
OCEANBENCH:
The Sea Surface Height Edition

J. Emmanuel Johnson⇤

CNRS UMR IGE
johnsonj@univ-grenoble-alpes.fr

Quentin Febvre⇤
IMT Atlantique

quentin.febvre@imt-atlantique.fr

Anastasia Gorbunova
CNRS UMR IGE

Sammy Metref
DATLAS

Maxime Ballarotta
CLS

Julien Le Sommer
CNRS UMR IGE

Ronan Fablet
IMT Atlantique

Abstract

The ocean is a crucial component of the Earth’s system. It profoundly influences
human activities and plays a critical role in climate regulation. Our understand-
ing has significantly improved over the last decades with the advent of satellite
remote sensing data, allowing us to capture essential sea surface quantities over
the globe, e.g., sea surface height (SSH). Despite their ever-increasing abundance,
ocean satellite data presents challenges for information extraction due to their
sparsity and irregular sampling, signal complexity, and noise. Machine learning
(ML) techniques have demonstrated their capabilities in dealing with large-scale,
complex signals. Therefore we see an opportunity for these ML models to har-
ness the full extent of the information contained in ocean satellite data. However,
data representation and relevant evaluation metrics can be the defining factors
when determining the success of applied ML. The processing steps from the raw
observation data to a ML-ready state and from model outputs to interpretable
quantities require domain expertise, which can be a significant barrier to entry for
ML researchers. In addition, imposing fixed processing steps, like committing to
specific variables, regions, and geometries, will narrow the scope of ML models
and their potential impact on real-world applications. OceanBench is a unifying
framework that provides standardized processing steps that comply with domain-
expert standards. It is designed with a flexible and pedagogical abstraction: it a)
provides plug-and-play data and pre-configured pipelines for ML researchers to
benchmark their models w.r.t. ML and domain-related baselines and b) provides a
transparent and configurable framework for researchers to customize and extend the
pipeline for their tasks. In this work, we demonstrate the OceanBench framework
through a first edition dedicated to SSH interpolation challenges. We provide
datasets and ML-ready benchmarking pipelines for the long-standing problem of
interpolating observations from simulated ocean satellite data, multi-modal and
multi-sensor fusion issues, and transfer-learning to real ocean satellite observations.
The OceanBench framework is available at github.com/jejjohnson/oceanbench and
the dataset registry is available at github.com/quentinf00/oceanbench-data-registry.
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1 Motivation

The ocean is vital to the Earth’s system [28]. It plays a significant role in climate regulation regarding
carbon [40] and heat uptake [87]. It is also a primary driver of human activities (e.g., maritime
traffic and world trade, marine resources and services) [106, 93]. However, monitoring the ocean
is a critical challenge: the ocean state can only partially be determined because most of the ocean
consists of subsurface quantities that we cannot directly observe. Thus, to quantify even a fraction of
the physical or biochemical ocean state, we must often rely only on surface quantities that we can
monitor from space, drifting buoys, or autonomous devices. Satellite remote sensing, in particular, is
one of the most effective ways of measuring essential sea surface quantities [2] such as sea surface
height (SSH) [95], sea surface temperature (SST) [77], and ocean color (OC) [53]. While these
variables characterize only a tiny portion of the ocean ecosystem, they present a gateway to many
other derived physical quantities [93].

Although we can access observable sea surface quantities, they are generally irregularly and extremely
sparsely sampled. For instance, satellite-derived SSH data has less than 5% coverage of the globe
daily [95]. These sampling gaps make the characterization of ocean processes highly challenging
for operational products and downstream tasks that depend on relevant gap-free variables. This
has motivated a rich literature in geoscience over the last decades, mainly using geostatistical
kriging methods [95, 102] and model-driven data assimilation schemes [55, 60]. Despite significant
progress, these schemes often need to improve their ability to leverage available observation datasets’
potential fully. This has naturally advocated for exploring data-driven approaches like shallow ML
schemes [7, 6, 97, 71]. Very recently, deep learning schemes [116, 74, 9] have become appealing
solutions to benefit from existing large-scale observation and simulation datasets and reach significant
breakthroughs in the monitoring of upper ocean dynamics from scarcely and irregularly sampled
observations. However, the heterogeneity and characteristics of the observation data present major
challenges for effectively applying these methods beyond idealized case studies. A data source could
have different variables, geometries, and noise levels, resulting in many domain-specific preprocessing
procedures that can vastly change the solution outcome. Furthermore, the evaluation procedure of
the methods and their effectiveness can be regionally-dependent as the physical phenomena vary
in space and time, which adds another layer of complexity in convincing domain scientists of
their trustworthiness. So the entire ML pipeline now requires a unified framework for dealing
with heterogeneous data sources, different pre- and post-processing methodologies, and regionally-
dependent evaluation procedures.

