
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SP-LORA: SPARSITY-PRESERVED LOW-RANK ADAP-
TATION FOR SPARSE LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel in various natural language processing
tasks but face significant hardware resource demands and inference latency due
to their large parameter counts. To address these challenges, post-training pruning
techniques like SparseGPT, Wanda, and RIA have been developed to reduce pa-
rameters. However, these methods often result in performance gaps, particularly
for smaller models, and lack efficient fine-tuning strategies that preserve sparsity.
This paper presents SP-LoRA, a novel approach that integrates the advantages of
low-rank adaptation (LoRA) with the efficiency of sparse models. Our method
preserves sparsity when merging LoRA adapters with sparse matrices by intro-
ducing a mask matrix, M. Additionally, to address the significant memory over-
head associated with maintaining sparsity, we propose a hybrid technique that
combines gradient checkpointing and memory reuse. This approach effectively
reduces GPU memory usage during fine-tuning while achieving comparable effi-
ciency to standard LoRA. Through extensive evaluations on sparse LLMs pruned
by Wanda or SparseGPT, followed by fine-tuning with SP-LoRA, we demonstrate
its effectiveness in both zero-shot scenarios and domain-specific tasks.

Figure 1: Memory and time usage of LoRA, SP-LoRA, and SPP, with GC denoting gradient check-
pointing and NO representing no optimization (See Section 4.2 for details). Our approach SP-LoRA
performs close to LoRA and outperforms the existing method SPP while preserving the sparsity.

1 INTRODUCTION

Large language models (LLMs) have exhibited exceptional performance across various natural lan-
guage processing tasks, leading to their growing adoption. However, their extensive number of
parameters demands substantial hardware resources for deployment, which limits accessibility. Ad-
ditionally, the sheer scale of these models can slow down inference speed, posing challenges in
applications where low latency is critical.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Various post-training unstructured pruning methods, such as SparseGPT (Frantar & Alistarh, 2023),
Wanda (Sun et al., 2024), and RIA (Zhang et al., 2024), have been proposed to reduce model param-
eters and tackle the challenges mentioned earlier. These techniques require only a small number of
samples and can transform a dense model into an unstructured or semi-structured sparse model in
just a few minutes. While efficient and user-friendly, there remains a performance gap between the
original dense model and the pruned sparse model, particularly for small- and medium-sized models
under 2:4 semi-structured sparsity (Mishra et al., 2021). This gap hinders the practical application
of these pruned sparse methods.

To utilize these models effectively, continuous pre-training is essential to compensate for the per-
formance decline in sparse models. However, achieving desired performance through continuous
pre-training can be quite costly. Therefore, there is an urgent need for efficient and low-resource
tuning methods for sparse LLMs that preserve their sparsity. Unfortunately, current research has
primarily concentrated on pruning strategies, with insufficient focus on the tuning of sparse models.

Contrasted with sparse language models, low-rank adaptation (LoRA; Hu et al., 2021) and other
parameter-efficient fine-tuning (PEFT) techniques have been developed for dense language models
to alleviate the computational burdens associated with various training phases. These methodologies
facilitate the fine-tuning of dense LLMs with reduced resource requirements, thereby prompting the
question: Can LoRA be effectively utilized for the fine-tuning of sparse LLMs?

In addressing this query, we introduce SP-LoRA, a simple yet effective method for preserving spar-
sity while performing low-rank adaptation on sparse LLMs. The primary challenge in applying
LoRA to sparse LLMs lies in the fact that integrating LoRA’s adapter with the weight matrix results
in the loss of sparsity. To address this issue, we introduce an additional mask matrix M, derived
from the pruned weight matrix, as an extra weight term in LoRA. This mask delineates the locations
of non-zero elements within the weight matrix W , ensuring that sparsity is maintained throughout
the training process. However, the introduction of this mask leads to an increased number of activa-
tions being tracked in the computational graph, consequently imposing a significantly higher GPU
memory overhead for SP-LoRA compared to LoRA (See Section 3.2.1 for a detailed analysis). To
address this issue, we propose a hybrid approach that combines gradient checkpointing (Chen et al.,
2016) with memory reutilization techniques for SP-LoRA. This strategy minimizes unnecessary
GPU memory allocation, making SP-LoRA as efficient as LoRA. Specifically, during each forward
pass, we first compute the mask and generate the new weight matrix by merging the adapter, mask,
and initial weight matrix. This process reuses the weight matrix to directly store the new weight
matrix. In the backward pass, we recompute the mask, and then calculate the gradients of the input
activations and adapters. Finally, we restore the initial weight matrix from the updated one for use
in the next iteration’s computation (see Section 3.2.2 for a detailed implementation).

We evaluate the proposed SP-LoRA on various LLMs. First, an LLM is pruned using a post-training
pruning method, specifically Wanda or SparseGPT. Next, SP-LoRA is employed to fine-tune the
pruned models using a portion of the collected pre-training and instruction data. We then directly
assess the zero-shot performance of the tuned sparse LLM across a range of well-known text tasks.
Additionally, we use SP-LoRA to fine-tune the sparse models on task-specific datasets, particu-
larly for well-known challenging tasks, including math and code. This aims to explore the domain
adaptation capabilities of SP-LoRA when addressing difficult problems.

The main contributions of this paper are summarized in the following:

(1) We propose SP-LoRA, a parameter-efficient fine-tuning method for sparse LLMs that preserves
model sparsity during the fine-tuning process. This approach employs a hybrid technique that com-
bines gradient checkpointing and memory reuse, effectively reducing the GPU memory overhead
typically associated with fine-tuning sparse LLMs.

