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Abstract

Many modern reinforcement learning algorithms build on the actor-critic (AC)
framework: iterative improvement of a policy (the actor) using policy improvement
operators and iterative approximation of the policy’s value (the critic). In con-
trast, the popular value-based algorithm family employs improvement operators in
the value update, to iteratively improve the value function directly. In this work,
we propose a general extension to the AC framework that employs two separate
improvement operators: one applied to the policy in the spirit of policy-based algo-
rithms and one applied to the value in the spirit of value-based algorithms, which
we dub Value-Improved AC (VI-AC). We design two practical VI-AC algorithms
based in the popular online off-policy AC algorithms TD3 and DDPG. We evaluate
VI-TD3 and VI-DDPG in the Mujoco benchmark and find that both improve upon
or match the performance of their respective baselines in all environments tested.

1 Introduction
Modern reinforcement learning (RL) methods can be roughly divided into two algorithmic families:
value-based methods and policy-and-value-based methods. Most policy-and-value-based methods
rely on the Actor Critic (AC) underlying scheme: iteratively improving a policy π (the actor) and
iteratively estimating the value function of the improved policy (the critic). To improve the policy,
AC methods rely on policy improvement operators (PIOs) I, perhaps the most common of which is
the policy gradient (Sutton et al., 1999). Value based methods, on the other hand, rely on PIOs such
as the argmax to iteratively improve the value function directly, rather than estimating the value of
an improved policy. In this work we extend the AC scheme with an additional improvement step,
applied directly to the value update in the spirit of value-based methods.

An abstracted point of view on the connection between value and policy based methods is captured
in the Optimistic Policy Iteration (OPI) Dynamic Programming (DP) algorithm (Tsitsiklis, 2002).
OPI maintains a value prediction and a policy. At each iteration OPI updates the policy with the
argmax operator and updates the value with k Bellman-updates. When k = 1, OPI coincides with
Value Iteration, and when k → ∞ OPI coincides with Policy Iteration (Sutton & Barto, 2018).
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To facilitate theoretical analysis of an RL framework with two improvement operators, we begin
this work by generalizing OPI to arbitrary improvement operators with possibly stochastic policies
(Generalized OPI, GOPI). Using this framework, we describe a novel DP algorithm that employs two
separate improvement steps – one to the policy and one to the value (Value-Improved Generalized
OPI, VI-GOPI). We prove that both GOPI and VI-GOPI converge in the finite horizon MDP setting.

We believe that the convergence result of GOPI covers a missing link in current RL theory: Many
modern AC(-like) methods such as Alpha/MuZero (Silver et al., 2018; Schrittwieser et al., 2020),
MPO (Abdolmaleki et al., 2018) and GreedyAC (Neumann et al., 2023) do not directly rely on the
policy gradient for improvement but on other PIOs, as well as specifically stochastic policies. One of
the motivations for the choice to use different PIOs – other than practical benefits – is in the Policy
Improvement Theorem (Sutton & Barto, 2018) which guarantees convergence for Policy Iteration
with deterministic policies and PIOs. In practice, however, in addition to using stochastic policies,
many modern AC algorithms rely on a small number of value updates k per policy update. These
design choices do not not coincide with the assumptions of Policy Iteration, but do coincide with
those of GOPI.

Building on VI-GOPI, this paper designs a class of practical off-policy online-RL algorithms which
we call Value-Improved Actor-Critics (VI-ACs). We propose two variations of VI-AC, built upon two
popular off-policy AC algorithms, TD3 (Fujimoto et al., 2018) and DDPG (Lillicrap et al., 2015). We
evaluate the performance of VI-TD3 and VI-DDPG with different PIOs on the Mujoco benchmark.
In our experiments, VI-TD3 and VI-DDPG outperform or match the baselines TD3 and DDPG
respectively in all environments. Our contribution provides motivation for future AC algorithms to be
designed with multiple improvement steps in mind.

2 Background

We formulate the reinforcement learning problem as an agent interacting with a finite-horizon Markov
Decision Process (MDP)M(S,A, P,R, ρ,H), where S a discrete state space, A a discrete action
space, P : S ×A →P(S) is a conditional probability measure over the state space that defines the
transition probability P (·|s, a). The immediate reward R(s, a) is a state-action dependent random
variable with mean function which is assumed to be bounded with maxs,a |E[R|s, a]| <∞. Initial
states are sampled from the start-state distribution ρ. The horizon H specifies the length of a trajectory
in the environment. The objective of the agent is to find a stochastic policy π : S → P(A), a
distribution over actions at each state, that maximizes the expected return J . This quantity can also
be written as the expected state value V π with respect to starting states s0:

J(π) = Es0∼ρ

[
V π(s0)

]
= E

[H−1∑
t=0

γtrt

∣∣∣ rt ∼ R(st, at), st+1 ∼ P (·|st, at), at ∼ π(·|st), s0 ∼ ρ

]
.

The state value V π can also be used to define a state-action Q value:

Qπ(s, a) = E
[
r + γV π(s′)

∣∣∣ r ∼ R(s, a), s′ ∼ P (s, a)
]
.

The discount factor 0 < γ ≤ 1 is traditionally set to 1 in finite horizon MDPs.

2.1 Dynamic Programming (DP)

It is a common choice to formulate DP for MDPs with operators over the state-action space. We
use R to denote the mean-reward vector R ∈ R|S||A|, where Rs,a = E[R|s, a]. We use Pπ ∈
R|S||A|×|S||A| to denote the matrix of transition probabilities multiplied by a policy, indexed as
follows: Pπ

s,a,s′,a′ = P (s′|s, a)π(a′|s′). We denote the state-action value q and the policy π as
vectors in the state-action space s.t. q, π ∈ R|S||A|. The set Π ⊂ R|S||A| contains all admissible
policies that define a probability distribution over the action space for every state. For convenience,
we denote q(s, a), π(s, a) as a specific entry in the vector indexed by s, a and q(s), π(s) as the
appropriate |A| dimensional vectors for index s. In this notation, we can write expectations as
the dot product q(s) · π(s) = Ea∼π(s)[q(s, a)] = v(s). With slight abuse of notation, we use
q · π = v, v ∈ R|S| to denote the vector with entries v(s). We use maxa q ∈ R|S| to denote the
vector with entries maxa q(s) = maxa q(s, a). Finally, we use qπ to denote the vector with entries
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that are the true Q values of the policy π. The optimal policy π∗ that maximizes J(π) satisfies
V π∗

(s) = maxπ V
π(s), ∀s ∈ S and has state-action Q value q∗.

