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Abstract

Traditional approaches to accelerate sampling in generative models rely on
distillation, which requires large datasets and costly training. We instead
view the quality gap between multi-step and few-step sampling as a trans-
ferable property, and introduce PathXfer, a few-shot framework that trans-
fers multi-step fidelity to few-step sampling. PathXfer employs LoRA-based
lightweight adaptation together with a Path Compression Loss, enabling ef-
fective fidelity preservation using only 16 samples, without retraining the
entire model. Experiments show that PathXfer compresses sampling from
20 to 2 steps on FLUX.1-dev, a flow-based generative model, with only
minor perceptual degradation, and also yields consistent improvements on
diffusion models such as SDXL, demonstrating that the approach general-
izes across paradigms. These results highlight few-shot fidelity transfer as
a complementary approach to distillation, offering an efficient pathway for
accelerating generative sampling.

1 Introduction

Recent advancements in generative modeling(Labs, 2024; Podell et al., 2023; Team, 2024;
Han et al., 2024; Tian et al., 2024), particularly diffusion models(Rombach et al., 2022;
Song et al., 2021; Ho et al., 2020; Chen et al., 2025a; Lin et al., 2024) have greatly improved
the fidelity, controllability, and alignment of image synthesis. Diffusion models operate by
iteratively denoising a noisy input, producing high-quality outputs but incurring substantial
inference latency. Typical generation often requires 20 to 100 steps for a single image, making
these models significantly slower than single-step generators like GANs (Karras et al., 2020).
This high computational cost limits their deployment in latency-sensitive applications such
as real-time interaction, edge devices, or high-throughput services.
To alleviate this bottleneck, prior works have explored a variety of acceleration strategies.
Techniques such as custom time-step schedules (Song et al., 2021; Nichol & Dhariwal, 2021),
adaptive noise reparameterization (Kingma et al., 2021; Chung et al., 2022), and caching
(Zou et al., 2024; Selvaraju et al., 2024; Liu et al., 2025a; Bu et al., 2025; Liu et al., 2025b)
can reduce sampling latency, but the speedup is generally modest. Methods based on
knowledge distillation (Luo et al., 2023b; Salimans & Ho, 2022; Chen et al., 2025b; Zheng
et al., 2024; Ren et al., 2024) can achieve larger acceleration, yet they require substantial
resources: retraining student models needs large-scale datasets and extensive computation,
may introduce additional architectural components, and risks degrading the fidelity of the
original model. This highlights a clear trade-off between acceleration and data efficiency
that existing methods struggle to resolve.
Motivated by this gap, we explore an alternative perspective: instead of treating the multi-
step sampling process as a deficiency, we conceptualize the quality gap between multi-step
and few-step generation as a transferable property. This property is encapsulated within
the sampling path, defined as the sequence of intermediate states produced during itera-
tive generation. Based on this insight, we introduce PathXfer, a few-shot framework that
transfers high visual fidelity from the multi-step path to a compressed, few-step sampling
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Figure 1: Overview of PathXfer for few-shot path compression. (a) Generation of 16 high-quality
training examples from FLUX.1-dev, ensuring data remains within the model distribution. (b)
LoRA-based adaptation and Path Compression Loss iteratively compress multi-step paths, trans-
ferring fidelity to few-step outputs. (c) Comparison across 1, 2, 10, and 20 steps showing that
PathXfer effectively reduces the sampling sequence length while preserving visual quality.
process, effectively shortening the generative sequence while preserving semantic and struc-
tural fidelity (see Figure 1). PathXfer combines low-rank adaptation (LoRA) for efficient
fine-tuning with a path compression loss that enforces multi-order consistency across in-
termediate states. During training, each target step is iteratively optimized by referencing
multiple intermediate evaluations, gradually transferring the high visual fidelity of multi-step
generation to a compressed, few-step path. The Path Compression Loss enables differen-
tiable optimization without requiring teacher supervision or handcrafted schedules, and is
applicable to any generative model.
In our experiments, we focus on FLUX.1-dev (Labs, 2024), a continuous-time flow-based
generative model with empirically stable paths, to evaluate the core acceleration capabilities
of PathXfer. Using only 16 training prompts, PathXfer compresses sampling on FLUX.1-
dev from 20 to 2 steps with minimal perceptual degradation, demonstrating both efficiency
and fidelity preservation (see Fig. 1c). To confirm the generality of the approach, we also
evaluate PathXfer on noise-driven diffusion models such as SDXL (Podell et al., 2023) and
Kolors (Team, 2024), where few-step generation quality similarly improves, illustrating that
the framework can be applied across different generative paradigms.
The main contributions of this work are summarized as follows:

• We propose PathXfer, a few-shot lightweight fine-tuning framework that transfers
visual fidelity from multi-step to few-step sampling by compressing the sequence of
intermediate states for efficient acceleration.

• We introduce a Path Compression Loss based on multi-order consistency, which
iteratively transfers the fidelity of multi-step generation to few-step outputs in a
differentiable and model-agnostic way, enabling efficient high-quality sampling..

• We validate PathXfer on FLUX.1-dev, SDXL, and Kolors, showing that it achieves
substantial acceleration with consistent fidelity preservation. These results suggest
that few-shot trajectory compression provides a complementary pathway to distil-
lation, broadening the design space for efficient generative model adaptation.

