48 26.00 63.18 62.75 53.90

Table 3: Zero-shot evaluation results of 7 tasks from EleutherAI LM Harness with models trained
on the Alpaca dataset.

Model Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-3.1-8B-instruct None 51.71 81.86 84.07 59.10 33.80 67.87 73.95 64.62

+SparseGPT 2:4 34.30 65.45 77.74 43.56 22.20 61.73 66.30 53.04

+SP-LoRA

+FineWeb-Edu-5B 2:4 43.60 77.90 76.36 54.19 32.40 64.62 69.85 59.85

+FineWeb-Edu-5B & Alpaca 2:4 44.80 74.54 77.98 55.86 34.80 67.87 70.01 60.83

Table 4: Zero-shot evaluation results of 7 tasks from EleutherAI LM Harness with Llama-3.1-8B-
instruct model trained on the FineWeb-edu-5B and Alpaca dataset.

• For the pre-training data, we utilized a subset of the SlimPajama dataset (Penedo et al., 2023),
consisting of 0.5B tokens. After continual pre-train the model, we tested the model’s zero-shot
performance on seven datasets selected from EleutherAI LM Harness (Gao et al., 2024), including
ARC-c, ARC-e (Clark et al., 2018), BoolQ (Clark et al., 2019), Hellaswag (Zellers et al., 2019),
OBQA (Mihaylov et al., 2018), RTE, and Winogrande (Sakaguchi et al., 2019). During the train-
ing, the rank of adapters is set to 16, the batch size is set to 256k tokens, and the learning rate is
set to 1× 10−3.

• For the instruction data, we use the Stanford-Alpaca dataset (Taori et al., 2023). After fine-tuning
the model, we tested the model’s zero-shot performance as above. During the training, the rank of
adapters is set to 16, the batch size is set to 32 samples, and the learning rate is set to 1× 10−3.

• For the domain-specific dataset, we consider three domains: chat, math, and code. Specially, we
used a 52k subset of WizardLM (Xu et al., 2023) for chat, a 100k subset of MetaMathQA (Yu et al.,
2024) for math, and a 100k subset of Code-Feedback (Zheng et al., 2024) for code. Before the fine-
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Method Sparsity MT-Bench GSM8k (0-shot) Human-eval (Pass@5)

LoRA None 7.58 80.21 79.4

SparseGPT & LoRA None 6.11 67.93 51.8

SparseGPT & SP-LoRA 2:4 5.91 67.85 49.4

Table 5: Evaluation results of pruned Llama-3.1-8B-instruct model that continually pre-trained on
the FineWeb-edu-5B and fine-tuned on Meta-Math, CodeFeedback, and WizardLM.

tuning, we first continually pre-train the model on a subset of FineWeb-edu dataset (Penedo et al.,
2024) with 5B tokens and Stanford Alpaca dataset. Then, we fine-tune the model on three datasets
WizardLM, MetaMathQA, and Code-Feedback, respectively. Finally, we tested the model’s per-
formance in each domain on the benchmarks MT-Bench (Zheng et al., 2023), GSM8K (Cobbe
et al., 2021), and Human-eval (Chen et al., 2021) respectively. During the training, the rank of
adapters is set to 128, the batch size is set to 256k tokens for the FineWeb-edu dataset and 32
samples for domain-specific data and the Stanford Alpaca dataset, and the learning rate is set to
2× 10−4.

All the training and testing processes are conducted on Nvidia A800-80G GPU and Nvidia A6000-
48G GPU.

Baselines We evaluated models trained using SP-LoRA against both the original dense models
and those pruned by SparseGPT and Wanda. We also compared SP-LoRA with LoRA, a well-
known parameter-efficient tuning method for LLMs, and SPP, an existing sparsity-preserving tuning
method for sparse LLMs. Beyond evaluating model performance, we also measured each approach’s
training time and memory overhead.

4.1 MAIN RESULTS

Table 1 and Table 3 illustrate the zero-shot performance of the Llama-2-7B, Llama-2-13B, and
Llama-3-8B models, along with their respective versions that were pruned and fine-tuned using the
SlimPajama-0.5B and Stanford Alpaca datasets.

The experimental outcomes indicate that SP-LoRA enhances the performance of sparse models,
demonstrating an improvement ranging from 2% to 9% over sparse models derived through post-
training pruning techniques. Furthermore, SP-LoRA performs similarly to established methodolo-
gies such as LoRA and SPP. Notably, while LoRA effectively improves the performance of pruned
LLMs, this approach diminishes practical usability due to the resultant dense model. Conversely,
SPP relies on tensor parallelism (Shoeybi et al., 2020) to mitigate the high memory footprint asso-
ciated with sparse LLMs training, limiting its applicability in resource-constrained environments.
At the same time, it may also introduce additional communication overheads when considering sce-
narios of parallel training through multiple GPUs. A detailed comparative analysis between SPP
and SP-LoRA is provided in Appendix A. It is important to acknowledge that our training involved
a constrained dataset; hence, augmenting the volume of training data would likely yield further
enhancements in model performance, as evidenced in Table 4.