We can write the Bellman operator T π as: (T πq)s,a := Rs,a + γ(Pπq)s,a. It is a well known
property of the Bellman operator that limk→∞(T π)kq = qπ,∀q ∈ R|S||A|, i.e. repeated applications
of the operator to any starting vector q will converge to Qπ (Bertsekas, 2007). Similarly, the Bellman
optimality operator T ∗ can be written as follows: (T ∗q)s,a := Rs,a + γ

∑
s′ P (s′|s, a)maxa′ qs′,a′

and is known to converge to the value of the optimal policy, that is: limk→∞ ∥(T ∗)kq − q∗∥ =
0,∀q ∈ R|S||A|. The convergence of T π and T ∗ is usually proven in the infinity norm ∥ · ∥ := ∥ · ∥∞,
which is the norm we will use for the rest of the paper. Many DP and RL algorithms rely on policy
improvement operators (PIOs), which are traditionally defined as a mapping I : Π→ Π (Sutton &
Barto, 2018) satisfying the following:
Definition 1 (Policy Improvement Operator). An operator I : Π → Π is a policy improvement
operator if V I(π)(s) ≥ V π(s),∀s ∈ S, and ∃s ∈ S such that V I(π)(s) > V π(s), unless the policy
is already optimal, that is, V π = V ∗.

In the finite action space setting repeated application of a PIO I to some initial deterministic policy
yields a sequence that is guaranteed to converge to the optimal policy (Sutton & Barto, 2018). Policy
Iteration relies on this property for convergence, and can be described as maintaining a policy πi

and its value qπi and improving the policy at each step with πi+1 = Iargmax(πi). Here, Iargmax(πi)
denotes an operator that produces an argmax policy with respect to qπi . We define any policy π
as an argmaxa q policy if it has support only on the actions that maximize q. We note that every
optimal policy is an argmax policy on q∗. In Policy Iteration, the value qπi+1 is often computed with
qπi+1 = (T πi+1)kqπi , by choosing a sufficiently large k for the equality to hold. In practice however,
computing the exact value qπ is usually expensive and often infeasible and the majority of algorithms
rely instead on an approximation of qπ for approximate policy improvement. We therefore define an
approximate PIO (APIO) in Definition 2.
Definition 2 (Approximate Policy Improvement Operator). An approximate policy improvement
operator is a mapping I : Π × R|S||A| → Π such that V I(π,Qπ)(s) ≥ V π(s), ∀s ∈ S, and(
I(π, q)·q

)
(s) ≥

(
π ·q

)
(s), ∀π ∈ Π, ∀q ∈ R|S||A|, as well as ∃s ∈ S such that V I(π,Qπ)(s) > V π ,

unless the policy is already optimal, that is, V π = V ∗.

For the exact state-action value qπ, APIOs yield strictly improved policies, like PIOs. The Value
Iteration algorithm relies on Iargmax as an APIO to update a q vector at every step with the Bell-
man Optimality Operator qi+1 = T ∗qi = T Iarg max(·,qi)qi. The Optimistic Policy Iteration (OPI)
algorithm (Tsitsiklis, 2002) generalizes both algorithms into one framework by allowing a variable
number of updates with the Bellman Operator, i.e. πi+1 = Iargmax(·, qi) and qi+1 = (T πi+1)kqi.

2.2 Actor Critic, DDPG and TD3
In this work we consider Actor-Critic (AC) algorithms as RL algorithms that maintain a policy π
(actor) and an approximation to the value of the policy q ≈ Qπ (critic) (Konda & Tsitsiklis, 1999).
This framework can be thought of in many respects as an interaction-based variation of DP’s OPI.
The majority of modern ACs use deep neural networks (DNNs) to parameterize the actor πθ and the
critic qϕ and optimize their parameters using stochastic gradient descent or related gradient-based
optimizers. Optimization of the critic often relies on Temporal-Difference methods that approximate
the Bellman update empirically. To update and improve the policy, a commonly used PIO is the
policy gradient, described by the policy gradient theorem (Sutton et al., 1999):

∇θJ(πθ) =
∑
s∈S

dπ(s)
∑
a∈A

∂πθ(a|s)
∂θ Qπ(s, a). (1)

The term dπ denotes the discounted improper distribution defined as dπ(s0) =
∑∞

t=1 γ
t−1P (st =

s, s0, π), where P (st = s, s0, π) denotes the probability of being in state s after starting in state
s0 and following the policy π for t transitions. One major difference between ACs and OPI is
that OPI traditionally uses Iargmax, or more generally, PIOs that operate on deterministic policies
(Williams & Baird III, 1993), while ACs usually build on the policy gradient which is originally
framed exclusively for stochastic policies, a design choice many modern approaches still adhere
to. A deterministic variation of the stochastic actor πθ used in the original policy gradient theorem
was proposed by Silver et al. (2014) with the Deterministic Policy Gradient (DPG) algorithm. DPG

3



was later extended for neural networks with Deep-DPG (DDPG, Lillicrap et al., 2015) and again
to better account for function approximation errors with Twin-Delayed DDPG (TD3, Fujimoto
et al., 2018). TD3 introduces three main contributions: (i) To improves learning stability through
robustness to approximation errors in the critic, Fujimoto et al. (2018) propose to sample actions
close to the predictions of the deterministic policy πθ when training the value function. Specifically,
the actions ã ∼ N (π(s′), 1).clip(−β, β) are sampled from a normal distribution with mean π(s′)
and clipped. (ii) To reduce over-estimation bias, Fujimoto et al. (2018) propose to use Clipped
Double Q-learning, which takes the minimum over two critics for the value bootstrap. Putting
together (i) and (ii), the value target used to train both critics is computed as follows: y(s, a) =
r(s, a) + γmini qϕi

(s′, ã), i ∈ {1, 2}. (iii) Finally, TD3 delays updates to the actor such that the
two critics are closer to their convergence value (i.e. updated more often) before updating the actor.

