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Abstract. Serial section transmission electron microscopy (ssTEM) plays
an important role in biological research. Due to the imperfect sample
preparation, however, ssTEM images suffer from inevitable artifacts that
pose huge challenges for the subsequent analysis and visualization. In this
paper, we propose a novel strategy for modeling the main type of degra-
dation, i.e., Support Film Folds (SFF), by characterizing this degrada-
tion process as a combination of content deformation and corruption.
Relying on that, we then synthesize a sufficient amount of paired sam-
ples (degraded/groundtruth), which enables the training of a tailored
deep restoration network. To the best of our knowledge, this is the first
learning-based framework for ssTEM image restoration. Experiments on
both synthetic and real test data demonstrate the superior performance
of our proposed method over existing solutions, in terms of both image
restoration quality and neuron segmentation accuracy.

Keywords: Degradation modeling · image restoration · deep learning.

1 Introduction

The development of electron microscopy (EM) at synapse resolution has greatly
promoted the study of neuron morphology and connectomics, which is essen-
tial for understanding the working principle of intelligence. Among different
EM imaging techniques [2,7,11,16,30,33], serial section transmission electron mi-
croscopy (ssTEM) has a clear advantage in the imaging speed and resolution
[9,11,33]. It is thus widely adopted in analyzing the connectivity in volumetric
samples of brain tissue by imaging many thin sections in sequence. Recently,
relying on the ssTEM technique, researchers have imaged the first complete EM
volume of the brain of adult Drosophila melanogaster [33], which is regarded as
a milestone in brain science.

Due to the imperfect sample preparation, however, ssTEM images suffer from
inevitable artifacts. Among these artifacts, one type of degradation is most com-
mon and has a significant influence on the image quality, i.e., Support Film Folds
(SFF, accounting for 3.2% of samples) [9]. SFF is caused by imperfect cutting
in a complicated way. Fig. 1(a) visualizes this process with an intuitive exam-
ple, where a 2D cartoon image is folded along a certain line and content around
this line disappears in the deformed image. Fig. 1(b) shows three consecutive
images with the middle one suffering from SFF degradation. As can be seen, the
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(a) (b)

Fig. 1. (a) A cartoon image as an intuitive example to demonstrate SFF degradation.
(b) Three consecutive ssTEM images where the middle one is with SFF artifacts.

folding effect not only results in content corruption (in a form of dark line), but
also introduces severe deformation of surrounding regions which thus have large
misalignments with the adjacent images.

The quality of ssTEM images is greatly reduced with the aforementioned SFF
degradation, which severely hinders the subsequent tasks, such as alignment [26]
and segmentation [10,17]. For example, in the neuron segmentation task, one im-
age with artifacts could interrupt many neuron structures, resulting in erroneous
reconstruction (see Fig. 7 for exemplar cases). Li et al. [17] also indicated that
neuron segments are interrupted at multiple sections due to SFF degradation.
However, it is challenging to restore ssTEM images from SFF degradation. Com-
pared with degradations that generally occur on 2D natural images, SFF exhibits
drastically different characteristics, making classic restoration methods difficult
to apply. On the other hand, since there is no corresponding groundtruth for
the degraded ssTEM image, it is also difficult to directly leverage on the power
of deep learning based restoration. To the best of our knowledge, ssTEM image
restoration from SFF degradation still remains an open problem.

To fill this gap, we propose to model SFF degradation as a combination of
content deformation and corruption. Backed up by a statistic analysis from abun-
dant real samples, we design an algorithm to synthesize degraded images from
artifacts-free ones, where the latter are adopted as the corresponding groundtruth.
Leveraging on the above obtained image pairs for training, we then propose a
tailored deep learning framework, which consists of three modules, i.e., interpo-
lation, unfolding, and fusion. Specifically, the interpolation module utilizes the
adjacent images to obtain an interpolated image, which is then used as a refer-
ence for the unfolding and fusion modules to address content deformation and
corruption, respectively.