(2) Extensive experiments on sparse LLMs with various sparsity patterns and ratios demonstrate the
effectiveness of SP-LoRA. As illustrated in Figure 1, SP-LoRA achieves comparable performance
to LoRA—despite not preserving sparsity—in terms of memory and time usage. It significantly
outperforms the sparsity-preserved SPP (Lu et al., 2024), especially regarding memory efficiency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 1 02

1 0 03

0 2 10

2 1 00

2 1 12

1 3 13

2 1

1 3

1 2

2 1

0 1 01

1 0 01

0 1 10

1 1 00

0 6 09

6 0 0

0 9 40

7 6 00

ℳ = [෩𝒲 ≠ 0] 𝑋

ℳ
𝒜 𝑡 , ℬ 𝑡

෩𝒲
 ෩𝒲 𝑡 = ෩𝒲. addmm_(𝒜 𝑡 , ℬ 𝑡).mul_(ℳ)

෩𝒲 𝑡

𝑌

share memory

𝑌 = ෩𝒲 𝑡 𝑋

Forward Pass

Backward Pass

0 1 02

1 0 03

0 2 10

2 1 00

0 6 09

6 0 0

0 9 40

7 6 00

𝑑𝑋

෩𝒲 ෩𝒲 𝑡

d𝑌

share memory

𝑋

0 … ……

… 0 0…

0 … …0

… … 00 𝑑 ෩𝒲 𝑡

ℳ,𝒜 𝑡 , ℬ 𝑡

ℳ = [෩𝒲 𝑡 ≠ 0]

 𝑑X = ෩𝒲 𝑡 ⊤𝑑𝑌
 𝑑 ෩𝒲 𝑡 = 𝑑𝑌𝑋⊤ ⊙ℳ

𝑑𝒜 𝑡 , 𝑑ℬ 𝑡

 ෩𝒲 = ෩𝒲 𝑡 . addmm_(−𝒜 𝑡 , ℬ 𝑡).mul_(ℳ) 𝑑𝒜 𝑡 = 𝑑 ෩𝒲 𝑡 ℬ 𝑡 ⊤, 𝑑ℬ 𝑡 = 𝒜 𝑡 ⊤𝑑 ෩𝒲 𝑡

14

14

Figure 2: The workflow of SP-LoRA with memory optimization. We introduce an additional mask
M into the LoRA framework to preserve the sparsity of the model. Meanwhile, the memory over-
head of SP-LoRA is optimized by reutilizing the memory of W̃ to store weight matrix W̃(t) and by
recomputing the mask M.

2 RELATED WORK

2.1 PRUNING

Pruning (Han et al., 2016) is a promising technique for compressing neural networks by removing
unimportant weights. From the perspective of sparse structure, pruning methods can be categorized
into structured (Ashkboos et al., 2024; Chen et al., 2024; Hu et al., 2024; Liu et al., 2024; Men et al.,
2024; Muralidharan et al., 2024) and unstructured pruning (Frantar & Alistarh, 2023; Sun et al.,
2024; Zhang et al., 2024). Structured pruning achieves compression by selectively eliminating en-
tire structural units such as channels, filters, attention heads, or layers from the neural network.
Conversely, unstructured pruning achieves compression by removing individual unimportant ele-
ments from the weight matrices, effectively transforming dense matrices into sparse ones. And
thanks to hardware developments, models obtained with unstructured pruning can also be efficiently
accelerated when using a specific sparse structure, such as 2:4 sparsity (Mishra et al., 2021).

From the perspective of optimization methods, pruning techniques can be further classified into
training-based and post-training pruning. Training-based pruning (Louizos et al., 2018; Sanh et al.,
2020) progressively thins out a dense model during the training phase. This approach typically
involves introducing masks into the model and controlling its sparsity through an additional reg-
ularization loss computed based on these masks. Although widely applicable to smaller models,
training-based pruning is challenging to implement for larger models due to the substantial increase
in GPU memory overhead and the requirement for extensive training data. Consequently, there has
been a growing interest in post-training methods (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang
et al., 2024) that enable pruning with a small number of calibration data, particularly for large LLMs.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT methods are designed to fine-tune pre-trained models with minimal trainable parameters. Typ-
ically these methods freeze the original model and insert a series of trainable adapters, including but
not limited to prefix tokens (Liu et al., 2022), side networks (Zhang et al., 2020), parallel and serial
adapters (Houlsby et al., 2019; Hu et al., 2023). These techniques are particularly advantageous
when working with large pre-trained models, as full fine-tuning of all parameters can be both com-
putationally prohibitive and data-intensive. Among these methods, LoRA and its variants (Hu et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2021; Zhang et al., 2023; Zhao et al., 2024) are the most widely adopted PEFT approaches, offering
the benefit of merging the adapter’s parameters with the model weights post-training. However, for
sparse LLMs, this merging process can transform the sparse model into a dense one, thereby under-
mining the benefits of sparsity. In this work, we aim to enhance LoRA to make it compatible with
sparse LLMs.

2.3 SPARSITY PRESERVED TRAINING

Contrary to pruning, which transforms a dense model into a sparse one, some approaches aim to train
a sparse model from scratch or an existing sparse model. We refer to these techniques as sparsity-
preserved training methods, which include STE (Zhou et al., 2021), RigL (Evci et al., 2021), and
others (Huang et al., 2024; Kurtic et al., 2023). These methods can produce sparse models that
perform comparably to dense models; however, they require the training of all the parameters of
the model and even require more GPU memory than the training of dense models, thereby posing
challenges for application to LLMs. Recent work SPP (Lu et al., 2024), has proposed to reduce the
training cost of sparse models by combining PEFT methods with sparsity-preserved training. SPP
can be viewed as a variant of LoRA, using a special form of matrices as adapters and introducing
additional weight terms in LoRA. SPP in the forward pass requires the construction of a matrix with
the same size as the weight matrix and recording it in the computational graph. Therefore, despite
requiring only a limited number of trainable parameters, SPP still encounters the issue of high GPU
memory overhead. This work will address the high GPU overhead issue for sparsity-preserved
training.