To address these challenges, we introduce OceanBench, a framework for co-designing machine-
learning-driven high-level experiments from ocean observations. It consists of an end-to-end frame-
work for piping data from its raw form to an ML-ready state and from model outputs to interpretable
quantities. We regard OceanBench as a key facilitator for the uptake of MLOPs tools and re-
search [66, 94] for ocean-related datasets and case studies. This first edition provides datasets and
ML-ready benchmarking pipelines for SSH interpolation problems, an essential topic for the space
oceanography community, related to ML communities dealing with issues like in-painting [111],
denoising [99, 98], and super-resolution [107]. We expect OceanBench to facilitate new challenges to
the applied machine learning community and contribute to meaningful ocean-relevant breakthroughs.
The remainder of the paper is organized as follows: in §2, we outline some related work that was in-
spirational for this work; in §3, we formally outline OceanBench by highlighting the target audience,
code structure, and problem scope; in §4, we outline the problem formulation of SSH interpolation
and provide some insight into different tasks related to SSH interpolation where OceanBench could
provide some helpful utility; and in §5 we give some concluding remarks while also informally
inviting other researchers to help fill in the gaps.

2 Related Work

Machine learning applied to geosciences is becoming increasingly popular, but there are few examples
of transparent pipelines involving observation data. After a thorough literature review, we have divided
the field into three camps of ML applications that pertain to this work: 1) toy simulation datasets,
2) reanalysis datasets, and 3) observation datasets. We outline the literature for each of the three
categories below.
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Figure 1: This figure showcases the OceanBench toolset. We have 1) OceanBench-Data-Registry
which uses DVC to store and organize ML-ready datasets, 2) Ocean-Tools which features a suite
of task-relevant geoprocessing functions with the xarray-backend, and 3) xrpatcher which can
produce arbitrary subsets of xarray datastructures which nicely interface with dataloaders such as
PyTorch. OceanBench provides an interface for ML researchers to parameterize arbitrary sequences
of transformations to preprocess data from a domain-specific state to a ML-ready state.

Toy Simulation Data. One set of benchmarks focuses on learning surrogate models for well-defined
but chaotic dynamical systems in the form of ordinary differential equations (ODEs) and partial
differential equations (PDEs) and there are freely available code bases which implement different
ODEs/PDEs [52, 96, 3, 64, 8, 103, 56, 85]. This is a great testing ground for simple toy problems
that better mimic the structures we see in real-world observations. Working with simulated data is
excellent because it is logistically simple and allows users to test their ideas on toy problems without
increasing the complexity when dealing with real-world data. However, these are ultimately simple
physical models that often do not reflect the authentic structures we see in real-world, observed data.

Reanalysis Data. This is assimilated data of real observations and model simulations. There are a few
major platforms that host ocean reanalysis data like the Copernicus Marine Data Store [36, 33, 34, 37],
the Climate Data Store [25], the BRAN2020 Model [26], and the NOAA platform [15]. However,
to our knowledge, there is no standard ML-specific ocean-related tasks to accompany the data. On
the atmospheric side, platforms like WeatherBench [86], ClimateBench [108], ENS10 [10] were
designed to assess short-term and medium-term forecasting using ML techniques with recent success
of ML [69, 84] The clarity of the challenges set by the benchmark suites has inspired the idea of
OceanBench, where we directly focus on problems dealing with ocean observation data.

Observation Data. These observation datasets (typically sparse) stem from satellite observations
that measure surface variables or in-situ measurements that measure quantities within the water
column. Some major platforms to host data include the Marine Data Store [32, 31], the Climate
Data Store [23, 24, 22], ARGO [110], and the SOCAT platform [11]. However, it is more difficult to
assess the efficacy of operational ML methods that have been trained only on observation data and, to
our knowledge, there is no coherent ML benchmarking system for ocean state estimation. There has
been significant effort by the Ocean-Data-Challenge Group1 which provides an extensive suite of
datasets and metrics for SSH interpolation. Their efforts heavily inspired our work, and we hope that
OceanBench can build upon their work by adding cohesion and facilitating the ease of use for ML
research and providing a high-level framework for providing ML-related data products.