As demonstrated by comprehensive experimental results, our method sig-
nificantly outperforms existing solutions for SFF restoration in ssTEM images,
both quantitatively and qualitatively. With the generalizability of the degra-
dation modeling and the scalability of the restoration network, the proposed
method could play an essential role in bridging the gap between ssTEM images
acquisition and subsequent analysis tasks, which thus facilitates the research of
neuron morphology and connectomics.

The main contributions of this work are summarized as follows:
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– We propose the first learning-based framework for ssTEM image restoration
from SFF artifacts.

– We conduct a comprehensive analysis on the statistics of SFF. Based on
the degradation modeling derived from the analysis, we propose a synthesis
algorithm to generate degraded/groundtruth image pairs for training the
deep restoration network.

– Experiments on both synthetic and real test data demonstrate the advantage
of our proposed method, in terms of both image restoration quality and
neuron segmentation accuracy.

2 Related Work

EM image restoration. Mainstream EM imaging techniques can be divided
into two groups: transmission EM (TEM) [8,11,29,33] (with ssTEM as a repre-
sentative) and scanning EM (SEM) [4,7,16,30]. These two types of techniques
have different imaging advantages, and the acquired EM images suffer from dif-
ferent artifacts due to the flaws of respective imaging principles. Previously,
EM image restoration is largely investigated within the scope of denoising [27],
where the target degradation is relatively simple. Recently, a few works are re-
ported to restore other types of artifacts in EM images. Khalilian-Gourtani et
al. [14] proposed a method to detect and correct the striping artifacts in SEM
images by solving a variational formulation of the image reconstruction prob-
lem. Maraghechi et al. [19] corrected three dominant types of SEM artifacts, i.e.,
spatial distortion, drift distortion, and scan line shifts under an integrated dig-
ital image correlation framework. Meanwhile, Minh-Quan et al. [20] presented
an asymmetrically cyclic adversarial network to remove the blob-like artifacts
alongside Gaussian noise-like corruption in SEM images and background noise
in TEM images. However, the dominant type of degradation in ssTEM images
are seldom investigated, since SFF is much more complicated and challenging
compared with the above mentioned ones.

Image inpainting. Restoration from SFF degradation is kind of similar to
the image inpainting task which aims to fill in the corrupted areas in an image.
Recently, a number of deep learning based approaches are proposed to accom-
plish this task, which generate promising results in certain challenging conditions
[18,21,25,31,32]. However, directly applying existing inpainting methods would
not work for SFF restoration. Take Fig. 1(b) for example, only filling in the dark
line cannot fully recover the corrupted content which actually has a larger area
than the dark line. Even the dark line is repaired in this way, the resultant image
would have large misalignments with the adjacent images.

Substitution/Interpolation. In the neuron segmentation task [17], Li et
al. completely discarded the degraded image and replaced it with a copy of the
adjacent image. This substitution strategy reduces interrupted neurons to a cer-
tain extent, but may still lead to inaccurate reconstruction. Another straightfor-
ward solution for SFF restoration would be video frame interpolation. However,
it is difficult to recover sufficient details since the content of adjacent images is
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(a) (b)

Fig. 2. Statistical analysis of SFF degradation from 50 real samples. (a) illustrates the
relationship between the slope of optical flow and the slope of dark line. Red points
represent the slope values on real samples. The curve is the inverse function: y = −1/x.
Within the error range, this curve can fit these red points well, which indicates that the
main orientation of deformation is roughly perpendicular to the dark line. (b) illustrates
the relationship between the amplitude of optical flow and the radial distance of dark
line. The horizontal axis is the radial distance from each point in the image to the dark
line. Blue points represent the mean of amplitude and gray lines represent variance.
It can be seen that the degree of deformation gradually attenuates away from the
corruption.

less similar in ssTEM compared to that in common video due to low imaging
resolution along the axial direction. Although SFF artifacts are accompanied
by content deformation, there is still useful information in the degraded image
that should not be discarded along with artifacts. To this end, we propose to
synthesize degraded/groundtruth image pairs for training a restoration network,
which enables the usage of information in the degraded image.