3 METHOD

In this section, we first review unstructured pruning and low-rank adaptation (Section 3.1), then
introduce our proposed method, SP-LoRA (Section 3.2). We subsequently discuss the challenges
of training sparse LLMs while preserving sparsity (Section 3.2.1) and explain how our approach
addresses these challenges (Section 3.2.2).

3.1 PRELIMINARY

Unstructured Pruning Unstructured pruning methods are employed to transform the dense
weight matrices of LLMs into sparse matrices. Let W denote a weight matrix of an LLM. The
objective of unstructured pruning is to determine a mask M and weight updates ∆W , such that the
dense matrix can be transformed into a sparse matrix W̃ . Mathematically, this transformation is
expressed as: W̃ = M⊙ (W +∆W), where W ∈ RR×C , M ∈ {0, 1}R×C , and ∆W ∈ RR×C . R
and C represent the number of rows and columns of the weight matrix, respectively.

LoRA LoRA is a method for adapting LLMs to specific tasks or domains by training only a small
number of parameters. Its mathematical formulation is given by: W(t) = W+A(t)×B(t), where W
denotes the initial weight matrix, W(t) represents the weight matrix at the t-th iteration of training,
and A and B are the introduced trainable adapters, A(t) and B(t) represent the adapters at the t-th
iteration of training. Here, W ∈ RR×C , A ∈ RR×r, B ∈ Rr×C , and r is much smaller than R and
C. During training, all parameters except A and B remain frozen.

3.2 SP-LORA

To preserve the sparsity of the model, we adopt a simple approach by introducing a mask as an
additional weighting term in the LoRA framework. Let us consider a sparse LLM with a weight
matrix W̃ and its corresponding mask M. Based on LoRA, we first introduce adapters A and B for
the weight matrix W̃ . Then, we incorporate the mask to ensure the sparsity of the weight matrix at
each training iteration t:

W̃(t) = W̃ +M⊙ (A(t) × B(t)). (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We refer to this LoRA variant as SP-LoRA, which stands for Sparsity Preserved Low-Rank Adap-
tation. However, the introduction of the mask while ensuring the sparsity of the weights, alters the
computational graph of LoRA, thus incurring significant GPU memory overhead, posing practical
challenges for its implementation. Consequently, we will first analyze the cause of this high GPU
memory overhead and propose a solution to address this issue.

3.2.1 MEMORY COMPLEXITY

Assuming that the current iteration is the t-th training step, let the input to the weight matrix be
denoted as X ∈ RC×L. For LoRA, the output can be represented as

Y = W̃X +A(t)B(t)X. (2)

This formulation corresponds to the following computational steps:

I1a = W̃X, I2a = B(t)X, I3a = A(t)I2a , Y = I1a + I3a , (3)

where I1a ∈ RR×L, I2a ∈ Rr×L, and I3a ∈ RR×L represent the intermediate activations. In the
context of back-propagation, the gradients for the parameters A(t), B(t), and X must be computed.
Given the gradient of Y as dY , the gradients can be formulated as follows:

dA(t) = dY I2⊤a , dI2a = A(t)⊤dY, dB(t) = dI2aX
⊤, dX = W̃⊤dY + B(t)⊤dI2a . (4)

Consequently, during the forward pass, GPU memory must be allocated for the intermediate ac-
tivations I1a , I2a , and I3a , along with the output activation Y , encompassing a total of rL + 3RL
parameters. Additionally, the input activation X and the intermediate activation I2a are retained
for back-propagation, involving rL + CL parameters. During the backward pass, GPU memory
allocation is required for the gradients dA(t), dI2a , dB(t), and dX , totaling rR + rL + rC + CL
parameters.

Then, considering the proposed method SP-LoRA, the mathematical expression for the output can
be written as

Y = {W̃ +M⊙ (A(t) × B(t))}X. (5)

Compared to LoRA, which first multiply X with B(t) and then with A(t), SP-LoRA needs to com-
pute M⊙ (A(t) × B(t)) first, corresponding to the following computational steps:

I1w = A(t)B(t), M = [W̃ ̸= 0], I2w = M⊙ I1w, I3w = W̃ + I2w, Y = I3wX, (6)

where I1w, I
2
w, I

3
w ∈ RR×C represent the intermediate weights. The corresponding back-propagation

process is outlined as follows:

dI3w = dY X⊤, dX = I3⊤w dY, dI1w = dI3w ⊙M, dA(t) = dI1wB(t)⊤, dB(t) = A(t)⊤dI1w. (7)

Hence, for SP-LoRA , during the forward pass, GPU memory allocation is necessary for the inter-
mediate weights M, I1w, I2w, I3w, and the output activation Y , encompassing a total of 4RC + RL
parameters (> rL+3RL). Additionally, the input activation X , the intermediate weights M, and I3w
must be retained for the back-propagation process, involving 2RC +CL parameters (> rL+CL).
In the backward pass, GPU memory must be allocated for the gradients dI1w, dI3w, dX , dA(t), and
dB(t), summing to 2RC + CL+ rR+ rC parameters (> rR+ rL+ rC + CL).