2 Method

2.1 Background: Shortest Path Diffusion

Shortest Path Diffusion (ShortDF) (Chen et al., 2025c) constructs a directed acyclic graph
(DAG) G over discrete denoising states xt to optimize a shortcut path P∗ that minimizes
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cumulative reconstruction cost:

P∗ = arg min
P

n∑
i=1

∥∥∥xG
0|ti

− xG
0|ti−1

∥∥∥ , ti−1 < ti, (1)

where xG
0|ti

is the reconstructed estimate of x0 from state xti
. ShortDF can be viewed from

an ODE perspective and is trained by deterministic samplers such as DDIM (Song et al.,
2021), using a dual-model self-distillation scheme in which the base model B is optimized
via a triangle-based relaxation of the paths from the model G:∥∥∥xB

0|ti
− x0

∥∥∥ ≈
∥∥∥xB

0|ti−1
− x0

∥∥∥ +
∥∥∥xG

0|ti
− xG

0|ti−1

∥∥∥ , (2)

Based on this relaxation, ShortDF constructs a path compression optimization strategy for
multi-step sampling, accelerating inference. However, it still requires many samples and
significant computational resources. Notably, intermediate multi-step paths often achieve
higher visual fidelity than their corresponding shorter direct paths, motivating a lightweight
ODE-based compression paradigm that transfers this fidelity along the generative trajectory
to improve the shorter samping paths.

2.2 Visual Fidelity Transfer via Adaptive Path Compression

A Transfer Paradigm on Generative Paths. We introduce PathXfer, a novel com-
pression method that accelerates sampling by transferring visual fidelity along generative
trajectories. Unlike distillation, which depends on mimicking a teacher model over large
datasets, PathXfer directly optimizes the ODE-based paths of a single model, making the
approach both efficient and data-light.
Path Compression via Intermediate Trajectories. Under deterministic ODE-based
sampling (such as DDIM for diffusion models (Song et al., 2021; Chen et al., 2025c) or
probability flow ODE for flow matching (Labs, 2024; Liu et al., 2023)), if the reconstruction
along the two-step path t → k → 0 is more accurate than the direct path t → 0, the direct
path can benefit from the visual fidelity of the intermediate trajectory. To implement this
principle, we reformulate the triangle relation of reconstruction errors (Eq. 2) under the
ODE perspective, leading to the condition:

∥x̂0|t − x0∥ > ∥x̂0|k − x0∥, t > k, (3)
where x̂0|t and x̂0|k denote reconstructions of x0 from states xt and xk, respectively.
To enforce this condition during training, we introduce a path compression loss for visual
fidelity transfer:

Lcomp =
[
max

(
0, ∥x̂0|t − x0∥ − sg

(
∥x̂0|k − x0∥

))]2
, (4)

where sg(·) denotes stop-gradient, preventing backpropagation through x̂0|k and enabling
the model to transfer the higher visual fidelity of the indirect path t → k → 0 to the direct
path t → 0. Here, the reconstruction x̂0|t (and similarly x̂0|k) is estimated as:

x̂0|t =

{
xt − (1 − αt) · vθ(xt, t), (Flow Matching)

1√
ᾱt

(
xt −

√
1 − ᾱt · ϵθ(xt, t)

)
, (Diffusion / deterministic sampler) (5)

where αt and ᾱt are the integration schedule coefficients, and vθ(xt, t) and ϵθ(xt, t) are the
predicted velocity and noise of the flow matching (Labs, 2024; Liu et al., 2023) and diffusion
models (Ho et al., 2020; Song et al., 2021; Chen et al., 2025c), respectively, at time t. Note
that for diffusion models, deterministic sampling is required to realize the transition from
xt to xk during training, ensuring an ODE-like trajectory.
Total Training Objective. The total training objective combines the standard ODE-
based reconstruction loss with the path compression loss:

Ltotal = LODE + λ · Lcomp, λ = 1 by default, (6)
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where LODE is the model-specific optimization loss:

LODE =
{

∥xt − (x0 + (1 − αt)vθ(xt, t))∥2, (Flow Matching)
∥ϵθ(xt, t) − ϵ∥2, (Diffusion / deterministic sampler) (7)

This formulation allows PathXfer to be applied to different ODE-based generative models
in a unified manner, while transferring visual fidelity along the trajectory.
Iterative Multi-Order Compression. The transfer process is applied iteratively dur-
ing training to achieve adaptive, multi-order compression. For a given state xt, we sample
multiple earlier times Mt ⊂ {1, ..., t−1}. For each k ∈ Mt, the model learns to adjust its
parameters such that the visual fidelity at t matches or exceeds that at k. Ideally, after suf-
ficient training, the learned trajectory should converge towards a state where reconstruction
quality improves along the path, which can be expressed as:

∥x̂0|t − x0∥ ≥ ∥x̂0|t−1 − x0∥ ≥ . . . ≥ ∥x̂0|1 − x0∥. (8)

Case Example. Consider a scenario with t = 10 and k = 2. If the transfer condition
holds, the direct path x10 → x0 inherits the visual fidelity of the two-step path x10 →
x2 → x0, effectively approximating the intermediate trajectory. Next, with t = 100 and
k = 10, the direct path x100 → x0 approximates x100 → x10 → x0. Recursively applying
this principle allows longer multi-step paths to be compressed into shorter direct paths
while preserving accumulated visual fidelity, achieving second-order, third-order, or n-order
compression dynamically.

2.3 Few-Shot Optimization of PathXfer with LoRA

Few-Shot, Path-Centric Visual Fidelity Transfer with LoRA. PathXfer accelerates
sampling by transferring visual fidelity along a model’s internal generative paths, specifi-
cally ODE trajectories. A key prerequisite is the path stability of the base model, which
can vary across architectures. Here, stability means that under the same denoising path,
generations from different prompts and seeds exhibit consistently similar quality. Leverag-
ing this property, PathXfer performs fidelity transfer between different paths, making the
paths themselves—rather than prompts or images—the true training samples. To adapt
the model efficiently while mitigating catastrophic forgetting, we employ Low-Rank Adap-
tation (LoRA) (Hu et al., 2022), which inserts lightweight trainable matrices into the frozen
network. This enables few-shot training to focus directly on transferring visual fidelity
across generative paths, thereby preserving semantic consistency and output quality while
accelerating sampling.
Practical Implementation with FLUX.1-dev. To accurately evaluate PathXfer, we use
FLUX.1-dev (Labs, 2024), a state-of-the-art ODE-based model widely adopted in industry.
FLUX is particularly suited for path compression thanks to its inherent trajectory stability,
making it a representative testbed for our method. As shown in Fig. 1, we randomly
select 16 prompts to generate 30-step trajectories as ground truth. Using self-generated
trajectories keeps the data distribution within the model and avoids external interference.
Other baselines follow the same protocol.