3 Dynamic Programming with Stochastic Policy Improvement Operators

To facilitate theoretical analysis of an approach that utilizes two separate improvement operators
applied to the policy and value respectively, we begin this work by outlining an extended form of OPI
that generalizes for stochastic policies and applicable APIOs in Algorithm 1:

Algorithm 1 Generalized Optimistic Policy Iteration (GOPI).

1: For starting vectors q ∈ R|S||A|, π ∈ Π, SAPIO I, k ≥ 1 and chosen ϵ > 0
2: while ∥T ∗q − q∥ > ϵ or ∥π · q −maxa q∥ > ϵ do
3: π ← I(π, q)
4: q ← (T π)kq

return q, π

Algorithm 1 is general in that it reduces to standard OPI when I = Iargmax (or more generally,
when Π is the class of deterministic policies). While previous works have investigated convergence
properties for OPI with a large range of APIOs and deterministic policies (Williams & Baird III,
1993), similar guarantees for the setting of Algorithm 1 with stochastic policies and appropriate
(A)PIOs are not yet established to the best of our knowledge. When the policy π is stochastic,
the (A)PIO property that ∃s ∈ S such that V I(π)(s) > V π(s) is not sufficient for Algorithm 1 to
converge, because unlike deterministic policies, stochastic policies allow for infinitesimally small
improvement even when the action space is finite. For this reason (i) we formulate the convergence
of π in the while condition in line 2 in Algorithm 1 with ∥π · q −maxa q∥ ≤ ϵ and (ii) we extend the
definition of APIOs with the sufficiency condition, which is necessary to guarantee convergence of
stochastic policies to argmax policies:

Definition 3 (Sufficient Approximate Policy Improvement Operator). Let q0, q1, . . . be a sequence
of q vectors such that limm→∞ qm = q. Let π0, π1, . . . be a sequence of policies where πi+1 =
I(πi, qi). An operator I : Π×R|S||A| → Π is a sufficient APIO (SAPIO) if I satisfies the conditions
of an APIO (Definition 2) and the sequence (πi, qi) converges such that limm→∞ ∥πm · qm −
maxa q∥ = 0, for any π0.

The sufficiency condition guarantees that the convergence of SAPIOs is sufficiently stable even
in the presence of non-constant values qi, as long as the sequence qi itself converges. A simple
example of an APIO that violates the sufficiency condition is policy gradient with a learning rate
sequence αi = α/2i, which may decay too fast to converge to an optimal policy, or more generally
any APIO that converges to local optima. A simple example of an operator that satisfies all conditions
is Iargmax. We can now present our first theoretical result, convergence for SAPIO-based GOPI:

Theorem 1 (Convergence for Algorithm 1). For any finite horizon MDP M, SAPIO I, k ≥ 1,
q0 ∈ R|S||A| and π0 ∈ Π, the policy and value iterates produced by Algorithm 1 converge to the
optimal policy and value respectively. That is, for every ϵ > 0 there exists an Mϵ ∈ N+ such that
after m iterations of the algorithm, ||qm − q∗|| < ϵ and ||πm · qm −maxa q

∗|| < ϵ, for all m ≥Mϵ.

The proof uses induction and builds on immediate convergence of values of terminal states sH ,
convergence of policies at states sH−1 and finally on showing that given that q, π converge for all
states st+1, they also converge for all states st. The full proof is provided in Appendices A.1 and A.2.
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4 Value-Improved Generalized Optimistic Policy Iteration
Algorithm 1 unifies many policy and value based DP approaches into one framework by distilling
the improvement into one operation. However, it is possible to describe a different framework that
leverages both improvements separately. We frame this approach in Algorithm 2.

Algorithm 2 Value-Improved Generalized Optimistic Policy Iteration (VI-GOPI).

1: For starting vectors q ∈ R|S||A|, π ∈ Π, SAPIO I1, APIO I2, k ≥ 1 and chosen ϵ > 0
2: while ∥T ∗q − q∥ > ϵ or ∥π · q −maxq q∥ > ϵ do
3: π ← I1(π, q)
4: q ← (T I2(π,q))kq

return q, π

Algorithm 2 extends Algorithm 1 with an additional improvement step that only influences the value
update (marked in blue), in the spirit of value-based approaches. Note that line 4 in Algorithm 2
computes a second improved policy I2(π, q), uses it to update q with the Bellman operator and then
proceeds to discard it. That may seem like an odd choice: if we already endeavor to update the policy
and use it to update the value, why would we discard it? Imagine the main policy maintained by the
algorithm πθ is parametric, as it often is in modern RL. In this case we are limited to improvement
operators I1 that return parametric policies. However, I2 may not have the same limitation, as the
policy produced by I2(π, q) can be a non-parametric policy (sampling-based, for example). If we
choose an operator I2 that produces policies that are not representable by πθ, we essentially have
to discard I2(π, q) after every update. We verify that this new scheme converges in our second
theoretical result, the convergence for Algorithm 2:

Theorem 2 (Convergence of Value-Improved Optimistic Policy Iteration). For any finite horizon
MDP M, SAPIO I1, APIO I2, k ≥ 1, q0 ∈ R|S||A|, π0 ∈ Π and ϵ > 0, the policy and value
maintained by Algorithm 2 converge to the optimal policy and value respectively. That is, there exists
an Mϵ ∈ N+ such that after m iterations, ||qm− q∗|| < ϵ and ||πm · qm−maxa q

∗|| < ϵ, ∀m ≥Mϵ.

The proof follows the same structure as the proof for Algorithm 1 and is provided in Appendix A.3.