3 OceanBench

3.1 Why OceanBench?

There is a high barrier to entry in working with ocean observations for researchers in applied machine
learning as there are many processing steps for both the observation data and the domain-specific

1Ocean Data Challenge group: Freely associated scientist for oceanographic algorithm and product improve-
ments (ocean-data-challenges.github.io)
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evaluation procedures. OceanBench aims to lower the barrier to entry cost for ML researchers to
make meaningful progress in the field of state prediction. We distribute a standardized, transparent,
and flexible procedure for defining data and evaluation pipelines for data-intensive geoscience
applications. Proposed examples and case studies provide a plug-and-play framework to benchmark
novel ML schemes w.r.t. state-of-the-art, domain-specific ML baselines (see figure 1). In addition,
we adopt a pedagogical abstraction that allows users to customize and extend the pipelines for their
specific tasks. To our knowledge, no framework embeds processing steps for earth observation data in
a manner compatible with MLOps abstractions and standards regarding reproducibility and evaluation
procedures. Ultimately, we aim to facilitate the uptake of ML schemes to address ocean observation
challenges and to bring new challenges to the ML community to extend additional ML tools and
methods for irregularly-sampled and partially-observed high-dimensional space-time dynamics. The
abstractions proposed here apply beyond ocean sciences and SSH interpolation to other geosciences
with similar tasks that intersect with machine learning.

3.2 Code Structure

OceanBench is lightweight in terms of the core functionality. We keep the code base simple and focus
more on how the user can combine each piece. We adopt a strict functional style because it is easier to
maintain and combine sequential transformations. There are five features we would like to highlight
about OceanBench: 1) Data availability and version control, 2) an agnostic suite of geoprocessing
tools for xarray datasets that were aggregated from different sources, 3) Hydra integration to pipe
sequential transformations, 4) a flexible multi-dimensional array generator from xarray datasets that
are compatible with common deep learning (DL) frameworks, and 5) a JupyterBook [38] that offers
library tutorials and demonstrates use-cases. In the following section, we highlight these components
in more detail.

OceanBench-Data-Registry. The most important aspect is the public availability of the datasets.
We aggregate all pre-curated datasets from other sources, e.g. the Ocean-Data-Challenge [13, 12],
and organize them to be publicly available from a single source 2. We also offer a few derived datasets
which can be used for demonstrations and evaluation. Data is never static in a pipeline setting, as
one can have many derived datasets which stem from numerous preprocessing choices. In fact, in
research, we often work with derived datasets that have already been through some preliminary
preprocessing methods. To facilitate the ever-changing nature of data, we use the Data Version
Control (DVC) tool [67], which offers a git-like version control of the datasets.

Ocean-Tools 3. The Ocean-Tools library uses a core suite of functions specific to processing
geo-centric data. While a few particular functionalities vary from domain to domain, many operations
are standard, e.g., data variable selections, filtering/smoothing, regridding, coordinate transformations,
and standardization. We almost work exclusively with the xarray [58] framework because it is a
coordinate-aware, flexible data structure. In addition, the geoscience community has an extensive
suite of specialized packages that operate in the xarray framework to accomplish many different
tasks. Almost all Ocean-Tools toolsets are exclusively within the xarray framework to maintain
compatibility with a large suite of tools already available from the community.

Hydra Integration. As discussed above, many specific packages accomplish many different tasks.
However, what needs to be added is the flexibility to mix and match these operations as the users
see fit. Hydra [112] and Hydra-Zen [92] provide a configurable way to aggregate and pipe many
sequential operations together. It also maintains readability, robustness, and flexibility through the
use of .yaml files which explicitly highlights the function used, the function parameters chosen, and
the sequence of operations performed. In the ML software stack, Hydra is often used to manage the
model, optimizer, and loss configurations which helps the user experiment with different options. We
apply this same concept in preprocessing, geoprocessing, and evaluation steps, often more important
than the model configuration in geoscience-related tasks.