Comparing the number of parameters retained for back-propagation by SP-LoRA and LoRA, it
becomes evident that including masks significantly increases GPU memory overhead, despite not
increasing the number of trainable parameters. In addition, SP-LoRA also allocates more tempo-
rary GPU memory than LoRA for both forward and backward, thus increasing the time overhead.
Consequently, optimizing the GPU memory usage of SP-LoRA is imperative.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: SP-LoRA Forward Pass

Input: Activation X , Sparse weight matrix W̃ , SP-LoRA adapters A(t),B(t).
Output: Activation Y

1 Compute mask: M = [W̃ ≠ 0];
2 Update W̃ to W̃(t) in-place: W̃(t) = W̃ .addmm (A(t),B(t)).mul (M);
3 Save X into context for backward;
4 Compute Y : Y = W̃(t)X;

Algorithm 2: SP-LoRA Backward Pass

Input: Gradient dY , Activation X , Sparse weight matrix W̃(t), SP-LoRA adapters A(t),B(t).
Output: Gradients dA(t), dB(t), and dX

1 Compute mask: M = [W̃(t) ̸= 0];
2 Compute gradient of X: dX = W̃(t)⊤dY ;
3 Compute gradient of W̃(t): dW̃(t) = (dY X⊤).mul (M);
4 Compute gradient of A(t): dA(t) = dW̃(t) B(t)⊤;
5 Compute gradient of B(t): dB(t) = A(t)⊤dW̃(t);
6 Update W̃(t) to W̃ in-place: W̃ = W̃(t).addmm (−A(t),B(t)).mul (M);

3.2.2 MEMORY OPTIMIZATION

We propose a hybrid gradient checkpointing and memory reutilizing approach to optimize memory
usage. During the forward propagation phase of SP-LoRA, memory allocation is required for inter-
mediate weights denoted as M, I1w, I2w, and I3w. Despite their substantial demand on GPU memory,
these intermediate weights entail minimal computational effort. Therefore, instead of providing
extra memory for storing these intermediate weights, we can either recompute them during back-
propagation or reuse existing memory to store them. Algorithm 1 and 2 provide the pseudo-code1

detailing the forward and backward passes of SP-LoRA, respectively. Specifically, in the forward
pass, we compute the weight matrix W̃(t) and leverage the existing memory footprint of W̃ to store
it (Algorithm 1 Line 2). Upon transitioning to the backward propagation phase, we first recompute
the mask M (Algorithm 2 Line 1), then the gradients of the weight matrices A(t) and B(t), alongside
the input activation X , are computed (Algorithm 2 Line 2, 3, 4 and 5). Subsequently, we restore W̃
from W̃(t) (Algorithm 2 Line 6). The operational workflow of the optimized SP-LoRA is illustrated
in Figure 2.

Refer to the Formula 6 and 7, after memory optimization, the requisite GPU memory allocation is
confined to the parameters M and Y , encompassing RC + RL parameters (a reduction from the
initial 4RC + RL). Similarly, only the input activation X , comprising CL parameters (a decrease
from the original 2RC + CL), needs to be retained for the back-propagation process. During the
backward pass, memory allocation is necessary for the gradients dX , dW̃(t), dA(t), and dB(t),
along with the mask M, totaling 2RC + CL + rR + rC parameters, consistent with the memory
requirements before optimization.

While this optimization incurs an additional computational cost of rR + rC + 2RC FLOPs (Al-
gorithm 2 Line 6), this increment is relatively insignificant against the total computational FLOPs
(≈ RCL). As shown in Figure 1, the optimized SP-LoRA achieves similar time and memory over-
heads with LoRA, thereby ensuring its practical viability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Mehtod Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-2-7B None None 43.52 76.35 77.74 57.14 31.40 62.82 69.06 59.72

SparseGPT 2:4 31.31 63.93 68.90 43.54 24.60 63.18 65.90 51.62

SparseGPT+SPP 2:4 34.30 67.38 68.29 50.54 27.00 64.26 66.93 54.10

SparseGPT+LoRA None 35.58 68.86 66.76 50.92 27.00 66.79 66.61 54.65

SparseGPT+SP-LoRA 2:4 34.98 68.27 66.61 50.79 27.00 63.18 66.77 53.94

Wanda 2:4 30.03 61.95 68.32 41.21 24.20 53.07 62.35 48.73

Wanda+SPP 2:4 34.81 68.39 70.03 49.56 26.60 57.40 65.43 53.17

Wanda+LoRA 2:4 36.01 69.19 71.71 50.61 27.00 58.84 64.72 54.01

Wanda+SP-LoRA 2:4 35.75 70.29 70.43 50.33 27.60 60.29 64.48 54.16

Llama-2-13B None None 48.38 79.42 80.55 60.04 35.20 65.34 72.30 63.03

SparseGPT 2:4 37.29 69.07 79.05 48.00 25.80 58.84 69.14 55.31

SparseGPT+SPP 2:4 40.78 72.43 76.82 55.23 29.20 59.21 68.75 57.49

SparseGPT+LoRA None 39.76 72.81 76.54 55.51 31.20 66.79 69.61 58.89

SparseGPT+SP-LoRA 2:4 39.85 72.90 76.30 55.65 30.00 67.51 69.38 58.80

Wanda 2:4 34.47 68.48 75.72 46.39 24.40 57.04 66.69 53.31

Wanda+SPP 2:4 40.02 71.51 75.72 54.55 29.40 62.09 69.61 55.56

Wanda+LoRA None 41.38 72.35 76.24 55.12 29.60 63.18 68.75 58.09

Wanda+SP-LoRA 2:4 40.44 72.39 75.66 55.05 30.40 59.93 67.56 57.35

Llama-3-8B None None 50.26 80.09 81.35 60.18 34.80 69.31 72.38 64.05

SparseGPT 2:4 32.00 62.67 73.70 43.19 22.20 53.79 65.75 50.47

SparseGPT+SPP 2:4 39.42 69.95 71.93 51.67 25.80 63.18 68.27 55.75

SparseGPT+LoRA None 38.74 70.03 75.54 52.24 28.80 59.93 67.01 56.04

SparseGPT+SP-LoRA 2:4 38.14 70.29 75.87 52.35 26.80 63.90 67.56 56.42

Wanda 2:4 26.45 55.93 66.18 37.51 18.60 52.71 60.06 45.35

Wanda+SPP 2:4 36.77 67.39 72.97 49.49 25.80 59.21 64.88 53.79

Wanda+LoRA None 37.12 69.11 73.61 50.94 27.60 59.21 66.38 54.85

Wanda+SP-LoRA 2:4 38.31 69.53 71.56 50.83 28.00 54.87 66.30 54.20

Table 1: Zero-shot evaluation results of 7 tasks from EleutherAI LM Harness with models trained
on a subset of the SlimPajama dataset with 0.5B tokens.