5 Value-Improved Actor Critic Algorithms
As a base for a practical Value-Improved AC (VI-AC) algorithm in the spirit of VI-GOPI we choose
the popular off-policy AC algorithms DDPG and TD3, which learn implicitly deterministic policies
but act and in TD3 also propagate the value of stochastic ones, making them a good fit for a framework
where the critic and actor policy-classes differ. A simple APIO I2 that can be used in the value
update is the sampling-based argmax, where we sample n actions An = {a1, . . . , an} from π(s) (if
π is not a stochastic policy, one can sample zero-mean noise and add it to the prediction π(s)). Then
I2(π(s), q(s)) = argmaxai∈An

q(s, ai). This operator is very likely to be sensitive to errors in the
q function however, as argued by Fujimoto et al. (2018). A more robust option is the Mean-Top-k
operator Imtk. Imtk samples n actions An = {a1, . . . , an} from π(s) and sorts the actions according
to the q values q(s, ai). Rather than returning the argmax, Imtk returns a uniform policy across
the top k sorted actions. The Imtk operator does not directly incentivize the policy to optimize for
actions where the critic is smooth however, which is the motivation for the introduction of Gaussian
noise to TD3. Specifically, the smaller k, the more sensitive the operator is to errors in the q function,
while larger k/n reduce the significance of the improvement. As a better fit for TD3 we construct
IN , a clipped Gaussian variation of the sample-max operator in Algorithm 3.
Similarly, IN samples n actions An = {a1, . . . , an} from π(s). We interpret each action ai ∈ An

as a proposal mean for an improved clipped-Gaussian policy πi = N (ai, 1).clip(−β, β). Additional
m actions Ai,m = {a1, . . . , am} are sampled from each proposed policy and the mean q value of
these actions is computed: vi(s) = 1

m

∑
aj∈Ai,m

q(s, aj) as to approximate the value of the clipped
Gaussian policy πi. Finally, IN chooses ai = aargmaxi vi(s)

(s) as the mean of the improved policy.
That is, the improved policy IN (π, q)(s) = πi(s). It is easy to see that in expectation both Imtk and
IN satisfy the requirements of APIO: in expectation over the sampling process, the argmax operator
will return the policy πi whose value vi is the largest, and given access to true value Qπ, true value
V πi is the largest.
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Algorithm 3 Clipped Gaussian Policy Improvement IN
Input: actor π, a critic q, a state s and hyper parameter β

1: {α1, . . . , αn} ∼ N (0, 1) ▷ Sample n samples
2: Πn(s)← {N (πθ(s) + α1, 1), . . . ,N (πθ(s) + αn, 1)} ▷ Instantiate n policies
3: Vn = {} ▷ Instantiate an empty set of policy-values.
4: for each policy π′

i ∈ Πn do ▷ Will be done in parallel in practice
5: Am ← {a1, . . . , am} ∼ π′

i(s).clip(−β, β). ▷ Sample m samples from each policy
6: vi(s)← 1

m

∑
a∈Am

q(s, a) ▷ Approximate the sampling-based value of the policy.
7: Add vi(s) to the set Vn

8: π′(s)← π′
argmaxi vi(s)∈Vn

▷ Identify the best policy π′(s)

9: return π′(s).

As discussed in Section 2.2, Fujimoto et al. (2018) identify over-estimation bias as a significant
detrimental effect in DDPG, and this effect can be expected to increase in VI-DDPG by further
maximizing the value targets. To mitigate this effect, one can use Fujimoto et al.’s Clipped Double
Q-learning approach of replacing the value-bootstrap prediction in the value target with the minimum
over two critics (referred to as double-critics from here on). We employ this for Imtk and IN by
replacing every prediction of qϕ(s, a) in the value update step with minϕi

qϕi
(s, a), i = {1, 2}. We

investigate the interaction between over-estimation that may be introduced with VI and the clipped
Q-learning over-estimation-reduction mechanism in Section 6. We summarize VI-DDPG and VI-TD3
in Algorithms 4 and 5 respectively. Differences to baseline DDPG/TD3 are marked in blue. To
maintain as many of the original design choices and existing differences between DDPG and TD3 to
better evaluate the effect of VI, in VI-TD3 actions are resampled from the improved policy (line 10 in
Algorithm 5) while in VI-DDPG they are not. For additional details see Appendix C.1.

Algorithm 4 Value-Improved DDPG (VI-DDPG)
1: Initialize policy network πθ, Q networks qϕ1 , qϕ2 , APIO I and replay buffer B
2: for each episode do
3: for each environment interaction t do
4: Take action at ∼ N (πθ(st), σ

2) ▷ Using the exploration-noise hyperparameter σ2

5: Observe st+1, rt
6: Add the transition (st, at, rt, st+1) to the buffer B
7: Sample a batch b of transitions of the form (st, at, rt, st+1) from B
8: Update πθ using the deterministic policy-gradient ∀st ∈ b
9: Approximate a deterministic improved policy π′(st+1) = I(πθ,minj qϕj

)(st+1)
10: Compute the value targets y(st, at)← rt + γq(st+1, π

′(st+1)),∀(st, at, rt, st+1) ∈ b
11: Update qϕ1 , qϕ2 with gradient descent and MSE loss using targets y

return πθ.

Algorithm 5 Value-Improved TD3 (VI-TD3)
1: Initialize policy network πθ, Q networks qϕ1

, qϕ2
, APIO I and replay buffer B

2: for each episode do
3: for each environment interaction t do
4: Take action at ∼ N (πθ(st), σ

2) ▷ Using the exploration-noise hyperparameter σ2

5: Observe st+1, rt
6: Add the transition (st, at, rt, st+1) to the buffer B
7: Sample a batch b of transitions of the form (st, at, rt, st+1) from B
8: Update πθ every n value updates using the deterministic policy-gradient ∀st ∈ b
9: Approximate an improved policy π′(st+1) = I(πθ,minj qϕj

)(st+1),∀st+1 ∈ b
10: Sample an action from the improved policy a ∼ π′(st+1),∀st+1 ∈ b
11: Compute the value targets y(st, at)← rt + γminj qϕj

(st+1, a),∀(st, at, rt, st+1) ∈ b
12: Update qϕ1

, qϕ2
with gradient descent and MSE loss using targets y

return πθ
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6 Experiments
We evaluate VI-TD3 and VI-DDPG on the Mujoco benchmark in Figure 1. We include popular
baselines in the form of PPO (Schulman et al., 2017b) and MPO (Abdolmaleki et al., 2018) for
reference. Performance is presented using mean and 2 standard errors over 20 seeds of evaluation
episodes taken throughout training. Our implementation builds on the popular code base CleanRL
(Huang et al., 2022). See Appendix C for full experimental details. The VI-TD3 agent uses IN
with n = m = 16. Two variations of VI-DDPG are included, both use double-critics as in TD3.
One variation uses IN with n = m = 16 and the other uses Imtk with n = 128, k = 4. Reference
algorithms are dashed. Agents that appear in multiple figures retain their legend colour from the first
figure they appear in. In all environments, VI-TD3 and VI-DDPG with Imtk match or outperform
their respective baselines TD3 or DDPG. VI-DDPG with IN significantly outperforms DDPG in all
environments except Swimmer and HalfCheetah, where the double-critics mechanism has a strong
detrimental effect (see Figure 2 below and Figure 5 in Appendix B).
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Figure 1: Mean and 2 standard errors in the shaded area across 20 seeds in evaluation for VI-TD3
with IN , VI-DDPG with IN and double-critics (2c), VI-DDPG with Imtk and 2c, TD3, DDPG, PPO
and MPO.