3 SFF Modeling

3.1 Statistical Analysis

In order to have a better understanding on the characteristics of SFF degra-
dation, we collect 50 images with SFF artifacts from the Full Adult Fly Brain
(FAFB) data [33]. Based on these samples, we statistically analyze the rela-
tionship between content deformation and dark line corruption, which is impor-
tant for SFF simulation. We adopt optical flow to describe the deformation. A
straightforward solution is to extract optical flow by using one of the adjacent
images as reference. However, such a solution will suffer from intrinsic estima-
tion error, due to low imaging resolution along the axial direction in ssTEM.
Therefore, we first use the video frame interpolation method [23] to obtain an
interpolation result from the adjacent images, and then extract optical flow be-
tween the degraded image and the interpolated one through a block-matching
method [34]. The obtained results are then utilized for statistical analysis.
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Fig. 3. Pipeline to simulate the SFF degradation process. Firstly, we generate the opti-
cal flow by using parameters randomly selected in fixed ranges, including two endpoints
p1(x1, y1) and p2(x2, y2), the width of dark line w1, and the width of actually corrupted
region w2. Then, based on the optical flow, we warp the artifacts-free image to obtain
the deformed image. Finally, we add a straight black line on top of the deformed image
to get the degraded result.

We take the dark line as the boundary and divide the degraded image into
two parts for analysis, since the orientations of optical flows in the two parts are
opposite. In order to alleviate the influence of estimation error, we only consider
the main orientation, i.e., the major component in the orientation histogram.
We adopt the concept of slope in mathematics to describe the main orientation
in a 2D coordinate system. We observe that the main orientations of the dark
line and the extracted optical flow are roughly perpendicular to each other. In
other words, the product of their slopes should be close to −1. Analysis on the
50 samples verify this observation, as shown in Fig. 2(a). In addition to the
orientation information, we also analyze the relationship between the amplitude
of optical flow and the radial distance to the dark line. As shown in Fig. 2(b), we
find that the degree of deformation gradually attenuates away from the dark line.
The above two observations on orientation and amplitude of content deformation
serve as the basis of SFF simulation.

3.2 SFF Simulation

Realistic artifacts are generated during the acquisition process of ssTEM images,
yet we cannot get the groundtruth corresponding to these degraded samples. It
is thus difficult to directly train a deep restoration network which generally re-
quires a large amount of paired samples (degraded/groundtruth). To address this
issue, we propose an effective modeling strategy considering the aforementioned
characteristics of SFF degradation, relying on which we can then synthesize a
sufficient amount of paired samples to train a deep restoration network.

As demonstrated in Fig. 1(b), SFF degradation consists of two kinds of arti-
facts: corruption in the dark line and deformation of surrounding regions. Ideally,
if we can unfold the dark line in the correct way, the deformation issue can be
addressed and then filling up the corrupted content would not be difficult with
the assistance of adjacent images. The challenge is that, since the folding effect
during sample preparation is highly non-rigid, the deformation could vary in dif-
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Algorithm 1: Folded optical flow synthesis.

Input: I: Artifacts-free image
p1(x1, y1) and p2(x2, y2): Two endpoints on two different boundaries of
image I
w1: Width of dark line
w2: Width of actually corrupted region (w2 ≥ w1)
α: Amplitude decay factor of optical flow
H: Height of image I
W : Width of image I

1 p1(x1, y1) and p2(x2, y2) determine the linear function of dark line l:
y = kl ∗ x+ bl, kl = (y2 − y1)/(x2 − x1), bl = y1 − k ∗ x1.

2 The slope of optical flow: kf = −1/kl.
3 for i ∈ [1, H] do
4 for j ∈ [1,W ] do
5 The distance from point (i, j) to the line l:

d(i, j) = |(kl ∗ i− j + bl)/
√
k2l + 1|

6 The amplitude of optical flow:
A(i, j) = α ∗ d(i, j) + bf , bf = (w2 − w1)− α ∗ w2

7 if A(i, j) < 0 then
8 A(i, j) = 0
9 end

10 F (i, j, 1) = A(i, j) ∗ cos(arctan(kf ))
11 F (i, j, 2) = A(i, j) ∗ sin(arctan(kf ))

12 endfor

13 endfor
Output: F [H,W, 2]: Folded optical flow.

ferent regions and the corrupted content is unpredictable. Therefore, accurately
modeling SFF degradation in an analytical way is difficult. Instead, we simulate
SFF degradation using the following strategy as shown in Fig. 3.