3 Experiments

Setup: We constructed a few-shot training dataset using 16 randomly sampled prompts
from journeyDB, then generated 1024×1024 images on FLUX.1-dev with fixed noise seeds
and 30 sampling steps. Training utilized 8×NVIDIA H100 GPUs (80GB) in a distributed
data-parallel configuration. The DIT component of FLUX.1-dev was fine-tuned using LoRA
(rank=24) with per-GPU batch size 1, totaling 18,000 iterations. Optimization employed
AdamW(Loshchilov & Hutter, 2019) with hyperparameters: learning rate 2×10−5, β1 = 0.9,
β2 = 0.999, weight decay 0.01, and ϵ = 1 × 10−8. Training utilized BF16 mixed precision
with gradient clipping (max norm=1.0), consistent with SDXL and Kolors configurations.
Datasets and Metrics. Following prior work such as SANA (Xie et al., 2024),
ToCache (Zou et al., 2025), and Hyper-SD (Ren et al., 2024), we evaluate on MS-
COCO2017 (Lin et al., 2014) and GenEval (Ghosh et al., 2023), which contain diverse
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real-world scene descriptions for comprehensive benchmarking. For MS-COCO2017, we use
CLIP-Score (Radford et al., 2021) to measure image-text alignment, AES Score (Schuhmann
et al., 2022) to assess visual appeal, and ImageReward (Xu et al., 2023) to evaluate overall
human preference considering realism, coherence, and subjective quality. For GenEval, we
use GenEval Score (Ghosh et al., 2023) to assess the model’s ability to generate accurate
object compositions, including relationships, positions, counts, and colors.
Baseline Model Selection. We select representative base models to evaluate PathXfer
across architectures. For noise-based models, we choose SDXL (Podell et al., 2023) and
Kolors (Team, 2024), with SDXL widely used for distillation and Kolors as an industrial
open-source variant. For flow-based models, we choose FLUX.1-dev (Labs, 2024), which
is highly stable, strong in quality, and naturally suitable for ODE integration, fitting our
path compression and visual fidelity transfer design. FLUX.1-dev requires substantial re-
sources, so distillation on it is less studied, with cache-based methods being more common.
This choice demonstrates PathXfer’s ability to deliver efficient, high-quality fidelity transfer
across architectures and scenarios.

3.1 Main Results

Table 1: AES and ImageReward compari-
son of generative models with pretrained
weights. “16” denotes 16 in-domain fine-tuning
samples, “0” denotes cache methods, “>10M” de-
notes large-scale distillation. Bold indicates best,
underlined second-best within each group.

Model Steps AES ↑ Reward ↑ Train Data

Noise-based: SDXL and Kolors at 1024×1024 resolution
SDXL-Lightning 4 5.63 0.64 >10M
Hyper-SDXL 4 5.74 0.83 >10M
SDXL-LCM 4 5.42 0.42 12M
SDXL-TCD 4 5.42 0.59 >10M
SDXL 25 5.54 0.78 >10M
SDXL 6 5.29 -0.60 >10M
Ours 6 5.83 0.58 16
Kolors 25 6.25 0.87 >10M
Kolors 6 6.09 0.57 >10M
Ours 6 6.42 0.75 16

Flow-based: FLUX.1-dev at 1024×1024 resolution
ToCa 34 - 1.13 0
FORA 34 - 1.20 0
TeaCache 15 - 0.97 0
DiCache 13 - -0.65 0
TaylorSeer 10 - 1.00 0
FLUX.1-dev 20 5.82 1.19 >10M
FLUX.1-dev 10 5.57 0.93 >10M
FLUX.1-dev 4 5.17 -0.25 >10M
FLUX.1-schnell 4 5.57 1.13 large-scale
Ours 4 6.00 1.11 16
Ours 2 5.99 1.07 16
Ours 1 5.94 1.03 16

Main Results Across Models. Ta-
ble 1 compares PathXfer with state-of-the-
art baselines on AES and ImageReward un-
der varying sampling steps and training
data sizes, including SDXL-Lightning (Lin
et al., 2024), Hyper-SDXL (Ren et al.,
2024), SDXL-LCM (Luo et al., 2023a),
SDXL-TCD (Zheng et al., 2024), FLUX.1-
schnell (Labs, 2024),ToCa (Zou et al.,
2024), FORA (Selvaraju et al., 2024), Tea-
Cache (Liu et al., 2025a), DiCache (Bu
et al., 2025), TaylorSeer (Liu et al., 2025b).
PathXfer demonstrates broad applicabil-
ity and strong acceleration across archi-
tectures. For noise-based models, us-
ing only 16 in-domain samples at 6 steps
yields notable gains: SDXL’s AES improves
by +10.2% (5.29→5.83) and Kolors’ AES
improves by +5.4% (6.09→6.42) with an
ImageReward gain of +31.6% (0.57→0.75).
These improvements show effective few-shot
visual fidelity transfer and competitiveness
with distillation-based baselines while offering distillation-like acceleration advantages. For
flow-based FLUX.1-dev, PathXfer achieves even greater improvements. At 4 steps, AES
increases by +16.1% (5.17→6.00). PathXfer maintains strong performance (AES 5.99 at 2
steps, 5.94 at 1 step) while enabling up to a 10×–20× speedup compared to the 20-step base-
line. PathXfer achieves comparable quality with strong competitiveness to distillation-based
methods and, compared to cache-based approaches, offers significant speed advantages while
retaining a light-weight design that only requires minimal in-domain samples. These results
confirm PathXfer’s general feasibility. The stronger gains on FLUX.1-dev stem from its
intrinsic ODE properties, which align well with our path compression and visual fidelity
transfer strategy, whereas noise-based models require deterministic samplers such as DDIM
to approximate ODE-like behavior. This motivates focusing subsequent experiments on
FLUX.1-dev for fast and effective validation.
GenEval comparison in FLUX.1-dev. Table 2 reports GenEval scores as a compre-
hensive quantitative evaluation across different generative models. The top group lists rep-
resentative cross-architecture SOTA baselines, including SDXL, SD3-Medium (Esser et al.,
2024), SANA (Xie et al., 2024), PCM (Wang et al., 2024), SD3.5-Turbo (Esser et al., 2024),
SDXL-Turbo (Podell et al., 2023), and SDXL-DMD2 (Yin et al., 2024), serving as global
references. The bottom group presents a direct comparison under the FLUX.1 architecture.
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Figure 2: Comparison with FLUX.1-dev (20 steps) shows our 2-step method achieves sharper, more
realistic results across diverse scenes. (see Appendix Fig. 5 for more results).