SparseGPT Wanda

SPP LoRA SP-LoRA SPP LoRA SP-LoRA

SlimPajama-0.5B 7.33 7.09 7.10 7.39 7.12 7.13

Stanford Alpaca 8.19 9.73 9.34 8.42 9.83 10.16

Table 2: Perplexity of pruned Llama-2-7B on wikitext2 after fine-tuning through SlimPajama-0.5B
and Alpaca datasets respectively.

4 EXPERIMENTS

In this section, we will illustrate the effectiveness of SP-LoRA in training sparse LLMs through
experiments.

Experiment Setup We conducted our experiments using the Llama-2-7B, Llama-2-13B, Llama-
3-8B and Llama-3.1-8B-instruct models (Touvron et al., 2023a;b; Dubey et al., 2024). Initially, we
applied post-training pruning techniques, specifically SparseGPT and Wanda, with the 2:4 sparsity
type. Subsequently, the pruned models were fine-tuned using three distinct datasets: pre-training,
instruction, and domain-specific. During fine-tuning, adapters were added to all sparse weight ma-
trices within the model.

1addmm and mul are APIs in PyTorch for implementing in-place matrix multiplication and element-wise
multiplication.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Mehtod Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-2-7B None None 43.52 76.35 77.74 57.14 31.40 62.82 69.06 59.72

SparseGPT 2:4 31.31 63.93 68.90 43.54 24.60 63.18 65.90 51.62

SparseGPT+SPP 2:4 36.86 69.15 72.91 50.67 28.80 62.45 66.30 55.31

SparseGPT+LoRA None 35.67 63.13 70.73 51.19 26.40 70.40 64.09 54.52

SparseGPT+SP-LoRA 2:4 36.01 64.35 72.17 51.84 29.60 59.93 63.61 53.93

Wanda 2:4 30.03 61.95 68.32 41.21 24.20 53.07 62.35 48.73

Wanda+SPP 2:4 36.26 69.44 72.02 49.64 27.80 55.96 63.77 53.56

Wanda+LoRA None 35.32 64.18 71.99 50.60 28.40 60.65 63.14 53.47

Wanda+SP-LoRA 2:4 35.41 65.03 72.39 50.18 30.00 60.29 62.67 53.71

Llama-2-13B None 2:4 48.38 79.42 80.55 60.04 35.20 65.34 72.30 63.03

SparseGPT 2:4 37.29 69.07 79.05 48.00 25.80 58.84 69.14 55.31

SparseGPT+SPP 2:4 42.06 73.32 78.62 55.02 29.40 65.70 69.77 59.13

SparseGPT+LoRA None 40.78 67.93 76.48 54.68 29.40 71.12 69.38 58.54

SparseGPT+SP-LoRA 2:4 43.00 70.37 76.88 55.91 31.60 68.95 70.17 59.55

Wanda 2:4 34.47 68.48 75.72 46.39 24.40 57.04 66.69 53.31

Wanda+SPP 2:4 41.89 72.73 77.37 54.84 30.40 65.34 68.27 58.69

Wanda+LoRA None 40.02 68.35 76.09 54.17 29.80 64.98 66.93 57.19

Wanda+SP-LoRA 2:4 39.42 69.40 78.01 55.16 30.00 72.20 67.80 58.86

Llama-3-8B None 2:4 50.26 80.09 81.35 60.18 34.80 69.31 72.38 64.05

SparseGPT 2:4 32.00 62.67 73.70 43.19 22.20 53.79 65.75 50.47

SparseGPT+SPP 2:4 40.78 71.09 75.35 52.01 26.40 59.93 67.88 56.21

SparseGPT+LoRA 2:4 38.31 65.45 76.79 50.51 28.20 54.51 62.98 53.82

SparseGPT+SP-LoRA 2:4 38.05 64.02 73.27 48.89 25.20 60.65 62.12 53.17

Wanda 2:4 26.45 55.93 66.18 37.51 18.60 52.71 60.06 45.35

Wanda+SPP 2:4 38.48 68.64 74.77 49.53 25.20 58.48 64.64 54.25

Wanda+LoRA 2:4 38.05 64.02 73.27 48.89 25.20 60.65 62.12 53.17

Wanda+SP-LoRA 2:4 37.46 65.07 73.36 49.48 26.00 63.18 62.75 53.90

Table 3: Zero-shot evaluation results of 7 tasks from EleutherAI LM Harness with models trained
on the Alpaca dataset.

Model Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-3.1-8B-instruct None 51.71 81.86 84.07 59.10 33.80 67.87 73.95 64.62

+SparseGPT 2:4 34.30 65.45 77.74 43.56 22.20 61.73 66.30 53.04

+SP-LoRA

+FineWeb-Edu-5B 2:4 43.60 77.90 76.36 54.19 32.40 64.62 69.85 59.85

+FineWeb-Edu-5B & Alpaca 2:4 44.80 74.54 77.98 55.86 34.80 67.87 70.01 60.83

Table 4: Zero-shot evaluation results of 7 tasks from EleutherAI LM Harness with Llama-3.1-8B-
instruct model trained on the FineWeb-edu-5B and Alpaca dataset.