XRPatcher 4. Every machine learning pipeline will inevitably require moving data from the geo-
specific data structure to a multi-dimensional array easily digestible for ML models. A rather
underrated, yet critical, feature of ML frameworks such as PyTorch [83] (Lightning [45]) and

2Available at: quentinf00/oceanbench-data-registry
3Available at: jejjohnson/ocn-tools
4Available at: jejjohnson/xrpatcher
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TensorFlow [1] (Keras [30]) is the abstraction of the dataset, dataloader, datamodules, and data
pipelines. In applied ML in geosciences, the data pipelines are often more important than the actual
model [89]. The user can control the patch-size and the stride-step, which can generate arbitrary
coordinate-aware items directly from the xarray data structure. In addition, XRPatcher provides a
way to reconstruct the fields from an arbitrary patch configuration. This robust reconstruction step
is convenient to extend the ML inference step where one can reconstruct entire fields of arbitrary
dimensions beyond the training configuration, e.g., to account for the border effects within the field
(see appendix E) or to reconstruct quantities in specific regions or globally.

JupyterBook. Building a set of tools is relatively straightforward; however, ensuring that it sees a
broader adoption across a multi-disciplinary community is much more challenging. We invested
heavily in showing use cases that appeal to different users with the JupyterBook platform [38].
Code with context is imperative for domain and ML experts as we need to explain and justify each
component and give many examples of how they can be used in other situations. Thus, we have paid
special attention to providing an extensive suite of tutorials, and we also highlight use cases for how
one can effectively use the tools.

3.3 Problem Scope

There are many problems that are of great interest the ocean community [29] but we limit the
scope to state estimation problems [21]. Under this scope, there are research questions that are
relevant to operational centers which are responsible for generating the vast majority of global
ocean state maps [36, 34, 33, 37] that are subsequently used for many downstream tasks [93]. For
example: how can we effectively use heterogeneous observations to predict the ocean state on the sea
surface [55, 62, 102, 44, 14, 77]; how can we incorporate prior physics knowledge into our predictions
of ocean state trajectories [55, 29, 93]; and how can we use the current ocean state at time T to predict
the future ocean state at time T + ⌧ [42, 86, 16]. In the same vain, there are more research questions
that are of interest to the academic modeling community. For example: is simulated or reanalysis
data more effective for learning ML emulators that replace expensive ocean models [49, 114]; what
metrics are more effective for assessing our ability to mimic ocean dynamics [75, 48]; and how much
model error can we characterize when learning from observations [18, 68].

We have cited many potential applications of how ML can be applied to tackle the state estimation
problem. However, to our knowledge there is no publicly available, standardized benchmark system
that is caters to ML-research standards. We believe that, irrespective of the questions posed above
and the data we access, there are many logistical similarities for each of the problem formulations
where we can start to set standards for a subset of tasks like interpolation or forecasting. On the
front-end, we need a way to select regions, periods, variables, and a valid train-test split (see sec.
D.1). On the back-end, we need a way to transform the predictions into more meaningful variables
with appropriate metrics for validation (see sec. D.2 and D.3). OceanBench was designed to
be an agnostic tool that is extensible to the types of datasets, processing techniques and metrics
needed for working with a specific class of Ocean-related datasets. We strongly feel that a suite
like this is the first step in designing task-specific benchmarks within the ocean community that is
compatible with ML standards. In the remainder of the paper, we will demonstrate how OceanBench
can be configured to facilite a ML-ready data challenge involving our first edition to demonstrate
OceanBench’s applicability: sea surface height interpolation.

4 Sea Surface Height Edition

Sea surface height (SSH) is one of the most critical, observable quantities when determining the
ocean state. It is widely used to study ocean dynamics and the adverse impact on global climate and
human activities [78]. SSH enables us to track phenomena such as currents and eddies [78, 27, 82],
which leads to a better quantification of the transport of energy, heat, and salt. In addition, SSH
helps us quantify sea level rise at regional and global scales [4, 39], which is used for operational
monitoring of the marine environment [106]. Furthermore, SSH characterization provides a plethora
of data products that downstream tasks can use for many other applications [79, 20]. Due to the
irregular sampling delivered by satellite altimeter, state-of-the-art operational methods using optimal
interpolation schemes [95, 102] or model-driven data assimilation [7, 6, 71, 97] fail to fully retrieve
SSH dynamics at fine scales below 100-200km on a global or regional scale, so improving the
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space-time resolution of SSH fields has been a critical challenge in ocean science. Beyond some
technological developments [51], recent studies support the critical role of ML-based schemes in
overcoming the current limitations of the operational systems [14, 55, 116] . The rest of this section
gives an overview of the general problem definition for SSH interpolation, followed by a brief ontology
for ML approaches to address the problem. We also give an overview of some experimental designs
and datasets with a demonstration of metrics and plots generated by the OceanBench platform.