In Figure 2 we investigate the interaction between applying an APIO in the value-update and over-
estimation bias, through the lens of VI-DDPG. We compare DDPG with and without double-critics
to VI-DDPG with IN , n = m = 16, with and without double-critics. Where double-critics are
beneficial – Ant and Humanoid – VI-DDPG with double-critics outperforms or matches all other
agents in Figure 2, while without it is the least performing agent. Where double-critics are detrimental
– HalfCheetah – VI-DDPG with double-critics demonstrates significant improvement over double-
critics DDPG, about matching the performance of (VI-)DDPG without double-critics. We include
ablations in additional environments in Appendix B where the same conclusion holds.

In Figure 3 we investigate the behaviour of VI-DDPG/TD3 across different values of the hyperpa-
rameters n,m and n, k introduced with IN and Imtk respectively. In the top row we investigate the
trade-off between greediness and robustness induced in Imtk by different values of k for a constant
n = 128 with VI-DDPG, including DDPG baselines with and without double-critics respectively. In
the bottom row we use VI-TD3 to investigate the gain from increasing values of the hyperparameters
n,m which improve the robustness of the operator IN . The general trend for n = m is as one
might expect, larger values of n and m improve or match on smaller. For Imtk there is an apparent
trade off between k ≫ 1 which demonstrates improved stability and k ≪ n which has a stronger
maximization effect. In Swimmer and HalfCheetah where the effect of double-critics is detrimental,
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Figure 2: Mean and one standard error in the shaded area across 10 seeds in evaluation for VI-DDPG
with IN , n = m = 16 and DDPG, both with and without double-critics (2c).
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Figure 3: Mean and one standard error in the shaded area across 10 seeds in evaluation. Top row:
VI-DDPG with Imtk, n = 128 double-critics and different values of k, as well as DDPG with and
without double-critics (2c). Bottom row: VI-TD3 with different values of n = m as well as baseline
TD3.

values of k < n regain some / all of the performance lost by double-critics and k = n regains
the least or not at all. On Ant however small values of k are among the worst performers while
k = n is among the three best performers, demonstrating a different trade off between stability and
maximization. Overall, IN achieves better performance in some environments, presumably due to
being more robust, while Imtk achieves better performance in other environments, presumably due
to a greedier policy improvement.

6.1 Limitations

Apart from the additional algorithmic complexity and hyperparameters introduced to the training
process of the AC framework, the introduction of an additional policy improvement operator used in
the value update step can have both beneficial and detrimental effects, which are likely to depend on
the specific algorithm and operator combination. We list limitations and / or concerns we believe
might be relevant, to contrast with the benefits demonstrated in Figure 1: (i) Computing an improved
policy in the value update step will incur additional compute cost that depends on the APIO I2 used.
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(ii) Disconnecting the critic from the policy may result in additional sources of instability as a result
of the value-update being more off-policy. (iii) As mentioned in Section 5 and demonstrated in
Figure 2, updating the critic with respect to an improved policy is likely to result in an increase to
over-estimation effects.

Specifically for IN , the compute cost introduced in number of sequential operations is one additional
forward pass for the actor and one for the critic networks, n (parallel) averaging operations across m
and a maximization operation across n. The number of parallel operations scales with the product
nm|b| where |b| is the batch size. Imtk’s number of parallel operations scales with n|b|. In terms
of sequential operations, Imtk is bounded by the cost of one sorting operation across n as well
as averaging across k. In Figure 2 the comparison between VI-DDPG with and without double-
critics demonstrates the reliance of VI-DDPG on over-estimation-mitigating mechanisms. These
mechanisms by themselves can be detrimental in some environments (as demonstrated by agents
employing double-critics in HalfCheetah and Swimmer). On the other hand, both IN and Imtk

demonstrate capacity to regain performance that was lost due to the double-critics mechanism.

7 Related Work

Dynamic Programming & Convergence Williams & Baird III (1993) investigate convergence
among many other theoretical properties of OPI algorithms with deterministic policies and applicable
PIOs. Littman & Szepesvári (1996) describe a general DP framework that extends Value Iteration
to a large set of PIOs that induce convergence through contraction. Perkins & Precup (2002) inves-
tigate convergence of Policy Iteration with linear approximation with a variety of PIOs. Tsitsiklis
(2002) prove a variety of convergence properties for OPI algorithms that rely on Iargmax specifically.
Bertsekas (2011) prove many theoretical properties of approximate OPI for deterministic policies and
Iargmax. Smirnova & Dohmatob (2019) investigate convergence of variations of approximate OPI
with PIOs that operate directly on the estimated values, i.e. I : R|S||A| → Π. Previous works prove a
range of convergence results for AC algorithms, although works in this area generally focus specifi-
cally on the policy-gradient improvement operator and function-approximation related challenges
(see Xu et al., 2020; Holzleitner et al., 2021; Qiu et al., 2021).

Connecting Value and Policy Based Methods Ghosh et al. (2020) connect policy based and value
based RL methods by casting them in operator form and showing that policy-based Reinforce
(Williams, 1992) and value-based Q-learning (Sutton & Barto, 2018) can be seen as two sides of the
same coin. O’Donoghue et al. (2016); Nachum et al. (2017); Schulman et al. (2017a) connect soft
policy and value based methods by showing equivalence between Q-learning and policy gradient
methods in the setting of entropy-regularized RL, which optimizes for a different objective than
standard RL.