First, we collect a number of artifacts-free images from FAFB. According to
the characteristics analyzed in Sec. 3.1, we produce simulated optical flows to
deform the artifacts-free images (see Algorithm 1 for detailed implementation).
Specifically, two endpoints p1(x1, y1) and p2(x2, y2) are randomly generated on
two different boundaries of the image, which determine the slope of the dark
line and thus the slope of optical flow (since the two are orthogonal). For the
amplitude of the optical flow, we randomly assign the width of the dark line
(w1) and the width of actually corrupted region (w2, w2 ≥ w1). For simplicity,
we only consider a linear decay relationship between the amplitude of the optical
flow and the radial distance to the dark line.

Based on the above synthesized optical flows, the artifacts-free images are
deformed correspondingly and the content falling in the corrupted region with
width w2 is masked by a black line with width w1, as shown in Fig. 3. In practice,
however, the realistic SFF artifacts may not satisfy the ideal corruption in the
simulation process, i.e., with a straight line shape and zero intensity values. To
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Fig. 4. The proposed restoration framework consists of three modules: interpolation,
unfolding and fusion. Interpolation module takes the two adjacent images as input to
obtain the interpolated result, which is used as the reference image in the next two
modules. Unfolding module aims to address the content deformation in the degraded
image. Fusion module is designed to fill up the corrupted content in the unfolded image.
Detailed specifications of each module can be found in the supplementary material.

address this issue, we propose to cover a straight black line (with a slightly larger
width) on top of the realistic dark line for regularization during the inference
stage, which contributes to the restoration performance (see ablation study in
Sec. 5.5). In addition to the optical flow for simulating the deformation process,
we also generate the inverse optical flow for the unfolding purpose, which serves
as the groundtruth in the unfolding module, as detailed in Sec. 4.2.

4 SFF Restoration

4.1 Artifacts Detection

In practice, automatic detection of SFF artifacts is highly desired, especially
when handling a vast amount of samples from the whole brain. In this work,
we adopt a simple yet effective line detector, i.e., Hough transformation [6], to
achieve automatic detection of the dark line corruption caused by SFF degra-
dation [9,26]. Specifically, we perform Hough transformation in the binarized
version of each image. For the binarization process, we traverse different thresh-
old settings and find a suitable one in a validation dataset. Hough transformation
can also localize the dark line, which enables regularization of corruption for a
better restoration, as mentioned in Sec. 3.2.
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4.2 Restoration Framework

The proposed restoration framework is composed of three modules, i.e., interpo-
lation, unfolding, and fusion, as shown in Fig. 4. On the one hand, the interpola-
tion result is adopted as the reference for the optical-flow based unfolding, which
addresses the deformation caused by SFF degradation. On the other hand, the
interpolated image is fused with the unfolded image, which fills up the corrupted
content in the dark line. For the implementation of each module, advanced net-
work design may lead to a better performance. Yet, as the first attempt of
learning-based restoration, we focus more on the realization of functions.

Interpolation module. Our interpolation module is built upon the kernel
prediction network (KPN) [22], which is originally designed for the video frame
interpolation task. Here, we view two adjacent images (Ii−1 and Ii+1) as input
and predict the corresponding per-pixel kernels to interpolate Ipi in between.
Specifically, the predicted kernels are applied to input images in a convolutional
manner. Following the implementation of [23], we adopt two separable 1D kernels
as a replacement of 2D kernel for efficiency. Details of the backbone structure
can be found in the supplementary material.

Unfolding module. In this module, we adopt optical flow to represent the
per-pixel position correspondence between a pair of input images. Based on
the estimated optical flow, the deformation in the degraded image Ii can be
addressed by a warping operation, as shown in Fig. 4. We term this alignment
process as unfolding. We adopt a residual variant of U-Net [28] to implement the
flow estimation network, where the degraded image Ii and the reference image
Ipi from the interpolation module form the input pair. Different from classical
networks for optical flow estimation, our unfolding module can directly estimate
optical flow at full image resolution, which eliminates the checkerboard effects
caused by subsequent up-sampling. More specifically, the network is composed
of four down-sampling and four up-sampling blocks. Each block contains three
regular convolutional layers stacking with a skip connection.