4.1 Problem Definition

We are dealing with satellite observations, so we are interested in the domain across the Earth’s surface.
Let us define the Earth’s domain by some spatial coordinates, x = [Longitude,Latitude]> 2 RDs ,
and temporal coordinates, t = [Time] 2 R+, where Ds is the dimensionality of the coordinate vector.
We can define some spatial (sub-)domain, ⌦ ✓ RDs , and a temporal (sub-)domain, T ✓ R+. This
domain could be the entire globe for 10 years or a small region within the North Atlantic for 1 year.

Spatial Coordinates : x 2 ⌦ ✓ RDs (1)
Temporal Coordinates : t 2 T ✓ R+. (2)

In this case Ds = 2 because we only have a two coordinates, however we can do some coordinate
transformations like spherical to Cartesian. Likewise, we can do some coordinate transformation for
the temporal coordinates like cyclic transformations or sinusoidal embeddings [105]. We have two
fields of interest from these spatiotemporal coordinates: the state and the observations.

State : u(x, t) : ⌦⇥ T ! RDu (3)

Observations : yobs(x, t) : ⌦⇥ T ! RDobs (4)

The state domain, u 2 U , is a scalar or vector-valued field of size Du which is typically the quantity
of interest and the observation domain, yobs 2 Yobs, is the observable quantity which is also a scalar
or vector-valued field of size Dobs. Now, we make the assumption that we have an operator H that
transforms the field from the state space, u, to the observation space, yobs.

yobs(x, t) = H (u(x, t), t, ",µ) (5)

This equation is the continuous function defined over the entire spatiotemporal domain. The operator,
H(·), is flexible and problem dependent. For example, in a some discretized setting there are 0’s
wherever there are no observations, and 1’s wherever there are observations, and in other discretized
settings it takes a weighted average of the neighboring pixels. We also include a generic noise function,
"(x, t). This could stem from a distribution, it could stationary noise operator, "(x), or it could be
constant in space but vary with Time, "(t). We also include a control parameter, µ, representing any
external factors or latent variables that could connect the state vector to the observation vector, e.g.,
sea surface temperature. Our quantity of interest is SSH, ⌘, a scalar-valued field defined everywhere
on the domain. In our application, we assume that the SSH we observe from satellite altimeters, ⌘obs,
is the same as the SSH state, except it could be missing for some coordinates due to incomplete
coverage from the satellite. So our transformation is defined as follows:

⌘obs(x, t) = H (⌘(x, t), t, ",µ) (6)

In practice, the satellite providers have a reasonable estimation of the amount of structured noise
level we can expect from the satellite altimetry data; however, unresolved noise could still be present.
Finally, we are interested in finding some model, M, that maps the SSH we observe to the true SSH
given by

M : ⌘obs(x, t,µ) ! ⌘(x, t), (7)

which is essentially an inverse problem that maps the observations to the state. One could think of it
as trying to find the inverse operator, M = H

�1, but this could be some other arbitrary operator.

4.2 Machine Learning Model Ontology

In general, we are interested in finding some parameterized operator, M✓ , that maps the incomplete
SSH field to the complete SSH field

M✓ : ⌘obs(x, t,µ) ! ⌘(x, t), (8)
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whereby we learn the parameters from data. The two main tasks we can define from this problem setup
are 1) interpolation and 2) extrapolation. We define interpolation as the case when the boundaries
of the inferred state domain lie within a predefined shape for the boundaries of the spatiotemporal
observation domain. For example, the shape of the spatial domain could be a line, box, or sphere,
and the shape of the temporal domain could be a positive real number line. We define extrapolation
as the case where the boundaries of the inferred state domain are outside the boundaries of the
spatiotemporal observation domain. In this case, the inferred state domain could be outside of either
domain or both. A prevalent specific case of extrapolation is hindcasting or forecasting, where
the inferred state domain lies within the spatial observation domain’s boundaries but outside of the
temporal observation domain’s. In the rest of this paper, we will look exclusively at the interpolation
problem. However, we refer the reader to appendix F for a more detailed look at other subtasks that
can arise.