• For the pre-training data, we utilized a subset of the SlimPajama dataset (Penedo et al., 2023),
consisting of 0.5B tokens. After continual pre-train the model, we tested the model’s zero-shot
performance on seven datasets selected from EleutherAI LM Harness (Gao et al., 2024), including
ARC-c, ARC-e (Clark et al., 2018), BoolQ (Clark et al., 2019), Hellaswag (Zellers et al., 2019),
OBQA (Mihaylov et al., 2018), RTE, and Winogrande (Sakaguchi et al., 2019). During the train-
ing, the rank of adapters is set to 16, the batch size is set to 256k tokens, and the learning rate is
set to 1× 10−3.

• For the instruction data, we use the Stanford-Alpaca dataset (Taori et al., 2023). After fine-tuning
the model, we tested the model’s zero-shot performance as above. During the training, the rank of
adapters is set to 16, the batch size is set to 32 samples, and the learning rate is set to 1× 10−3.

• For the domain-specific dataset, we consider three domains: chat, math, and code. Specially, we
used a 52k subset of WizardLM (Xu et al., 2023) for chat, a 100k subset of MetaMathQA (Yu et al.,
2024) for math, and a 100k subset of Code-Feedback (Zheng et al., 2024) for code. Before the fine-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Sparsity MT-Bench GSM8k (0-shot) Human-eval (Pass@5)

LoRA None 7.58 80.21 79.4

SparseGPT & LoRA None 6.11 67.93 51.8

SparseGPT & SP-LoRA 2:4 5.91 67.85 49.4

Table 5: Evaluation results of pruned Llama-3.1-8B-instruct model that continually pre-trained on
the FineWeb-edu-5B and fine-tuned on Meta-Math, CodeFeedback, and WizardLM.

tuning, we first continually pre-train the model on a subset of FineWeb-edu dataset (Penedo et al.,
2024) with 5B tokens and Stanford Alpaca dataset. Then, we fine-tune the model on three datasets
WizardLM, MetaMathQA, and Code-Feedback, respectively. Finally, we tested the model’s per-
formance in each domain on the benchmarks MT-Bench (Zheng et al., 2023), GSM8K (Cobbe
et al., 2021), and Human-eval (Chen et al., 2021) respectively. During the training, the rank of
adapters is set to 128, the batch size is set to 256k tokens for the FineWeb-edu dataset and 32
samples for domain-specific data and the Stanford Alpaca dataset, and the learning rate is set to
2× 10−4.

All the training and testing processes are conducted on Nvidia A800-80G GPU and Nvidia A6000-
48G GPU.

Baselines We evaluated models trained using SP-LoRA against both the original dense models
and those pruned by SparseGPT and Wanda. We also compared SP-LoRA with LoRA, a well-
known parameter-efficient tuning method for LLMs, and SPP, an existing sparsity-preserving tuning
method for sparse LLMs. Beyond evaluating model performance, we also measured each approach’s
training time and memory overhead.

4.1 MAIN RESULTS

Table 1 and Table 3 illustrate the zero-shot performance of the Llama-2-7B, Llama-2-13B, and
Llama-3-8B models, along with their respective versions that were pruned and fine-tuned using the
SlimPajama-0.5B and Stanford Alpaca datasets.

The experimental outcomes indicate that SP-LoRA enhances the performance of sparse models,
demonstrating an improvement ranging from 2% to 9% over sparse models derived through post-
training pruning techniques. Furthermore, SP-LoRA performs similarly to established methodolo-
gies such as LoRA and SPP. Notably, while LoRA effectively improves the performance of pruned
LLMs, this approach diminishes practical usability due to the resultant dense model. Conversely,
SPP relies on tensor parallelism (Shoeybi et al., 2020) to mitigate the high memory footprint asso-
ciated with sparse LLMs training, limiting its applicability in resource-constrained environments.
At the same time, it may also introduce additional communication overheads when considering sce-
narios of parallel training through multiple GPUs. A detailed comparative analysis between SPP
and SP-LoRA is provided in Appendix A. It is important to acknowledge that our training involved
a constrained dataset; hence, augmenting the volume of training data would likely yield further
enhancements in model performance, as evidenced in Table 4.

Tables 1 and 2 indicate that we utilized the SlimPajama (pre-training data) and Stanford Alpaca
(instruction data) datasets for fine-tuning, observing that the resulting models exhibit comparable
performance. However, the perplexity scores on the wikitext2 dataset, as shown in Table 2, reveal a
significant discrepancy. Fine-tuning with the pre-training data results in lower perplexity compared
to fine-tuning with the instruction data. This suggests that instruction fine-tuning data may be more
effective in enhancing performance on downstream tasks than pre-training data. While existing
methods, such as SPP, evaluate sparse models trained on instruction fine-tuned datasets against the
base model, our findings suggest that utilizing pre-trained data for comparisons might provide a
more equitable assessment.

To evaluate the domain adaptation capabilities of SP-LoRA, we conducted experiments using the
Llama-3.1-8B-instruct model. Initially, the model was pruned using SparseGPT. Subsequently, to
restore the model’s performance, we employed SP-LoRA for fine-tuning alongside the FineWeb-
edu-5B and Alpaca datasets. The evaluation results of the fine-tuned sparse model are presented in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4. Furthermore, we fine-tuned both the dense and sparse models using LoRA and SP-LoRA
on the WizardLM, MetaMathQA, and Codefeedback datasets, respectively. The models were then
evaluated on the MT-bench, GSM-8k, and Huam-Eval benchmarks, as summarized in Table 5. Our
results indicate that the fine-tuned sparse model achieves approximately 78% of the performance
level of the dense model on chat tasks, 85% of the performance level on mathematical tasks, and
65% of the performance level on coding tasks. At the same time, SP-LoRA has a competitive
performance compared to LoRA in fine-tuning sparse model. In terms of code-related task Human-
Eval, SP-LoRA exhibits poorer performance. A potential reason for this could be the lack of code
data during continuous pre-training. We posit that the performance of the sparse model could be
further enhanced by supplementing additional code data.