Connections to Existing Algorithms As touched on in Section 5, TD3 learns a deterministic policy
but approximates the value of a stochastic policy. This can be thought of as similar to Algorithm 2
where instead of I2 being an APIO it acts as a projection operator. GreedyAC (Neumann et al., 2023)
maintains two actors and one critic. Both actors are improved with respect to the same critic, although
the critic only approximates the value of one of the two actors. In a similar vein, in Algorithm 2 the
actor is improved with respect to a critic that does not approximate its value. A variation of Reanalyze
(RZ, Schrittwieser et al., 2021) is perhaps the most similar to the essence of Algorithm 2. In RZ,
the value-bootstrap in the TD-based value-targets can be computed in one of two ways: (i) using the
value function v ≈ V π, or (ii) with a prediction from MCTS which (in principle) approximates V ∗

directly. While Ye et al. (2021) found the second variation to not be worth the compute cost, we note
that RZ uses n-step value targets which reduce the contribution of the bootstrapped value by γn, and
planning with MCTS is very computationally intensive unlike the operators proposed in this work.
Generating value targets with (ii) is an example of an approach used in model based RL where value
targets are generated from planning (see Moerland et al., 2023). From the perspective that views
argmaxa q as 1-step-look-ahead planning, VI-AC can be thought of as a model-free agent using
two separate 1-step-look-ahead planners I1 and I2 to generate value targets and policy improvement
respectively.
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8 Conclusions
We extend the AC framework with an additional policy improvement operator applied in the value-
update step, which we call Value-Improved (VI-)AC. To facilitate theoretical analysis of this approach
we describe two Dynamic Programming algorithms: the first extends Optimistic Policy Iteration to
general policy improvement operators and stochastic policies (GOPI), and the second extends GOPI
by incorporating an additional improvement operator in the value update step, in the spirit of VI-AC.
We verify that both approaches converge in the finite horizon setting in the presence of sufficient
policy improvement operators. The convergence of GOPI strengthens the theoretical motivation
behind the choice to base novel RL algorithms on novel policy improvement operators, and provides
a set of sufficient conditions for these operators to induce convergence in finite horizon with DP,
as a first step in identifying necessary and sufficient conditions under more general settings. We
design two practical VI-AC algorithms building upon the popular online off-policy ACs TD3 and
DDPG. We evaluate VI-TD3/DDPG in the Mujoco benchmark where they outperform or match the
performance of TD3 and DDPG respectively in all environments tested. We believe that this work
provides motivation for future AC algorithms to be designed with multiple improvement steps in
mind. In addition, our work provides a new venue to benefit from novel sampling-based improvement
operators.
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A Proofs
A.1 Proof for Theorem 1 for k = 1

In this section we will prove Theorem 1 for k = 1 for readability, and in the following Section,
Appendix A.2 we extend the proof for k ≥ 1.

Proof. Theorem 1 We will prove by backwards induction from the terminal states that the sequence
limm→∞(πm, qm) induced by Algorithm 1 converges for any q0, π0, SAPIO I and k ≥ 1. That is,
for every ϵ > 0 there exists a Mϵ such that ∥qm − q∗∥ ≤ ϵ and ∥πm · qm −maxa q

∗∥ < ϵ for all
m ≥Mϵ, q0 ∈ R|S||A| and π0 ∈ Π.

We let st denote a state (·, t) ∈ S , that is, a state in the environment arrived at after t transitions. The
states sH are terminal states, and the indexing begins from s0. We let qm, πm denote the vectors at
iteration m of Algorithm 1. We let qmt , πm

t denote the sub-vectors of all entries in qm, πm associated
with states st. In this notation q1H−1 is the q vector for all terminal transitions (sH−1, ·) after the one
iteration of the algorithm.

Induction Hypothesis: For every ϵ > 0 there exist M ϵ
t+1 such that for all m ≥ M ϵ

t+1 we have
∥qmt+1 − q∗t+1∥ ≤ ϵ, and ∥πm

t+1 · qmt+1 −maxa q
∗
t+1∥ ≤ ϵ.

Base Case t = H − 1: Let ϵ > 0. Since states sH are terminal, and have therefore value 0, we have
qmH−1 = RH−1 = q∗H−1 and therefore ∥qmH−1 − q∗H−1∥ ≤ ϵ trivially holds for all m ≥ 1.

By the Sufficiency condition of the SAPIO which induces convergence of πm to an argmax policy
with respect to q there exists M ϵ

H−1 such that:

∥πm
H−1 · qmH−1 −max

a
q∗H−1∥ = ∥πm

H−1 · q∗H−1 −max
a

q∗H−1∥ ≤ ϵ

for all m ≥M ϵ
H−1. Thus the Induction Hypothesis holds at the base case.

Case t < H − 1: We will show that if the Induction Hypothesis holds for all states t+1, it also holds
for states t.

Step 1: Let ϵ > 0. Assume the Induction Hypothesis holds for states t+ 1. Then there exists M ϵ
t+1

such that ∥qmt+1 − q∗t+1∥ ≤ ϵ and ∥πm
t+1 · qmt+1 −maxa q

∗
t+1∥ ≤ ϵ for all m ≥M ϵ

t+1.

Let us define the transition matrix P ∈ R|S||A|×|S| with Ps,a,s′ = P (s′|s, a).
First, for all m ≥M ϵ

t+1 we have:

∥qm+1
t − q∗t ∥ = ∥R+ γP(πm+1

t+1 · qmt+1)−R− γPmax
a

q∗t+1∥ (2)

= γ∥P(πm+1
t+1 · qmt+1)− Pmax

a
q∗t+1∥ (3)

≤ ∥P∥∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (4)

≤ ∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (5)

≤ ϵ (6)
(2) is by substitution based on step 4 in Algorithm 1 for k = 1. (4) is by the definition of the
operator norm ∥P∥. (5) is by the fact that the operator norm in sup-norm of all transition matrices is
1 (Bertsekas, 2007). (6) is slightly more involved, and follows from the Induction Hypothesis and the
approximate improvement of the SAPIO.

Let us show that (6), i.e. ∥πm+1
t+1 · qmt+1 − maxa q

∗
t+1∥ ≤ ϵ holds. Under the infinity norm holds

point-wise for each state s ∈ S:
−ϵ ≤ [πm

t+1 · qmt+1](s)−max
a

q∗t+1(s, a) (7)

≤ [πm+1
t+1 · qm

t+1](s)−max
a

q∗
t+1(s, a) (8)

≤ max
a′

qmt+1(s, a
′)−max

a
q∗t+1(s, a) (9)

≤ max
a′

(
qmt+1(s, a

′)− q∗t+1(s, a
′)
)

(10)

≤ ϵ . (11)
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(7) is the induction hypothesis ∥πm
t+1 · qmt+1 −maxa q

∗
t+1∥ ≤ ϵ, which holds under the infinity norm

point wise, (8) uses the SAPIO property [πm
t+1 · qmt+1](s) ≤ [πm+1

t+1 · qmt+1](s), (9) the inequality
[πm+1

t+1 · qmt+1](s) ≤ maxa′ qmt+1(s, a
′), (10) the inequality −maxa q

∗
t+1(s, a) ≤ −q∗t+1(s, a

′),∀a′ ∈
A, and (11) the induction hypothesis ∥q∗t+1 − qmt+1∥ ≤ ϵ.