From a ML point of view, we can explore various ways to define the operator in equation (7). We may
distinguish three main categories: (i) coordinate-based methods that learn a parameterized continuous
function to map the domain coordinates to the scalar values, (ii) the explicit mapping of the state
from the observation, (iii) implicit methods defined as the solution of an optimization problem. The
first category comprises of kriging approaches, which have been used operationally with historical
success [113, 95]. Beyond such covariance-based approaches, recent contributions explore more
complex trainable functional models [72], basis functions [102], and neural networks [62]. The second
category of schemes bypasses the physical modeling aspect and amortizes the prediction directly using
state-of-the-art neural architectures such as UNets and ConvLSTMs [116, 74, 9]. This category may
straightforwardly benefit from available auxiliary observations [23, 24, 22] to state the interpolation
problem as a super-resolution [107] or image-to-image translation problem [81, 59]. The third
category relates to inverse problem formulations and associated deep learning schemes, for example
deep unfolding methods and plug-and-play priors [115]. Interestingly, recent contributions explore
novel neural schemes which combine data assimilation formulations [21] and learned optimizer
strategies [14, 44]. We provide a more detailed ontology of methods used for interpolation problems
in appendix G. We consider at least one baseline approach from each category for each data challenge
described in section 4.4. While all these methods have pros and cons, we expect the OceanBench
platform to showcase to new experimental evidence and understanding regarding their applicability
to SSH interpolation problems.

4.3 Experimental Design

Table 1: This table gives a brief overview of the datasets provided to complete the data challenges
listed in 4.4 and A. Note that the OSSE datasets are all gridded products whereas the OSE NADIR is
an alongtrack product. See figure 2 for an example of the OSSE NEMO Simulations for SSH and
SST and pseudo-observations for NADIR & SWOT.

OSSE OSSE NADIR + SWOT OSSE SST OSE NADIR

Data Type Simulations Pseudo-Observations Simulations Observations
Source NEMO [5] NEMO [5] NEMO [5] Altimetry [32]
Region GulfStream GulfStream GulfStream GulfStream
Domain Size 10⇥ 10� 10⇥ 10� 10⇥ 10� 10⇥ 10�

Longitude Extent [�65�,�55�] [�65�,�55�] [�65�,�55�] [�65�,�55�]
Latitude Extent [33�, 43�] [33�, 43�] [33�, 43�] [33�, 43�]
Resolution 0.05� ⇥ 0.05� 0.05� ⇥ 0.05� 0.05� ⇥ 0.05� 7 km
Grid Size 200⇥ 200 200⇥ 200 200⇥ 200 N/A
Num Datapoints ⇠14.6M ⇠14.6M ⇠14.6M ⇠1.6M
Period Start 2012-10-01 2012-10-01 2012-10-01 2016-12-01
Period End 2013-09-30 2013-09-30 2013-09-30 2018-01-31
Frequency Daily Daily Daily 1 Hz

The availability of multi-year simulation and observation datasets naturally advocates for the design
of synthetic (or twin) experiments, referred to as observing system simulation experiments (OSSE),
and of real-world experiments, referred to as observing system experiments (OSE). We outline these
two experimental setups below.
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Observing System Simulation Experiments (OSSE). A staple and groundtruthed experimental
setup uses a reference simulation dataset to simulate the conditions we can expect from actual
satellite observations. This setup allows researchers and operational centers to create a fully-fledged
pipeline that mirrors the real-world experimental setting. An ocean model simulation is deployed
over a specified spatial domain and period, and a satellite observation simulator is deployed to
simulate satellite observations over the same domain and period. This OSSE setup has primarily
been considered for performance evaluation, as one can assess a reconstruction performance over
the entire space-time domain. It also provides the basis for the implementation of classic supervised
learning strategies [9, 74, 116]. The domain expert can vary the experimental conditions depending
on the research question. For example, one could specify a region based on the expected dynamical
regime [12] or add a certain noise level to the observation tracks based on the satellite specifications.
The biggest downside to OSSE experiments is that we train models exclusively with ocean simulations
which could produce models that fail to generalize to the actual ocean state. Furthermore, the
simulations are often quite expensive, which prevents the community from having high spatial
resolution over very long periods, which would be essential to capture as many dynamical regimes as
possible.