Table 2: GenEval comparison on FLUX.1-
dev. Bold indicates the best and underlined the
second-best within each group.

Method Steps GenEval ↑ Train Data

SOTA Methods
SDXL 50 0.550 >10M
SD3-Medium 28 0.620 >10M
SANA 20 0.66 >10M
PCM† 4 0.560 12M
SD3.5-Turbo 2 0.530 >10M
SDXL-Turbo 1 0.510 >10M
SDXL-DMD2 1 0.590 500K

Direct Comparison (FLUX.1 Architecture)
FLUX.1-schnell 4 0.710 large-scale
FLUX.1-dev 20 0.648

>10MFLUX.1-dev 10 0.545
FLUX.1-dev 4 0.296
Ours 10 0.649

16Ours 4 0.612
Ours 1 0.604

PathXfer, trained with only 16 in-domain
samples, consistently improves both effi-
ciency and quality over FLUX.1-dev. At
1 step, PathXfer reaches 0.604 GenEval,
closely approaching the 20-step FLUX.1-
dev baseline (0.648) while reducing tra-
jectory length nearly tenfold, demonstrat-
ing substantial speedup. At 10 and 4
steps, PathXfer also achieves significant
gains (0.649 and 0.612, respectively), fur-
ther demonstrating its effectiveness. Com-
pared to FLUX.1-schnell (Labs, 2024) at
4 steps, which uses large-scale distillation,
PathXfer delivers comparable quality with
far fewer samples, showing that it can ri-
val distillation-based approaches under ex-
treme compression.

Figure 3: 4-step comparison. Ours avoids ar-
tifacts and yields better structure, texture, and
shadow consistency than FLUX.1-schnell.

Qualitative Results. Fig. 2 and Fig. 3
present complementary visual comparisons
for PathXfer. Fig. 2 shows PathXfer (2
steps) versus FLUX.1-dev (20 steps), where
despite using only a tenth of the steps,
PathXfer consistently produces sharper,
more coherent images across diverse cate-
gories such as humans, animals, architec-
ture, and abstract art. It better preserves
structural boundaries, texture details, and
global composition, while reducing blurring
and semantic drift under extreme compres-
sion. Fig. 3 provides a targeted comparison
between PathXfer (4 steps) and FLUX.1-
schnell (4 steps distilled), highlighting su-
perior semantic preservation and structural
integrity in PathXfer’s outputs. It avoids common artifacts such as hallucinated limbs, un-
natural object placements, or distorted proportions, and maintains high visual coherence
across diverse categories (e.g., humans, vehicles, fine textures). These observations confirm
PathXfer’s capability as a practical few-shot fidelity transfer method, achieving competitive
results with minimal data and computation even against heavily distilled baselines.
Together with the User Study results in Appendix. B, which further validate perceptual
quality from a human perspective, these findings confirm that PathXfer offers an effective
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Table 3: Unified ablation study on LoRA, rank, and few-shot data size. We compare
the effect of LoRA, LoRA rank, and training prompt count across different sampling steps. Our
method is robust to extreme compression and generalizes well with as few as 16 training samples.

Step LoRA Setting #Prompts CLIP ↑ AES ↑ Reward ↑ GenEval ↑

1

w/o LoRA 16 22.24 4.16 -2.14 0.05
rank 8 16 28.37 5.06 -0.94 0.20
rank 24 16 31.95 5.94 1.03 0.60
rank 24 24 32.10 5.90 1.04 0.57
rank 24 32 31.62 5.94 0.94 0.55

2

w/o LoRA 16 24.07 4.58 -1.97 0.10
rank 8 16 30.66 5.28 -0.03 0.33
rank 24 16 32.00 5.99 1.07 0.60
rank 24 24 31.99 5.98 1.08 0.58
rank 24 32 31.87 5.95 1.04 0.60

4

w/o LoRA 16 30.81 5.26 0.30 0.37
rank 8 16 30.29 5.68 0.84 0.49
rank 24 16 31.77 6.00 1.11 0.61
rank 24 24 32.04 5.95 1.15 0.61
rank 24 32 32.05 5.98 1.13 0.62

10

w/o LoRA 16 31.57 5.53 0.94 0.54
rank 8 16 31.15 5.80 1.28 0.67
rank 24 16 31.95 6.05 1.22 0.65
rank 24 24 32.11 5.99 1.24 0.65
rank 24 32 31.93 6.00 1.20 0.63

Table 4: Comparison of performance and inference efficiency under trajectory compres-
sion. Our method maintains or improves CLIP and AES scores while significantly accelerating
inference. Gains are reported as relative improvements over FLUX.1-dev.