Step 2: Pick M ϵ
t ≥M ϵ

t+1 such that for all m ≥M ϵ
t we have ∥πm

t · qmt −maxa q
∗
t ∥ ≤ ϵ which must

exist by SAPIO’s sufficiency condition, Step 1 and the Induction Hypothesis. Thus, the Induction
Hypothesis holds for all states t if it holds for states t+ 1.

Finally, let ϵ > 0. By backwards induction, for each t = 0, . . . ,H − 1 there exists M t
ϵ such that

for all m ≥ M t
ϵ we have ∥qmt − q∗t ∥ ≤ ϵ, and ∥πm

t · qmt −maxa q
∗
t ∥ ≤ ϵ. Therefore, we can pick

Nϵ = maxt=0,...,H−1 M
t
ϵ such that ∥qmt − q∗t ∥ ≤ ϵ, and ∥πm

t · qmt −maxa q
∗
t ∥ ≤ ϵ for all m ≥ Nϵ

and t = 0, . . . ,H − 1, proving that Algorithm 1 converges to an optimal policy and optimal q-values
for any π0 ∈ Π, q0 ∈ R|S||A|, k = 1 and SAPIO I.

We proceed to extend the proof for k ≥ 1 below.

A.2 Extension of the Proof for Theorem 1 to k ≥ 1

In this section we will extend the proof of Theorem 1 from Appendix A.1 to k ≥ 1. Much of the proof
need not be modified. In order to extend the proof to k ≥ 1, we only need to show the following:
For all k ≥ 1 and every ϵ > 0 such that the Induction Hypothesis holds, there exists an M t

ϵ such that
∥qm+1

t − q∗t ∥ ≤ ϵ.

We will first extend the notation: let qm,i
t denote the vector q at states t after m algorithm iterations and

i ≥ 1 Bellman updates, such that qm,i
t = (T πm+1

qm,i−1)t, q
m,0
t = qmt and finally qm+1

t = qm,k
t .

Second, we will extend the Induction Hypothesis:

Extended Induction Hypothesis: For every ϵ > 0 there exist M ϵ
t+1 such that for all m ≥M ϵ

t+1 and
i ≥ 0 we have ∥qm,i

t+1 − q∗t+1∥ ≤ ϵ, and ∥πm
t+1 · q

m,i
t+1 −maxa q

∗
t+1∥ ≤ ϵ.

The Base Case does not change, so we will proceed to Step 1 in the Inductive Step. We need to show
that there exists an M ϵ

t such that ∥qm,i
t − q∗t ∥ ≤ ϵ for all i ≥ 0 and m ≥M ϵ

t .

Let ϵ > 0 and m ≥M ϵ
t ≥M ϵ

t+1.

First, for any i ≥ 1:

∥qm,i
t − q∗t ∥ = ∥R+ γP(πm+1

t+1 · q
m,i−1
t+1 )− q∗t ∥

≤ ∥P∥∥πm+1
t+1 · q

m,i−1
t+1 −max

a
q∗t+1∥

≤ ϵ

The first equality is the application of the Bellman Operator in line 4 in Algorithm 1 the ith time. The
rest follows from Proof A.1 and the extended Induction Hypothesis.

Second, we need to show that this holds for i = 0 as well:

∥qm,0
t − q∗t ∥ = ∥q

m−1,k
t − q∗t ∥ ≤ ∥πm

t+1 · q
m−1,k−1
t+1 −max

a
q∗t+1∥ ≤ ϵ

The first equality is by definition, and the the first and second inequalities are by the same argumenta-
tion as above.

The rest of the proof need not be modified.

A.3 Proof for Theorem 2

Proof. Theorem 2

Similarly to the proof of Theorem 1 from Appendix A.1 (and A.2) we will prove by backwards
induction from the terminal states sH that the sequence limm→∞(πm, qm) induced by Algorithm 2
converges for any q0, π0, SAPIO I1, APIO I2 and k ≥ 1. That is, for every ϵ > 0 there exists a Mϵ

such that ∥qm − q∗∥ ≤ ϵ and ∥πm · qm −maxa q
∗∥ < ϵ for all m ≥Mϵ, q0 ∈ R|S||A| and π0 ∈ Π.
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The proof follows directly from the proof in Appendix A.1. The base case is not modified - the qs
converge immediately and the policy convergence is not influenced by the introduction of I2. The
Induction Hypothesis need not be modified. In the inductive step, Step 1 follows directly from the
Induction Hypothesis, and Step 2 need not be modified for the same reason the base case need not be
modified.
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B Additional Results
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Figure 4: Mean and one standard deviation across 20 seeds in evaluation for VI-TD3 with IN ,
VI-DDPG with IN and double-critics (2c), VI-DDPG with Imtk and 2c, TD3, DDPG, PPO and
MPO. The same agents (and seeds) as in Figure 1, which presented 2 x standard error.
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Figure 5: Mean and one standard error across 10 seeds in evaluation for VI-DDPG with
IN , n = m = 16 and baseline DDPG, both with double critics as well as without (2c) on ad-
ditional environments.
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C Experimental Details
C.1 Implementation Details

We have designed Imtk and IN explicitly for DDPG and TD3, and our design choices are influenced
by the design choices taken in those algorithms. For example, In line 1 in Algorithm 3 (IN ) we’ve
tried both sampling from a clipped Gaussian policy as TD3 would, as well as from a squashed
Gaussian in the manner used by SAC Haarnoja et al. (2018) with the same mean 0 and variance 1. In
preliminary experiments the results were comparable, and in the final results we’ve used sampling
from the squashed Gaussian. For VI-DDPG and Imtk the distribution sampled from to generate
n actions is the one proposed by TD3 (albeit for a different purpose): N (0, 1).clip(β, β). We’ve
used the same value of β for (VI-)TD3 and VI-DDPG with Imtk. We note that in principle that
is a free hyperparameter that can be tuned separately, as the variance of the Gaussian. In addition,
for VI-DDPG with Imtk in order to preserve the deterministic value targets that are not based in
sampling from a policy, the mean of the q predictions (computed with minϕi

qϕi
(s, a), i = {1, 2} for

each action) of the top k actions is used directly as the bootstrap in the value target.