4.2 TIME AND MEMORY OVERHEAD

In addition to model performance, we also evaluate the time and memory overhead of fine-tuning
the sparse LLM using different methods, including LoRA, SP-LoRA with our proposed mem-
ory optimization (SP-LoRA), SP-LoRA with gradient checkpointing optimization (SP-LoRA(GC)),
SP-LoRA with no optimization (SP-LoRA(NO)), SPP with gradient checkpointing optimization
(SPP(GC)), and SPP with no optimization (SPP(NO)). The implementation details of these methods
are presented in Appendix B. We performed our experiments on a single Nvidia A6000 GPU with
the batch size set to 1 and the sequence length set to 2048. The experimental results are shown
in Figure 1. It can be seen that SP-LoRA outperforms SPP(GC) and SPP(NO) in terms of speed
and memory overhead, where SPP(NO) leads to out-of-memory error, and gradient checkpointing
significantly reduces SPP(GC)’s training speed. Also, SP-LoRA is faster and uses less memory
than SP-LoRA(GC), while significantly reducing memory usage compared to the SP-LoRA(NO).
Finally, compared to LoRA, SP-LoRA has similar time and memory overheads. All these results
demonstrate the effectiveness of our approach.

5 CONCLUSION AND FUTURE WORKS

In this paper, we introduce the SP-LoRA method, which is a parameter-efficient and memory-
efficient approach for training sparse models while preserving the sparsity. Our approach addresses
the challenges of domain adaptation and performance restoration for sparse LLMs. Specifically, we
introduce additional masks in the LoRA framework, thus preserving the sparsity of the LLM dur-
ing training, and achieve memory efficiency by using a hybrid gradient checkpointing and memory
reutilizing approach. Experiments on the Llama family show that SP-LoRA can effectively recover
the performance of pruned LLMs and has comparable performance to LoRA on domain migration
tasks.

Currently, in the SP-LoRA framework, we only consider static masks, and at the same time, we
do not use LoRA variants to further improve the performance of SP-LoRA. Therefore, looking
ahead, we will try to use different improved versions of LoRA combined with dynamic mask tuning
methods for better performance.

REFERENCES

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns, 2024. URL
https://arxiv.org/abs/2401.15024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-

10

https://arxiv.org/abs/2401.15024

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL https://arxiv.org/abs/1604.06174.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
redundant layers to compress large language models, 2024. URL https://arxiv.org/
abs/2403.19135.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha

11

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2403.19135
https://arxiv.org/abs/2403.19135
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners, 2021. URL https://arxiv.org/abs/1911.11134.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023. URL https://arxiv.org/abs/2301.00774.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/2301.00774

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016. URL https://arxiv.org/
abs/1510.00149.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Yuxuan Hu, Jing Zhang, Zhe Zhao, Chen Zhao, Xiaodong Chen, Cuiping Li, and Hong Chen. sp3:
Enhancing structured pruning via pca projection, 2024. URL https://arxiv.org/abs/
2308.16475.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models, 2023. URL https://arxiv.org/abs/2304.01933.

Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, and Jianfei Chen. Pruning large language mod-
els with semi-structural adaptive sparse training, 2024. URL https://arxiv.org/abs/
2407.20584.

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse fine-tuning
for inference acceleration of large language models, 2023. URL https://arxiv.org/abs/
2310.06927.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8.

Yijiang Liu, Huanrui Yang, Youxin Chen, Rongyu Zhang, Miao Wang, Yuan Du, and Li Du. Pat:
Pruning-aware tuning for large language models, 2024. URL https://arxiv.org/abs/
2408.14721.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization, 2018. URL https://arxiv.org/abs/1712.01312.

Xudong Lu, Aojun Zhou, Yuhui Xu, Renrui Zhang, Peng Gao, and Hongsheng Li. Spp: Sparsity-
preserved parameter-efficient fine-tuning for large language models, 2024. URL https://
arxiv.org/abs/2405.16057.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024. URL https://arxiv.org/abs/2403.03853.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks, 2021. URL
https://arxiv.org/abs/2104.08378.

13

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2308.16475
https://arxiv.org/abs/2308.16475
https://arxiv.org/abs/2304.01933
https://arxiv.org/abs/2407.20584
https://arxiv.org/abs/2407.20584
https://arxiv.org/abs/2310.06927
https://arxiv.org/abs/2310.06927
https://aclanthology.org/2022.acl-short.8
https://arxiv.org/abs/2408.14721
https://arxiv.org/abs/2408.14721
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/2405.16057
https://arxiv.org/abs/2405.16057
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2104.08378

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation, 2024. URL https://arxiv.org/
abs/2407.14679.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning, 2020. URL https://arxiv.org/abs/2005.07683.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism, 2020. URL https://arxiv.org/abs/1909.08053.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023. URL
https://arxiv.org/abs/2304.12244.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models, 2024. URL https://arxiv.org/abs/2309.12284.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

14

https://arxiv.org/abs/2407.14679
https://arxiv.org/abs/2407.14679
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2306.11695
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/1905.07830

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning:
A baseline for network adaptation via additive side networks, 2020. URL https://arxiv.
org/abs/1912.13503.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning, 2023. URL https://arxiv.
org/abs/2308.03303.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Tr0lPx9woF.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024. URL
https://arxiv.org/abs/2403.03507.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement,
2024. URL https://arxiv.org/abs/2402.14658.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n:m fine-grained structured sparse neural networks from scratch, 2021. URL
https://arxiv.org/abs/2102.04010.