Observing System Experiments (OSE). As more observations have become available over the past
few decades, we can also design experiments using real data. This involves aggregating as many
observations from real ocean altimetry satellites as possible with some specific independent subset
left out for evaluation purposes. A major downside to OSE experiments is that the sparsity and spatial
coverage of the observations narrow the possible scope of performance metrics and make it very
challenging to learn directly from observation datasets. The current standard altimetry data are high
resolution but cover a tiny area. As such, it can only inform fine-scale SSH patterns in the along-track
satellite direction and cannot explicitly reveal two-dimensional patterns. Despite these drawbacks,
it provides a quantitative evaluation of the generalizability of the ML methods concerning the true
ocean state.

4.4 Data Challenges

We rely on existing OSSE and OSE experiments for SSH interpolation designed by domain experts [13,
12] and recast them into OceanBench framework to deliver a ML-ready benchmarking suites. The
selected data challenges for this first edition address SSH interpolation for a 1000km⇥1000km
Gulfstream region. We briefly outline them below.

Experiment I (OSSE NADIR) addresses SSH interpolation using NADIR altimetry tracks which are
very fine, thin ocean satellite observations (see Figure 2). It relies on an OSSE using high-resolution
(1/60� resolution) ocean simulations generated by the NEMO model over one year with a whole
field every day.

Experiment II (OSSE SWOT) addresses SSH interpolation using jointly NADIR and SWOT altime-
try data where we complement the OSSE NADIR configuration with simulated SWOT observations.
SWOT is a new satellite altimetry mission with a much higher spatial coverage but a much lower
temporal resolution as illustrated in Figure 2. The higher spatial resolution allows us to see structures
at a smaller resolution but at the cost of a massive influx of observations (over ⇥100).

Experiment III (OSSE SST) addresses SSH interpolation using altimetry and SST satellite data
jointly. We complement the OSSE SWOT challenge with simulated SST observations. Satellite-
derived SST observations are more abundantly available in natural operational settings than SSH at a
finer resolution, and structures have visible similarities [51, 55]. So this challenge allows for methods
to take advantage of multi-modal learning [44, 116].

Experiment IV (OSE NADIR) addresses SSH interpolation for real NADIR altimetry data. In
contrast to the three OSSE data challenges, it only looks at actual observations aggregated from
the currently available ocean altimetry data from actual satellites. It involves a similar space-time
sampling as Experiment (OSSE NADIR) to evaluate the generalization of ML methods trained in
Experiment I to real altimetry data. The training problem’s complexity increases significantly due
to the reference dataset’s sparsity compared with the OSSE NADIR dataset. One may also explore
transfer learning or fine-tuning strategies from the available OSSE dataset.
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NADIR Altimetry Tracks SWOT Altimetry Tracks Sea Surface Temperature

NEMO Simulation MIOST BFNQG 4DVarNet

(a) (b) (c) (d)
Figure 2: A snapshot at 27th October, 2012 of the sea level anomaly (SLA) from the NEMO
simulation for the OSSE experiment outlined in section 4.3. The top row showcases the aggregated
NADIR altimetry tracks and the aggregated SWOT altimetry tracks (12 hours before and 12 hours
after) as well as the SST from the NEMO simulation. Each subsequent row showcases the following
physical variables found in appendix B: (a) Sea Level Anomaly, (b) Kinetic Energy, (c) Relative
Vorticity, and (d) Strain. Each column in the subsequent rows showcase the following reconstructed
field from the NEMO simulation found in columrn (a): (b) MIOST [102], (c) BFN-QG [55], and (d)
4DVarNet [14].