Steps CLIP Score ↑ CLIP Gain (%) AES Score ↑ AES Gain (%) Latency (s) ↑ Speed-Up

FLUX.1-dev / Ours FLUX.1-dev / Ours FLUX.1-dev / Ours

50 32.33 / 31.89 -1.36% 5.85 / 6.00 +2.56% 19.94 / 10.57 1.89×
30 32.36 / 31.89 -1.45% 5.85 / 6.02 +2.91% 11.62 / 6.42 1.81×
20 32.31 / 31.91 -1.24% 5.82 / 6.03 +3.61% 7.45 / 4.34 1.72×
10 31.94 / 31.95 +0.03% 5.57 / 6.05 +8.62% 3.30 / 2.27 1.45×
4 28.11 / 31.77 +13.0% 5.18 / 6.00 +15.83% 1.03 / 1.03 1.00×
2 24.07/ 32.00 +32.95% 4.53 / 5.99 +32.23% 0.61 / 0.61 1.00×
1 22.25 / 31.95 +43.59% 4.11 / 5.94 +44.53% 0.41 / 0.41 1.00×

trajectory compression strategy, enabling reliable fidelity transfer with minimal data and
computation, even in highly constrained sampling settings.

3.2 Ablations

Unified Analysis of LoRA, Rank, and Few-shot Generalization. Table 3 presents a
unified ablation study on the effects of LoRA, LoRA rank, and training prompt count across
different steps. The results yield three key observations: (1) LoRA is critical under
compression. Without LoRA, performance drops sharply, especially at 1–2 steps where
GenEval falls below 0.1 and ImageReward turns negative. Adding LoRA significantly boosts
all metrics (e.g., GenEval: 0.05 → 0.60, Reward: –2.14 → 1.03 at 1 step). (2) Higher rank
improves quality. Increasing LoRA rank from 8 to 24 consistently enhances performance,
particularly for CLIP and Reward (e.g., at 2 steps, CLIP: 30.66 → 32.00, Reward: –0.03
→ 1.07), suggesting that higher-rank adapters better capture velocity field refinements. (3)
Few-shot generalization is strong. With only 16 prompts, our model achieves solid
performance across all steps. Using more prompts (24/32) yields little or no gain, especially
in ACE and GenEval, indicating effective generalization from minimal data. These findings
confirm that LoRA enables robust performance under compression, and strong few-shot
generalization ensures efficiency and practicality.
Compression vs. Quality Trade-off. Table 4 summarizes the performance and efficiency
of our method under different trajectory compression levels. Despite drastically reducing the
number of sampling steps, our method consistently preserves or even improves generation
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quality while significantly accelerating inference. In high-step regimes (50–30 steps), our
method achieves 1.8×–1.9× speed-ups over FLUX.1-dev, with AES scores steadily improving
(e.g., +2.56% at 50 steps), and only minimal CLIP drop (<1.5%). At 10 steps, we match
CLIP and significantly improve AES (+8.62%), while reducing latency by 31%. Notably, in
low-step settings (≤ 4 steps), our method not only achieves real-time speed (0.4–1.0s), but
also shows large gains over FLUX.1-dev in both CLIP and AES—up to +44.5% AES and
+43.6% CLIP at 1 step. This reversal is due to FLUX.1-dev collapsing under compression,
while our model remains stable and effective. These results demonstrate that our trajectory
compression framework not only accelerates generation but also enhances perceptual and
semantic quality, especially under extreme inference constraints.

Table 5: Quality retention with step com-
pression. Our method sustains competitive
quality while delivering substantial speed-ups.
Baseline refers to FLUX.1-dev with 30 steps
(AES = 5.84), and all gains are reported rel-
ative to this baseline.

Steps AES score ↑ Speed-up
Baseline 5.84 1.00×
30 6.02 (+3.08%) 1.81×
20 6.03 (+3.25%) 2.68×
10 6.05 (+3.60%) 5.12×
4 6.00 (+2.74%) 11.28×
2 5.99 (+2.57%) 19.05×

Quality Retention under Step Com-
pression. Table 5 demonstrates that our
method consistently retains or improves gen-
eration quality (measured by AES) while
significantly accelerating inference. Using
FLUX.1-dev at 30 steps as the baseline (AES:
5.84, 1.0× speed), our method not only sur-
passes this quality baseline at every com-
pressed step count, but also offers large speed-
ups. Notably, even when reducing to just
10 steps, our method improves AES to 6.05
(+3.60%) while achieving a 5.12× speed-up.
Further compression to 2 steps still yields
5.99 AES (+2.57%) with a remarkable 19.05×
acceleration. This quality-preserving trend
holds steadily across all compression levels, confirming the stability of our trajectory mod-
eling under aggressive step reduction.

Figure 4: Estimated velocity v over 50 steps to assess tra-
jectory stability. FLUX.1-dev exhibits early-stage fluctua-
tions, whereas our method maintains consistently low varia-
tion across steps, indicating a smoother sampling path that
supports the path compression strategy and aligns with the
stage-wise continuity constraint in Eq. 8.