Fusion module. Intuitively, to fill up the corrupted content in the unfolded
image Iui from the unfolding module, one can directly crop the corresponding
part in the interpolated image Ipi and stitch it with the rest part of Iui . However,
direct stitching is not optimal since the unfolded image may not be exactly
aligned with the interpolated one. On the other hand, in addition to the content
deformation and corruption, SFF degradation usually decreases the contrast
of image. The above two issues call for an independent module to serve as an
advanced solution for image fusion. In our implementation, a simplified version of
U-Net [28] is adopted here, which addresses the potential misalignment and the
low contrast issues for a better restoration performance (as detailed in Sec. 5.5).

Loss function. We train the above three modules independently and cas-
cade them in the order of interpolation, unfolding, and fusion. In the proposed
restoration framework, we adopt the L1 distance between the input and the
groundtruth as the loss function for each module. Specifically, given the simu-
lated input with SFF artifacts, its artifacts-free version is adopted to supervise
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the interpolation and fusion modules, and the simulated inverse optical flow is
adopted to supervise the unfolding module.

5 Experiments

5.1 Data Preparation

In the training and validation phase, all data we use is from FAFB, the first
ssTEM volume of a complete adult drosophila brain imaged at 4×4 nm resolution
and sectioned at 40 nm thickness [33]. There are a total of 7062 sections in FAFB,
and the original resolution of each section is 286720×155648 which is partitioned
into 8192 × 8192 images, resulting in 40 TB data in storage. The SFF artifacts
frequently occur in FAFB, which severely hinder the analysis and visualization
on this valuable data. We select a central cube out of the raw volume as our main
experimental data (approximately 150 GB) to demonstrate the effectiveness of
the proposed method, yet the results could generalize to other portions of the
volume. We further partition the selected cube into 512 × 512 images for easy
manipulation. From this cube, we randomly select 4000 artifacts-free samples to
generate the training data. Each sample contains three consecutive images, the
middle image is used for the simulation of SFF degradation. In addition, we also
select 100 samples as validation data for hyper-parameter tuning.

In the test phase, we use the public data from the CREMI challenge in
2016 [3] that aims to facilitate the neuron reconstruction in ssTEM images. The
CREMI dataset is also for adult drosophila brain and with the same imaging
resolution as FAFB. It consists of three subsets corresponding to different neuron
types, each containing 125 images for training and 125 images for testing. Since
the training images have manually obtained segmentation labels, we adopt them
as the test images in our task to quantitatively evaluate the proposed method
in terms of both image restoration quality and neuron segmentation accuracy.
Specifically, we select a few samples out of an image bunch in each subset for
SFF simulation, and the restored images are evaluated against the original ones
for calculating quantitative metrics. Besides the synthetic test data used above,
we also select a few number of real samples with SFF artifacts from FAFB (no
overlap with the training and validation sample) for test, where only qualitative
results are reported.

5.2 Implementation Details

During the statistical analysis of SFF degradation (in Sec. 3.1), we adopt a block
matching method to generate a sparse optical flow between the degraded image
and the interpolation result. The block size is set to 71 × 71 with an overlap
of 41 pixels, and the maximum search range is 21 pixels. The estimated sparse
optical flow is then upsampled to a dense one at the original resolution. During
SFF simulation (in Sec. 3.2), there are three parameters, e.g., the width of dark
line w1, the width of corrupted region w2 and the decay factor of optical flow
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Table 1. Quantitative comparisons of restoration results on synthetic data from
CREMI dataset, in terms of both image restoration quality and neuron segmenta-
tion accuracy. For each subset, 25 out of 125 images are selected to synthesize SFF
artifacts.