4.5 OceanBench Pipelines

For the four data challenges presented in the previous section, we used OceanBench pipelines to
deliver a ML-ready benchmarking framework. We used the hydra and the geoprocessing tools
outlined in section 3.2 with specialized routines for regridding the ocean satellite data to a uniformly
gridded product and vice versa when necessary. Appendix D showcases an example of the hydra
integration for the preprocessing pipeline. A key feature is the creation of a custom patcher for the
appropriate geophysical variables using our XRPatcher tool, which is later integrated into custom
datasets and dataloaders for the appropriate model architecture, e.g., coordinate-based or grid-based.
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(a) Normalized RMSE (b) Isotropic Power Spectrum (c) Isotropic Power Spectrum Score

(d) NEMO Simulation (e) MIOST (f) BFN-QG (g) 4DVarNet

Figure 3: This figure showcases some statistics for evaluation of the SSH field reconstructions for
the OSSE NADIR experiment outlined in section 4. Subfigure (a) showcases the normalized root
mean squared error (nRMSE), (b) showcases the isotropic power spectrum decomposition (PSD),
(c) showcases isotropic PSD scores. The bottom row showcases the space-time PSD for the NEMO
simulation (subfigure (d)) and the PSD scores for three reconstruction models: (e) the MIOST
model [102], (f) the BFN-QG model [55], and (g) the 4DVarNet model [14].

Table 2: This table highlights some of the results for the OSSE NADIR experiment outlined in
section 4.4 and appendix A. This table highlights the performance statistically in the real and spectral
space; the normalized RMSE score for the real space and the minimum spatial and temporal scales
resolved in the spectral domain. For more information about the class of models displayed and class
of metrics, see appendix G and appendix C respectively. We only showcase the model performance on
the alongtrack NADIR data available. For the extended table for each of the challenges, see Table 3.

Experiment Algorithm Algorithm Class nRMSE Score �x [km] �t [days]

OSSE NADIR OI [95] Coordinate-Based 0.92 ± 0.01 175 10.8
OSSE NADIR MIOST [102] Coordinate-Based 0.93 ± 0.01 157 10.1
OSSE NADIR BFNQG [55] Hybrid Model 0.93 ± 0.01 139 10.6
OSSE NADIR 4DVarNet [14] Bi-Level Opt. 0.95 ± 0.01 117 7.7

We provide an example snippet of how this can be done easily in section E. OceanBench also features
some tools specific to the analysis of SSH. For example, physically-interpretable variables like
geostrophic currents and relative vorticity, which can be derived from first-order and second-order
derivatives of the SSH, are essential for assessing the quality of the reconstructions generated by
the models. Figure 2 showcases some fields of the most common physical variables used in the
oceanography literature for the SSH-based analysis of sea surface dynamics. For more details
regarding the nature of the physical variables, see appendix B.

Regarding the evaluation framework, we include domain-relevant performance metrics beyond the
standard ML loss and accuracy functions. They account for the sampling patterns of the evaluation
data. Spectral analytics are widely used in geoscience [55], and here, we consider spectral scores
computed as the minimum spatial and temporal scales resolved by the reconstruction methods
proposed in [55]. For example, figure 3 showcases how OceanBench generated the isotropic power
spectrum and score and the space-time power spectrum decomposition and score. Table 2 outlines
some standard and domain-specific scores for the experiments outlined in section 4.3. We give a
more detailed description of the rationale and construction of the power-spectrum-specific metrics in

10



appendix C. In terms of baselines, we report for each data challenge the performance of at least one
approach for each of the category outlined in Section 4.2.

5 Conclusions

The ocean community faces technological and algorithmic challenges to make the most of available
observation and simulation datasets. In this context, recent studies evidence the critical role of ML
schemes in reaching breakthroughs in our ability to monitor ocean dynamics for various space-time
scales and processes. Nevertheless, domain-specific preprocessing steps and evaluation procedures
slow down the uptake of ML toward real-world applications. Our application of choice was SSH
mapping which facilities the production of many crucial derived products that are used in many
downstream tasks like subsequent modeling [93], ocean health monitoring [101, 73, 47] and maritime
risk assessment [106].

Through OceanBench framework, we embed domain-level requirements into the MLOPs consid-
erations by building a flexible framework that adds this into the hyperparameter considerations
for ML models. We proposed four challenges towards a ML-ready benchmarking suite for ocean
observation challenges. We outlined the inner workings OceanBench and demonstrated its usefulness
by recreating some preprocessing and analysis pipelines from a few data challenges involving SSH
interpolation. We firmly believe that the OceanBench platform is a crucial step to lowering the barrier
of entry for new ML researchers interested in applying and developing their methods to relevant
problems in the ocean sciences.
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