Validation of Path Stabil-
ity through Velocity Analysis.
Figure 4 shows estimated velocity
v over a 50-step sampling trajec-
tory. The original FLUX.1-dev ex-
hibits early-step fluctuations that
gradually smooth out, indicating
unstable trajectories. In con-
trast, PathXfer maintains con-
sistently low velocity variation,
demonstrating smoother and more
predictable generative paths. This
empirically supports the stage-
wise monotonicity constraint in
Eq. 8 and validates our multi-order
compression loss. Such stability
underlies PathXfer’s strengths: it
enables effective fidelity transfer
across models and domains, allowing few-shot adaptation while preserving style-level and
structural diversity (Appendix. C). This confirms that the “training samples” in PathXfer
capture trajectory priors rather than being tied to specific prompts or images, and that the
core of few-shot generalization lies in stable path modeling. Together with the quantita-
tive gains and improvements, this validates that path stability is fundamental for achieving
efficient, high-fidelity, and diverse generation under extreme compression.
Extension to LoRA Fusion. To further illustrate the plug-and-play capability of
PathXfer, we integrate our compressed model with style-specific LoRAs from the community
(e.g., Neza (Stefan, 2025), Sketch (Xia, 2025)) which are open-sourced FLUX.1-dev LoRAs
downloaded from the community. As detailed in Appendix E, PathXfer enables 4-step sam-
pling to achieve style-preserving results comparable to 20-step generation, demonstrating
seamless compatibility with diverse LoRA extensions.
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4 Related Work

Text-to-Image Diffusion Models. Text-to-image diffusion models (Rombach et al., 2022;
Podell et al., 2023; Esser et al., 2024; Labs, 2024) have become the dominant framework
for high-quality image synthesis. Stable Diffusion (SD) (Rombach et al., 2022) first en-
abled practical large-scale generation by operating in a latent space. SDXL (Podell et al.,
2023) improves fidelity through a deeper UNet and dual text encoders, while SD3 (Esser
et al., 2024) introduces rectified flow and cross-modal transformers for better composition-
ality. In contrast to these discrete-step methods, Flux (Labs, 2024) models generation as
a continuous-time probability flow ODE, learning a velocity field via flow matching and
enabling smooth, step-free sampling. Despite strong performance, these models typically
require 20-100 iterative steps for high-quality output, leading to substantial inference la-
tency that hinders real-time applications. This limitation motivates the need for principled,
trajectory-level acceleration strategies that preserve fidelity while reducing sampling depth.
Sampling Optimization Strategies. Various strategies have been proposed to reduce
the inference cost of generative models (Song et al., 2024; Ren et al., 2024; Chen et al.,
2025a; Zou et al., 2025), including knowledge distillation, timestep reduction, and fea-
ture reuse. Latent Consistency Models (LCMs) (Luo et al., 2023a) reformulate reverse
diffusion as latent-space probability flow ODEs to achieve 2-4 step high-fidelity generation.
DeepCache (Ma et al., 2024) leverages temporally stable U-Net features for caching, while
ParaTAA (Tang et al., 2024) uses fixed-point iteration and parallel sampling for up to 400×
acceleration. Hyper-SD (Ren et al., 2024) unifies multiple consistency-based distillations to
support 1-8 step generation, and Skip-DiT (Chen et al., 2025a) and ToCa (Zou et al., 2025)
introduce long-skip connections and token-wise adaptive caching. Although these methods
achieve notable acceleration, those that require minimal data or computation typically pro-
vide limited speedup, while methods that achieve large acceleration often rely on extensive
training datasets or heavy computation. Achieving efficient high-fidelity generation with
low resource requirements remains challenging.
Few-Shot and LoRA Fine-Tuning Mechanisms. Recent works explore few-shot LoRA
for style transfer, achieving visual alignment with as few as 3-10 images. For example,
StyleLoRA (Gal et al., 2023) learns identity-preserving edits from a handful of reference
images, while DragStyle (Shi et al., 2023) enables spatially controllable stylization under
few-shot constraints. Complementarily, parameter-efficient tuning methods aim to adapt
large diffusion models to new tasks with minimal updates. LCM-LoRA (Luo et al., 2023b)
provides plug-and-play adaptation via lightweight modules distilled from Latent Consistency
Models. Hyper-SD (Ren et al., 2024) proposes a unified LoRA design supporting multi-step
generation under reduced sampling budgets, further enhanced by human preference learning.
SANA-Sprint (Chen et al., 2025b) introduces a step-adaptive architecture trained across 1-4
steps and integrated with ControlNet for real-time generation. However, the intersection of
few-shot tuning and sampling acceleration remains underexplored, offering an opportunity
to leverage trajectory stability for efficient path compression with minimal effort.

5 Conclusion

We present PathXfer, a few-shot framework for transferring visual fidelity from multi-step
to few-step sampling. By combining a path compression loss with lightweight LoRA adapta-
tion, PathXfer compresses generative paths while preserving perceptual and semantic qual-
ity. Experiments on FLUX.1-dev, as well as validation on SDXL and Kolors, demonstrate
that it generalizes across both flow- and diffusion-based models, suggesting that few-shot
fidelity transfer can serve as a promising, data-efficient complement to distillation for ac-
celerating generative sampling. While PathXfer provides a broadly applicable approach to
fast, high-quality generation, challenges remain for highly diverse or multi-modal prompts,
where maintaining path smoothness is more difficult, and the current design assumes access
to high-quality final samples for supervision. Future work will explore dynamic step alloca-
tion, adaptive compression based on prompt complexity, and unsupervised path refinement
to further improve robustness and generalization.
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6 Ethics Statement

According to the author guidelines, we include this content, which does not count toward
the total page limit. We are committed to conducting research on PathXfer in a responsible
and ethical manner, ensuring adherence to high standards of integrity. Our work follows
institutional ethical guidelines and complies with relevant protocols for data collection,
processing, and dissemination. In applying generative models, we take care to ensure that
generated content does not infringe upon the rights of individuals or communities. Measures
are taken to reduce the risk of misuse, such as the creation of misleading or harmful content,
and we emphasize the importance of responsible use. We also acknowledge the broader
societal implications of advanced generative technologies. While PathXfer aims to enhance
creative and efficient generation, we remain attentive to ethical concerns including privacy,
consent, and potential misuse. We advocate for deployment with appropriate safeguards to
protect rights and dignity. All datasets used in our research comply with privacy regulations
and ethical standards, and are sourced appropriately.