CREMI
Metric

Method
SFF Sub. [17] PC [18] PC-unfold Interp [23] Ours

A

PSNR ↑ 15.57 19.57 16.35 18.01 22.70 26.20
SSIM ↑ 0.5615 0.4353 0.5665 0.7517 0.6595 0.8261
FID ↓ 229.71 33.30 36.83 62.44 144.69 27.80
VOI ↓ 2.6780 1.2505 2.6440 0.9507 0.8967 0.7833

ARAND ↓ 0.4971 0.2881 0.4783 0.1442 0.1518 0.0968

B

PSNR ↑ 15.11 18.16 16.43 18.17 22.22 26.81
SSIM ↑ 0.5842 0.3586 0.6161 0.7532 0.6041 0.8202
FID ↓ 260.27 50.54 41.78 53.57 175.26 38.17
VOI ↓ 4.0629 3.8864 3.7147 3.4817 3.1898 3.0957

ARAND ↓ 0.5806 0.5855 0.3931 0.4355 0.3680 0.3517

C

PSNR ↑ 14.52 17.74 15.09 16.97 21.96 25.74
SSIM ↑ 0.4988 0.3066 0.5037 0.7257 0.5766 0.7957
FID ↓ 335.38 42.70 44.60 73.33 168.13 42.26
VOI ↓ 4.5572 3.6755 4.5789 3.4882 3.1606 3.0825

ARAND ↓ 0.4244 0.4280 0.4308 0.3309 0.2835 0.2789

Inference time (s) * * 0.1235 0.5130 0.0075 0.4251

α. To increase the diversity of simulated samples, we set the three parameters
to be within a dynamic range. The ranges of w1, w2 and α are (5, 30), (w1, 80)
and (−0.1,−0.0001), respectively. During each iteration of the training process,
we randomly generate a set of parameters to simulate SFF degradation on the
training samples.

We adopt the same training setting for the three modules in our restoration
framework. The resolution of input image to the network is set as 256, which
is obtained by random cropping from the training samples. We train these net-
works using Adam [15] with β1 = 0.9, β2 = 0.999, a learning rate of 0.0001,
and a batch size of 32 on four NVIDIA Titan Xp GPUs. We perform random
rotation and flip in the training phase for data augmentation. In addition, we
perform random contrast and brightness adjustment to address the contrast and
brightness variation around the dark line. We adopt the early termination strat-
egy to obtain an optimal model on the validation data. Each module requires
about one day for training. In the inference phase, it takes 0.42s to process an
image with 2048 × 2048 resolution.

5.3 Restoration on Synthetic Data

To quantitatively evaluate the proposed method, we first conduct experiments on
three subsets from CREMI (termed as A, B, and C), where the degraded images
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Fig. 5. Visual comparison of restoration results on synthetic test data. More visual
comparison results on the synthetic test data can be found in the supplementary ma-
terial.

(SFF) are synthesized from the artifacts-free ones. For each subset, we select 25
out of 125 samples for simulation. Four representative restoration strategies are
adopted for comparison, including: (a) the substitution strategy (Sub.) which
directly replaces the degraded image with the previous adjacent image, (b) the
inpainting strategy which directly repairs the dark line, without consideration
of the surrounding deformation. We adopt the state-of-the-art image inpainting
method, i.e., Partial Convolution (PC) [18], as a representative. We fine-tune the
PC model pretrained on natural images with our simulated training samples.
(c) Inpainting with unfolding (PC-unfold), where the PC model is fine-tuned
with the unfolded images obtained from our proposed unfolding module. (d)
The interpolation strategy (Interp) [23] which completely discards the degraded
image and generates the result from two adjacent images.

As shown in Table 1, the quantitative results on the three subsets demon-
strate that our proposed method outperforms the other restoration strategies by
a large margin, in terms of image restoration quality. Besides two widely used fi-
delity metrics PSNR and SSIM, we also adopt a perceptual index for evaluation,
i.e., Fréchet Inception Distance (FID) [12], which is generated by computing the
feature distance between the restored and groundtruth images. This perceptual
index validates the superiority of the proposed method again.

As can be observed from the visual results in Fig. 5 (red box), the plain in-
painting method PC only fills in the dark line but cannot address the surrounding
deformation. Although the deformation can be largely corrected by PC-unfold
with our unfolding module, it still cannot repair the complex neuron structure
in the corrupted region only depending on the degraded image itself. On the
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Fig. 6. Visual comparison of restoration results on real test data. More visual com-
parisons can be found in the supplementary material. Note that, due to the lack of
groundtruth, we include the subsequent image to the degraded one as a reference here.

other hand, as can be seen from Fig. 5 (green box), although the interpolation
result gets rid of misalignment with adjacent images, it loses fine details in the
original degraded images away from the dark line. In contrast, these details are
well preserved in our result, while both the corrupted and deformed regions are
recovered.