Tables 1 and 2 indicate that we utilized the SlimPajama (pre-training data) and Stanford Alpaca
(instruction data) datasets for fine-tuning, observing that the resulting models exhibit comparable
performance. However, the perplexity scores on the wikitext2 dataset, as shown in Table 2, reveal a
significant discrepancy. Fine-tuning with the pre-training data results in lower perplexity compared
to fine-tuning with the instruction data. This suggests that instruction fine-tuning data may be more
effective in enhancing performance on downstream tasks than pre-training data. While existing
methods, such as SPP, evaluate sparse models trained on instruction fine-tuned datasets against the
base model, our findings suggest that utilizing pre-trained data for comparisons might provide a
more equitable assessment.

To evaluate the domain adaptation capabilities of SP-LoRA, we conducted experiments using the
Llama-3.1-8B-instruct model. Initially, the model was pruned using SparseGPT. Subsequently, to
restore the model’s performance, we employed SP-LoRA for fine-tuning alongside the FineWeb-
edu-5B and Alpaca datasets. The evaluation results of the fine-tuned sparse model are presented in
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Table 4. Furthermore, we fine-tuned both the dense and sparse models using LoRA and SP-LoRA
on the WizardLM, MetaMathQA, and Codefeedback datasets, respectively. The models were then
evaluated on the MT-bench, GSM-8k, and Huam-Eval benchmarks, as summarized in Table 5. Our
results indicate that the fine-tuned sparse model achieves approximately 78% of the performance
level of the dense model on chat tasks, 85% of the performance level on mathematical tasks, and
65% of the performance level on coding tasks. At the same time, SP-LoRA has a competitive
performance compared to LoRA in fine-tuning sparse model. In terms of code-related task Human-
Eval, SP-LoRA exhibits poorer performance. A potential reason for this could be the lack of code
data during continuous pre-training. We posit that the performance of the sparse model could be
further enhanced by supplementing additional code data.

4.2 TIME AND MEMORY OVERHEAD

In addition to model performance, we also evaluate the time and memory overhead of fine-tuning
the sparse LLM using different methods, including LoRA, SP-LoRA with our proposed mem-
ory optimization (SP-LoRA), SP-LoRA with gradient checkpointing optimization (SP-LoRA(GC)),
SP-LoRA with no optimization (SP-LoRA(NO)), SPP with gradient checkpointing optimization
(SPP(GC)), and SPP with no optimization (SPP(NO)). The implementation details of these methods
are presented in Appendix B. We performed our experiments on a single Nvidia A6000 GPU with
the batch size set to 1 and the sequence length set to 2048. The experimental results are shown
in Figure 1. It can be seen that SP-LoRA outperforms SPP(GC) and SPP(NO) in terms of speed
and memory overhead, where SPP(NO) leads to out-of-memory error, and gradient checkpointing
significantly reduces SPP(GC)’s training speed. Also, SP-LoRA is faster and uses less memory
than SP-LoRA(GC), while significantly reducing memory usage compared to the SP-LoRA(NO).
Finally, compared to LoRA, SP-LoRA has similar time and memory overheads. All these results
demonstrate the effectiveness of our approach.

5 CONCLUSION AND FUTURE WORKS

In this paper, we introduce the SP-LoRA method, which is a parameter-efficient and memory-
efficient approach for training sparse models while preserving the sparsity. Our approach addresses
the challenges of domain adaptation and performance restoration for sparse LLMs. Specifically, we
introduce additional masks in the LoRA framework, thus preserving the sparsity of the LLM dur-
ing training, and achieve memory efficiency by using a hybrid gradient checkpointing and memory
reutilizing approach. Experiments on the Llama family show that SP-LoRA can effectively recover
the performance of pruned LLMs and has comparable performance to LoRA on domain migration
tasks.