7 Reproducibility Statement

According to the author guidelines, we include this content, which does not count toward the
total page limit. To support reproducibility and broader research impact, we plan to make
key resources related to PathXfer available to the community, including code, datasets, and
model weights where permissible. Implementation details and relevant assets will be shared
in a manner that balances openness with applicable usage considerations. This approach
aims to facilitate verification of our results and encourage further exploration of PathXfer
while respecting practical constraints
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PathXfer: Few-Shot Visual Fidelity Transfer for Com-
pressed Multi-to-Few Step Sampling (Appendix)

This appendix provides detailed supplementary materials to support our main paper, includ-
ing pseudocode for PathXfer, user study results, diversity analysis, noise-based results such
as Kolors results, style-preserving LoRA fusion experiments, comparison between PathXfer
and knowledge distillation, and intermediate test samples. Together, these materials vali-
date the efficiency, fidelity preservation, diversity, and scalability of our proposed method.
We also describe the role of Large Language Models (LLMs) in this work in Appendix H.

A Pseudocode

To enhance comprehension of the path compression optimization process, we present the
following PyTorch-like pseudocode (1), which elegantly outlines the essential steps of our
training procedure. This includes the stepwise reconstruction error estimation for timesteps
t and k, as well as the loss optimization pivotal to achieving path compression. We will
release the source code after the review process is completed.

1 for epoch in range(num_train_epochs):
2 for step, batch in enumerate(train_dataloader):
3 x_0 = batch['x_0'] # Sample, latent space
4 noise, prompts = batch['noise'], batch['prompts']
5
6 # Randomly sample two timesteps t and k, k < t
7 t = torch.randint(1, 1000, size=(x_0.size(0),))
8 k = (torch.rand(size=t.shape) * t).to(t)
9 t, k = get_schedule(t), get_schedule(k)

10
11 # Add noise
12 x_t = (1 - t) * x_0 + t * noise
13 # predict the reconstruction error at timestep t
14 v_t = model(x_t, t, prompts) # velocity v at timestep t
15 x0_t = x_t - t * v_t # the prediction of x0 at timestep t
16 dt = (x_0 - x0_t).abs() # reconstruction error
17
18 # Similarly , the reconstruction error at timestep k
19 with torch.no_grad():
20 x_k = x_t - (t - k) * v_t # from t to k
21 v_k = model(x_k, k, prompts)
22 x0_k = x_k - k * v_k
23 dk = (x_0 - x0_k).abs()
24
25 # Optimization
26 flow_loss = F.mse_loss(v_t, noise - x_0)
27 relax = dt > dk #Relaxation condition
28 relax_loss = relax * (dt - dk) ** 2
29 loss = flow_loss.mean() + relax_loss.mean()
30 optimizer.zero_grad()
31 loss.backward()
32 optimizer.step()

Listing 1: PyTorch-like training loop with our path compression optimization

B User Study

We conducted a user study to compare the performance of our method with the original
FLUX.1-dev model. A total of 24 participants were involved, including professionals in
computer science, individuals with expertise in aesthetics, and general users. The study
focused on two main aspects of image generation: Semantic Matching (how well the image
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Figure 5: Examples comparing images generated by our method (2-step, left) and the original
FLUX.1-dev model (20-step, right). Across a range of prompts, our method produces results that
are visually and semantically close to those of FLUX.1-dev, despite using far fewer inference steps.

reflects the given prompt) and Overall Image Quality (including clarity, aesthetic appeal,
and personal preference). For each aspect, 816 pairwise comparisons were collected, resulting
in 1632 judgments. Participants were shown image pairs—one generated by our 2-step
method and the other by the 20-step FLUX.1-dev model—with their positions randomized
to reduce bias.

Table 6: User study results comparing our method (2-step) with FLUX.1-dev (20-step). Each score
indicates the number of votes received out of 816 total comparisons per category.

Method Semantic Matching Overall Image Quality
Ours (2-step) 454 474
FLUX.1-dev (20-step) 362 342

Table 6 summarizes the results. Our method received more votes in both categories: 454 vs.
362 for semantic matching, and 474 vs. 342 for image quality. Despite using only a fraction
of the inference steps, our approach was consistently preferred. As shown in Figure 5, the
outputs of our method are often similar in both content and visual quality to those generated
by the 20-step FLUX.1-dev model. While the number of qualitative examples is limited,
user feedback suggests that in some cases, the 2-step results were even preferred. These
findings indicate that our method provides a strong trade-off between quality and efficiency,
making it suitable for scenarios where speed and visual fidelity are both important.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C Diversity Analysis

To evaluate style-level and structural diversity under extreme compression, we conduct
experiments using LPIPS (VGG backbone) over selected MS-COCO prompts, each with 10
random seeds. Style diversity is ensured via prompt engineering, while structural/content
diversity is quantified by averaging LPIPS scores. Table 7 summarizes the results.

Table 7: Comparison of diversity results between our method (2-step) and FLUX.1-dev (20-step).

Method LPIPS (VGG)
Ours (2-step) 0.728
FLUX.1-dev (20-step) 0.592

Table 7 shows that our PathXfer (2-step) produces higher LPIPS scores compared to
FLUX.1-dev (20-step), indicating greater diversity preservation even under strong trajec-
tory compression. This suggests that our method is not only efficient but also capable of
maintaining a rich variety of outputs.
Figures 2 and 3 further support these findings. Fig. 2 provides a broad qualitative com-
parison between PathXfer and FLUX.1-dev, illustrating that PathXfer preserves sharper
structures and better semantic consistency under a 2-step setting compared to the 20-
step baseline. Fig. 3 presents a targeted comparison between PathXfer’s 4-step outputs
and FLUX.1-schnell’s 4-step distilled outputs, highlighting that PathXfer better preserves
semantic correctness and structural integrity while avoiding common artifacts such as hal-
lucinated limbs or unnatural object placements.
As an additional case study, we examine a complex prompt (used for Fig. 1):

"natural sweet young woman, early 20s, candid gentle
smile, soft clear skin with visible pores and natural
light freckles, subtle natural makeup, silky slightly wavy
medium-length hair, fresh lively expression, background shows
a park with trees and a small lake/stream, captured by a
Leica SL2-S with Summilux-M 50 mm f/1.4 lens, natural outdoor
sunlight (golden hour), cinematic warm tones, slight wind
blowing hair, extremely detailed facial texture, true-to-life
color grading, authentic human proportions, real-world
photography style."