C.2 Evaluation Method

We plot the mean and standard error for evaluation curves across multiple seeds. Evaluation curves
are computed as follows: after every n = 5000 interactions with the environment, m = 3 evaluation
episodes are ran with the latest network of the agent (actor and critic). The score of the agent is
the return averaged across the m episodes. The actions in evaluation are chosen deterministically
for TD3, DDPG and MPO with the mean of the policy (the agents use Gaussian policies). The
evaluation episodes are not included in the agent’s replay buffer or used for training, nor do they
count towards the number of interactions. We observed similar or higher returns for all agents in
evaluation compared to standard learning curves, with the exception of PPO. Since PPO learns an
explicitly stochastic policy and performed much better in training than in deterministic evaluation,
and since PPOs action selection in training does not contain any explicit exploration, we present the
learning curves (which are equivalent to evaluation curves with sampled actions in this case), for
PPO.

C.3 Hyperparameters Tuning

We rely on the popular code base CleanRL (Huang et al., 2022). CleanRL consists of implementations
of many popular RL algorithms which are carefully tuned to match or improve upon the performance
reported in either the original paper, or popularly used variations of the same algorithm. All
baselines used in this paper included Mujoco in their tuning. For these reasons, we have not tuned
any of the hyperparameters of any of the baselines ourselves. For VI-TD3/DDPG we used the
same hyperparameters used by TD3 and DDPG respectively. The exception to this are the new
hyperparameters n,m and n, k introduced by IN and Imtk respectively. For n,m we chose the
largest values of n,m that did not excessively increase wall clock time as a result of parallelization
bottlenecking in the hardware we have access to. These were n = m = 16. In Imtk we chose a
rather small k = 4 to favor the effect of the maximization operation over other effects in the results,
and an n that enabled us to present ablations with a range of values of k. Figure 2 demonstrates that
for different environments different tradeoffs with different values of k are likely to be beneficial.

C.4 Network Architectures

The experiments presented in this paper rely on standard, pretuned architectures for every baseline.
As all agents were tuned over a set of environments that included Mujoco, we did not modify that
architectures for which the agents were tuned. TD3 and DDPG used the same architecture. MPO had
access to a larger network, while PPO to smaller. Architecture details are provided below.

DDPG and TD3:

Critic: 3 layer MLP of width 256 per layer, with ReLU activations on the hidden layers and tanh
activation on the output layer.

Actor: 3 layer MLP of width 256 per layer, with ReLU activations on the hidden layers and no
activation on the output layer.
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PPO:

Critic: 3 layer MLP of width 64 per layer, with tanh activations on the hidden layers and no activation
on the output layer.

Actor: Mean prediction: 3 layer MLP of width 64 per layer, with ReLU activations on the hidden
layers and no activation on the output layer. Standard deviation prediction: 1 layer MLP of size action
space with exponential activation. In addition, PPO used normalized rewards for training, normalized
such that their exponential moving average has a fixed variance. As this is the best setting reported
for PPO we did not modify it.

MPO:

Critic: 4 layer MLP of width 256 per layer, with Layer Normalization (Ba et al., 2016) followed by
tanh activation on the first hidden layer, Exponential Linear Unit (ELU) activations on the following
layers, and no activation on the output layer.

Actor: 3 hidden layers MLP of width 256 per layer followed by a width 256 layer each for mean and
standard deviation. A Layer Normalization followed by tanh activation applied on the first hidden
layer, followed by ELU activations, no activation on the mean layer and a softplus activation on the
standard deviation layer.

C.5 Hyperparemeters

TD3 DDPG MPO PPO

exploration noise 0.1 exploration noise 0.1 ϵ 0.1
τ 0.005 τ 0.005 ϵµ 0.01 clip coef 0.2

noise clip 0.5 ϵΣ 10−6 vf coef 0.5
grad norm clip 40 max grad norm 0.5

Learning rate 0.0003 Learning rate 0.0003 Learning rate 0.0003 Learning rate 0.0003
γ 0.99 γ 0.99 γ 0.99 γ 0.99

Buffer size 106 Buffer size 106 Buffer size 106

Batch size 256 Batch size 256 Batch size 256
learning start 104 learning start 104 learning start 104

evaluation frequency 5000 evaluation frequency 5000 evaluation frequency 5000

C.6 Computation

The experiments were run on the internal Delft AI Cluster (DAIC) computation cluster, using any
of the following GPU architectures: NVIDIA Quadro K2200, Tesla P100, GeForce GTX 1080 Ti,
GeForce RTX 2080 Ti, Tesla V100S and Nvidia A-40. Each seed was ran on one GPU, and was given
access to 6GB of RAM and 2 CPU cores. Total training wall-clock time averages were in the range
of 0.5 to 3 hours per 106 environment steps, depending on GPU architecture, the baseline algorithm
and the hyperparameters n,m, k for VI variations. On A-40 GPUs for example VI-TD3 with IN
and n = m = 8 wall-clock time averages were roughly 1.5 hours per 106 environment steps, while
n = m = 16 roughly 2 hours. Baseline TD3 wall-clock time averages were roughly 1.25 hours per
106 environment steps. On the same hardware VI-DDPG with Imtk and n = 128, k = 4 wall-clock
time averages were roughly 1.25 hours per 106 environment steps. Baseline DDPG wall-clock time
averages were roughly 0.8 hours per 106 environment steps without double critics, and roughly 1.1
with double critics. The total wall clock time over all experiments presented in this paper (main
results, baselines and ablations) is estimated at around an average of 9560 wall-clock hours of the
compute resources detailed above: 6440 for the main results, 1440 for the over-estimation ablations
and 1680 for the hyperparameter ablations. This estimate is under the rough assumption of an average
of 2 wall clock hours per 106 environment steps for every seed of every agent. Additional experiments
that are not included in the paper were run in the process of implementation and testing.
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