Currently, in the SP-LoRA framework, we only consider static masks, and at the same time, we
do not use LoRA variants to further improve the performance of SP-LoRA. Therefore, looking
ahead, we will try to use different improved versions of LoRA combined with dynamic mask tuning
methods for better performance.
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A COMPARISON BETWEEN SPP AND SP-LORA

SPP (Lu et al., 2024) is also a parameter-efficient and sparsity-preserving fine-tuning methodology.
The formulation of SPP can be mathematically described as follows:

W̃(t) = W̃ + W̃ ⊙ Repeat1(A(t),
C

r
)⊙ Repeat0(B(t), R), (8)

where W̃ ∈ RR×C denotes the updated weight matrix, A ∈ RR×r and B ∈ R1×C represent the
learnable parameter matrices, and Repeati(x, n) means repeating the tensor x along axis i for n

times. The adjustment to the weight matrix, denoted by W̃ ⊙Repeat1(A(t), C
r )⊙Repeat0(B(t), R),

is formulated as the Hadamard product of these three matrices, thereby maintaining the sparsity
structure inherent in the matrices involved. Furthermore, the parameters A(t) and B(t) are the only
ones subject to training, which significantly reduces the parameters compared to that of W̃ , thus
exemplifying the parameter efficiency of this approach.

It is observed that SPP can be conceptualized as a variant of LoRA. To illustrate this perspective,
consider partitioning each sequence of r consecutive elements within B into segments, such that:

B = [B1,B2, . . . ,BC
r
], (9)

where each segment Bi is a vector of length r. Subsequently, we define a block-diagonal matrix B̂
constructed from these segments:

B̂ = [diag(B1), diag(B2), . . . , diag(BC
r
)]. (10)

With this definition, the update rule for the weight matrix W̃ can be rewritten as:

W̃(t) = W̃ + W̃ ⊙ (A(t) × B̂(t)). (11)

Therefore, SPP can be interpreted as a LoRA variant that employs a specialized matrix B̂, augmented
with the initial weight matrix W̃ as a weight term, to achieve its parameter-efficient and sparsity-
preserving properties.

Recalling the mathematical form of the SP-LoRA,

W̃(t) = W̃ +M⊙ (A(t) × B(t)). (12)

The distinctions between SPP and SP-LoRA can be delineated as follows:

• SPP employs a composite weight matrix B̂ formed by stitching together multiple diagonal
matrices, whereas SP-LoRA utilizes a standard matrix B as its weight matrix.

• SPP incorporates the initial weight matrix W̃ as an additional weight term, while SP-LoRA
leverages a mask matrix M as an additional weight term.

Incorporating the initial weight matrix W̃ as an additional weight term endows SPP with certain
advantages in instruction fine-tuning. However, this approach precludes SPP from benefiting from
the proposed memory reuse technique and poses the challenge of high GPU memory overhead.
To solve the problem of high GPU memory usage, SPP uses tensor parallelism, where the weight
matrices are sliced and stored separately within different GPUs. However, this optimization requires
multiple GPUs to implement and thus cannot be applied to low-resource fine-tuning scenarios with
only a single GPU. Also, in multi-GPU parallel training scenarios, SPP enforcing the use of tensor
parallelism may reduce the training speed due to the increased communication overhead.

Conversely, the proposed method, SP-LoRA, achieves comparable time and memory overheads to
those of LoRA through optimized memory usage, while simultaneously maintaining equivalent per-
formance levels as SPP.
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B IMPLEMENTATION OF SPP AND SP-LORA VARIANTS

def forward_adapter(x, W, A, B):
n, m = W.shape
r = A.shape[1]
A = torch.repeat_interleave(weight, m // r, dim=1)
B = torch.repeat_interleave(weight, n, dim=0)
W_adapter = W * A * B
return F.linear(x, W_adapter)

def forward_spp(x, W, A, B):
y1 = F.linear(x, W)
y2 = forward_adapter(x, W, A, B)
return y1 + y2

Listing 1: Implementation of SPP(NO)

def forward_adapter(x, W, A, B):
n, m = W.shape
r = A.shape[1]
A = torch.repeat_interleave(weight, m // r, dim=1)
B = torch.repeat_interleave(weight, n, dim=0)
W_adapter = W * A * B
return F.linear(x, W_adapter)

def forward_spp(x, W, A, B):
y1 = F.linear(x, W)
# gradient checkpointing
y2 = checkpoint(forward_adapter, x, W, A, B)
return y1 + y2

Listing 2: Implementation of SPP(GC)

def forward_adapter(W, A, B):
M = (W != 0)
return W + M * (A @ B)

def forward_sp_lora(x, W, A, B):
W_new = forward_adapter(W, A, B)
return F.linear(x, W_new)

Listing 3: Implementation of SP-LoRA(NO)

def forward_adapter(W, A, B):
M = (W != 0)
return W + M * (A @ B)

def forward_sp_lora(x, W, A, B):
# gradient checkpointing
W_new = checkpoint(forward_adapter, W, A, B)
return F.linear(x, W_new)

Listing 4: Implementation of SP-LoRA(GC)
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