This prompt is a detailed description of a young woman scene containing multi-entity com-
position, fine-grained attributes, spatial reasoning, and cross-domain cues. PathXfer suc-
cessfully preserves scene coherence, fine details, and photographic realism even under a
compressed 2-step setting. Its ability to maintain visual coherence across diverse categories
(e.g., humans, vehicles, fine textures) indicates that it learns transferable priors rather than
overfitting to prompt-specific samples, thus validating its few-shot capability.
Overall, these quantitative and qualitative analyses suggest that PathXfer offers a promising
balance between fidelity, diversity, and efficiency. The diversity evaluation in Table 7 and the
qualitative comparisons in Figures 2 and 3 jointly demonstrate that our path compression
strategy maintains rich, coherent generation even under extreme step reduction, supporting
its potential for practical low-resource deployment.

D Kolors Results

As illustrated in Figure 6, we compare the 10-step outputs of our method with the 20-
step outputs of the Kolors model, a representative commercial open-source model under the
SDXL architecture. Including Kolors’ results serves to further demonstrate the effectiveness
of PathXfer across diffusion model families. While both approaches generate images of
comparable visual quality, our method demonstrates two clear advantages. First, it achieves
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similar fidelity with only half the inference steps, highlighting its efficiency. Second, and
more importantly, our results exhibit stronger semantic alignment with the input prompts:
the highlighted elements (marked in red) are faithfully reflected in our generations, whereas
Kolors often fails to capture them.

Figure 6: Examples comparing images generated by our method (10-step, left) and the original
Kolors model (20-step, right). While both methods produce visually comparable results, our ap-
proach more faithfully captures the highlighted semantic elements in the prompts (marked in red),
which are often missed or only partially reflected by Kolors.

E Style-Preserving Path Compression via LoRA Fusion

Figure 7 illustrates the impact of our PathXfer LoRA fusion compared to baseline LoRA
settings. The figure compares the original FLUX.1-dev with LoRA at 4-step and 20-step
generation, as well as results after fusing with open-source style LoRAs such as Neza and
Sketch. In the original LoRA models, the 4-step generation is not viable for practical use due
to noticeable quality, while the 20-step generation yields acceptable results. After applying
our PathXfer fusion, the 4-step generation successfully retains the style fidelity and quality
of the 20-step baseline.
This demonstrates that our path compression LoRA can serve as a plug-and-play tool,
seamlessly integrating into various style LoRAs of the base model without compromising
quality. The approach not only preserves original style characteristics but also significantly
enhances scalability and applicability, enabling efficient low-step generation across diverse
style variants.

Figure 7: Style-preserving results via PathXfer LoRA fusion. Compared to FLUX.1-dev with 4-
step and 20-step generation, fusing PathXfer with style LoRAs such as Neza and Sketch enables
the 4-step generation to match the quality and style fidelity of the original 20-step outputs. This
demonstrates the plug-and-play capability and scalability of our path compression LoRA.
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F Comparison Between PathXfer and Knowledge Distillation

PathXfer differs fundamentally from conventional Knowledge Distillation (KD). KD relies
on an external teacher model to supervise a student model. In contrast, PathXfer requires
no additional teacher. Instead, it directly references the results of indirect generative paths
of the target model itself. Through iterative updates on few-shot examples, PathXfer effec-
tively approximates the optimization of long paths. This can be viewed from a recursive
perspective, though it is not strictly recursion, but rather a path-stability-based boot-
strapping strategy. The core idea is to use the target model’s own high-quality generation
paths as training signals, enabling accelerated sampling while preserving visual fidelity and
diversity.
Table 8 summarizes the differences between PathXfer and KD, illustrating the distinct
supervision sources, data requirements, and optimization goals.

Table 8: Comparison of PathXfer and Knowledge Distillation

Feature PathXfer Knowledge Distillation (KD)
Supervision Source Self-generated paths (direct referencing of indirect paths) External teacher model
Bootstrapping Yes No
Data Requirement Few-shot examples Large-scale dataset
Optimization Goal Path compression + fidelity preservation Student model approximation of teacher
Application Scenarios Multi-step compression, low-resource settings High-quality model training

In summary, as shown in Table 8, PathXfer offers a self-bootstrapping, path-centric approach
that leverages the target model’s own generative trajectories. This enables efficient multi-
step compression with minimal additional supervision, offering a complementary approach
to knowledge distillation that is lightweight, adaptable, and suited for low-resource scenarios.

G Intermediate test samples

During the training process, we perform random testing every 1,000 iterations to facilitate
real-time monitoring of the path compression effect. In these tests, the number of denoising
steps is randomly selected from 1 to 10, and the generated images are of 512-pixel size to
expedite the process. The results of these tests are available in the ”intermediate test
samples” folder of the supplementary materials. From these test results, it can be observed
that our results become increasingly clear and accurate compared to the original FLUX.1-
dev.

H LLM Usage

Large Language Models (LLMs), specifically GPT-5, were used solely to assist with grammar
correction, sentence refinement, and improving the clarity and coherence of the Introduction
and Method sections. All scientific content, experimental design, and conclusions were
determined, verified, and critically edited by the authors. The LLM contribution did not
involve generating factual content, experimental results, or mathematical derivations.
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