15

https://arxiv.org/abs/1912.13503
https://arxiv.org/abs/1912.13503
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2102.04010

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A COMPARISON BETWEEN SPP AND SP-LORA

SPP (Lu et al., 2024) is also a parameter-efficient and sparsity-preserving fine-tuning methodology.
The formulation of SPP can be mathematically described as follows:

W̃(t) = W̃ + W̃ ⊙ Repeat1(A(t),
C

r
)⊙ Repeat0(B(t), R), (8)

where W̃ ∈ RR×C denotes the updated weight matrix, A ∈ RR×r and B ∈ R1×C represent the
learnable parameter matrices, and Repeati(x, n) means repeating the tensor x along axis i for n

times. The adjustment to the weight matrix, denoted by W̃ ⊙Repeat1(A(t), C
r)⊙Repeat0(B(t), R),

is formulated as the Hadamard product of these three matrices, thereby maintaining the sparsity
structure inherent in the matrices involved. Furthermore, the parameters A(t) and B(t) are the only
ones subject to training, which significantly reduces the parameters compared to that of W̃ , thus
exemplifying the parameter efficiency of this approach.

It is observed that SPP can be conceptualized as a variant of LoRA. To illustrate this perspective,
consider partitioning each sequence of r consecutive elements within B into segments, such that:

B = [B1,B2, . . . ,BC
r
], (9)

where each segment Bi is a vector of length r. Subsequently, we define a block-diagonal matrix B̂
constructed from these segments:

B̂ = [diag(B1), diag(B2), . . . , diag(BC
r
)]. (10)

With this definition, the update rule for the weight matrix W̃ can be rewritten as:

W̃(t) = W̃ + W̃ ⊙ (A(t) × B̂(t)). (11)

Therefore, SPP can be interpreted as a LoRA variant that employs a specialized matrix B̂, augmented
with the initial weight matrix W̃ as a weight term, to achieve its parameter-efficient and sparsity-
preserving properties.

Recalling the mathematical form of the SP-LoRA,

W̃(t) = W̃ +M⊙ (A(t) × B(t)). (12)

The distinctions between SPP and SP-LoRA can be delineated as follows:

• SPP employs a composite weight matrix B̂ formed by stitching together multiple diagonal
matrices, whereas SP-LoRA utilizes a standard matrix B as its weight matrix.

• SPP incorporates the initial weight matrix W̃ as an additional weight term, while SP-LoRA
leverages a mask matrix M as an additional weight term.

Incorporating the initial weight matrix W̃ as an additional weight term endows SPP with certain
advantages in instruction fine-tuning. However, this approach precludes SPP from benefiting from
the proposed memory reuse technique and poses the challenge of high GPU memory overhead.
To solve the problem of high GPU memory usage, SPP uses tensor parallelism, where the weight
matrices are sliced and stored separately within different GPUs. However, this optimization requires
multiple GPUs to implement and thus cannot be applied to low-resource fine-tuning scenarios with
only a single GPU. Also, in multi-GPU parallel training scenarios, SPP enforcing the use of tensor
parallelism may reduce the training speed due to the increased communication overhead.

Conversely, the proposed method, SP-LoRA, achieves comparable time and memory overheads to
those of LoRA through optimized memory usage, while simultaneously maintaining equivalent per-
formance levels as SPP.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION OF SPP AND SP-LORA VARIANTS

def forward_adapter(x, W, A, B):
n, m = W.shape
r = A.shape[1]
A = torch.repeat_interleave(weight, m // r, dim=1)
B = torch.repeat_interleave(weight, n, dim=0)
W_adapter = W * A * B
return F.linear(x, W_adapter)

def forward_spp(x, W, A, B):
y1 = F.linear(x, W)
y2 = forward_adapter(x, W, A, B)
return y1 + y2

Listing 1: Implementation of SPP(NO)

def forward_adapter(x, W, A, B):
n, m = W.shape
r = A.shape[1]
A = torch.repeat_interleave(weight, m // r, dim=1)
B = torch.repeat_interleave(weight, n, dim=0)
W_adapter = W * A * B
return F.linear(x, W_adapter)

def forward_spp(x, W, A, B):
y1 = F.linear(x, W)
gradient checkpointing
y2 = checkpoint(forward_adapter, x, W, A, B)
return y1 + y2

Listing 2: Implementation of SPP(GC)

def forward_adapter(W, A, B):
M = (W != 0)
return W + M * (A @ B)

def forward_sp_lora(x, W, A, B):
W_new = forward_adapter(W, A, B)
return F.linear(x, W_new)

Listing 3: Implementation of SP-LoRA(NO)

def forward_adapter(W, A, B):
M = (W != 0)
return W + M * (A @ B)

def forward_sp_lora(x, W, A, B):
gradient checkpointing
W_new = checkpoint(forward_adapter, W, A, B)
return F.linear(x, W_new)

Listing 4: Implementation of SP-LoRA(GC)

17

	Introduction
	Related Work
	Pruning
	Parameter-Efficient Fine-Tuning
	Sparsity Preserved Training

	Method
	Preliminary
	SP-LoRA
	Memory Complexity
	Memory Optimization

	Experiments
	Main Results
	Time and Memory Overhead

	Conclusion and Future Works
	Comparison between SPP and SP-LoRA
	Implementation of SPP and SP-LoRA variants