To validate the effectiveness of our proposed restoration method in the sub-
sequent analysis tasks, we also conduct segmentation experiments on the above
restored images. To this end, we utilize a state-of-the-art neuron segmentation
method [10], in which a 3D U-Net architecture is used to predict the affinity
maps of ssTEM images and the final segmentation results are obtained after the
operations of seeded watershed and agglomeration. We use two common metrics
for evaluation of segmentation accuracy: adapted Rand error (ARAND) [1] and
variation of information (VOI) [24]. As shown in Table 1, quantitative segmen-
tation results demonstrate that our restoration method preserves more details
that are useful for subsequent analysis tasks compared with other restoration
strategies.

5.4 Restoration on Real Data

To evaluate the generalization capability of the proposed method, we further
conduct experiments on real degraded images with SFF artifacts from FAFB.
As shown in Fig. 6, our proposed method generalizes well to real data. Com-
pared with baseline methods, the superior perceptual quality of recovered images
demonstrates the advantage of our proposed method. In addition to perceptual
quality, we also conduct segmentation experiments on the recovered images. Due
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Fig. 7. Exemplar segmentation results on real data with SFF degradation. We adopt a
representative segmentation method [10] for evaluation. Each pseudo color represents
one neuron. Red box denotes a region near the dark line with severe deformation. Green
box denotes a region away from the dark line with fine details.

Table 2. Ablation results for each module in the proposed restoration framework.

Interpolation Unfolding Fusion PSNR SSIM FID VOI Rand

X 22.70 0.6595 144.69 0.8967 0.1518
X X 18.30 0.7393 115.55 0.9416 0.1430
X X 24.68 0.7767 80.54 0.8301 0.1254

X X 25.94 0.8058 39.96 0.8534 0.1259
X X X 26.20 0.8261 27.80 0.7833 0.0968

to the lack of groundtruth segmentation labels, we provide qualitative results on
one exemplar case to demonstrate the superiority of our proposed method. As
shown in Fig. 7 (red box), the interpolation method and our proposed method
both obtain good segmentation results near the dark line. Nevertheless, our
method preserves more details away from the dark line, which avoids merge
errors introduced by interpolation, as shown in Fig. 7 (green box).

5.5 Ablation Study

Function of module. To verify the function of each module in our restoration
framework, we conduct ablation experiments as shown in Table 2. Without the
fusion module (Interpolation + Unfolding), the direct stitching cannot ensure
the continuity of neuron structure. On the other hand, the issue of low contrast is
left unsolved. Therefore, the PSNR score is obviously lower than other settings.
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(a) (b)

Fig. 8. A visual example to illustrate the effect of regularization of corruption. By
covering a straight black line (b) on top of the realistic dark line in the original input
(a), a significant improvement of performance is achieved.

Without the unfolding module (Interpolation + Fusion), the useful information
in the surrounding area of the dark line cannot be utilized for fusion due to the
deformation error. Without the interpolation module (Unfolding + Fusion), the
corrupted content cannot be well recovered.

Regularization of corruption. As described in Sec. 3.2, based on the local-
ization results of Hough transformation, the realistic dark line is automatically
covered by a straight black line in the test phase. This regularization process
is essential to the restoration performance, which bridges the gap between the
synthetic corruption and the realistic one. We demonstrate the effectiveness of
this regularization process in Fig. 8.

6 Conclusion

In this paper, we present the first learning-based restoration framework to ad-
dress content deformation and corruption in ssTEM images, relying on effective
modeling and simulation of SFF degradation. Evaluated on both synthetic and
real test data, we demonstrate the advantage of our proposed method in terms
of both image restoration quality and neuron segmentation accuracy. We believe
the proposed method could benefit the future research of neuron morphology
and connectomics using ssTEM images.
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