
Action Matching: A Variational Method for
Learning Stochastic Dynamics from Samples

Kirill Neklyudov
Vector Institute

Daniel Severo
University of Toronto

Vector Institute

Alireza Makhzani
University of Toronto

Vector Institute

Abstract

Stochastic dynamics are ubiquitous in many fields of science, from the evolution
of quantum systems in physics to diffusion-based models in machine learning.
Existing methods such as score matching can be used to simulate these physical
processes by assuming that the dynamics is a diffusion, which is not always the
case. In this work, we propose a method called “Action Matching” that enables us
to learn a much broader family of stochastic dynamics. Our method requires access
only to samples from different time-steps, makes no explicit assumptions about
the underlying dynamics, and can be applied even when samples are uncorrelated
(i.e., are not part of a trajectory). Action Matching directly learns an underlying
mechanism to move samples in time without modeling the distributions at each
time-step. In this work, we showcase how Action Matching can be used for several
computer vision tasks such as generative modeling, super-resolution, colorization,
and inpainting; and further discuss potential applications in other areas of science.

1 Problem Formulation of Learning Continuous Dynamics

The problem of learning stochastic dynamics is one of the most fundamental problems in many
different fields of science. In physics, porous medium equations (Vázquez, 2007) describe many
natural phenomena from this perspective, such as Fokker Planck equation in statistical mechanics,
Vlasov equation for plasma, and Nonlinear heat equation. Another prominent example is from
Quantum Mechanics where the state of physical systems is a distribution whose evolution is described
by the Schrödinger equation. Recently, stochastic dynamics have achieved very promising results in
machine learning applications. The most promising examples of this approach are the diffusion-based
generative models (Song et al., 2020b; Ho et al., 2020).

Informal Problem Setup In this paper, we approach the problem of Learning Stochastic Dynamics
from their samples. Suppose we observe the time evolution of some random variable Xt with the
density qt, from t0 to t1. Having access to samples from the density qt at different points in time
t ∈ [t0, t1], we want to build a model of the dynamics by learning how to move samples in time such
that they respect the marginals qt. In this work, we propose a method called “Action Matching” as a
solution to this problem.

Continuity Equation Suppose we have a set of particles in space X ⊂ Rd, initially distributed
as qt0 . Let each particle follow a time-dependent ODE (continuous flow) with the velocity field
v : [t0, t1]×X → Rd as follows

∂

∂t
x(t) = vt(x(t)) , x(t0) = x . (1)

Correspondence to k.necludov@gmail.com, makhzani@vectorinstitute.ai. See arXiv for the extended paper.

NeurIPS 2022 Workshop on Score-Based Methods.

mailto:k.necludov@gmail.com; makhzani@vectorinstitute.ai
https://arxiv.org/abs/2210.06662

From fluid mechanics, we know that the density of the particles at time t, denoted by qt, evolves
according to the continuity equation

∂

∂t
qt = −∇ · (qtvt) , (2)

which holds in the distributional sense, where∇· denotes the divergence operator.

Note that even though we arrived at the continuity equation using ODEs, the continuity equation can
describe a rich family of density evolutions in a wide range of stochastic processes, including those
of SDEs (see Equation 37 of Song et al. (2020b)), or even those of the porous medium equation (Otto,
2001) that are more general than SDEs. This motivates us to restrict ourselves to ODEs of the form
Eq. (1), and the continuity equation, without losing any modelling capacity. In fact, as the following
theorem shows, under mild conditions, any continuous dynamics can be modeled by the continuity
equation, and moreover any continuity equation results in a continuous dynamics.
Theorem 1 (Adapted from Theorem 8.3.1 of Ambrosio et al. (2008)). Consider a continuous
dynamic with the density evolution of qt, which satisfies mild conditions (absolute continuity in the
2-Wasserstein space of distributions P2(X)). Then, there exists a unique (up to a constant) function
s∗t (x), called “action”, such that vector field v∗t (x) = ∇s∗t (x) and qt satisfies the continuity equation

∂

∂t
qt = −∇ · (qt∇s∗t (x)) . (3)

In other words, the ODE ∂
∂tx(t) = ∇s∗t (x) can be used to move samples in time such that the

marginals are qt.

Using Theorem 1, the problem of learning the dynamics can be boiled down to learning the unique
vector field ∇s∗t , only using samples from qt. Motivated by this, we restrict our search space of
velocity vectors to the family of gradient vector fields

St = {∇st | st : X → R} . (4)
We use a neural network to parameterize the set of functions st(x), and propose Action Matching for
learning the neural network such that st(x) approximates s∗t (x). Once we have learned the vector
field∇s∗t , we can move samples forward or backward in time by simulating the ODE in Eq. (1) with
the velocity ∇s∗t . The continuity equation ensures that samples at any given time t ∈ [t0, t1] are
distributed according to qt.

2 Action Matching

The main development of this paper is the Action Matching method, which allows us to recover the
true action s∗t of a continuous dynamic and thereby simulate it, while having access only to samples
from qt. In order to do so, we define the variational action st(x), parameterized by a neural network,
that approximates s∗t (x), by minimizing the “ACTION-GAP” objective

ACTION-GAP(s, s∗) :=
1

2

∫
Eqt(x)∥∇st(x)−∇s

∗
t (x)∥

2
dt . (5)

Note that this objective is intractable, as we do not have access to ∇s∗. We now propose action
matching as a variational framework for optimizing this objective.
Proposition 1. For an arbitrary variational action s, the gap can be characterized as

ACTION-GAP(s, s∗) = L(s) +
1

2

∫ t1

t0

Eqt(x)∥∇s
∗
t (x)∥

2
dt , (6)

where

L(s) = Eqt0 (x)
[st0(x)]− Eqt1 (x)

[st1(x)] +

∫
Eqt(x)

[
1

2
∥∇st(x)∥2 +

∂st
∂t

(x)

]
dt . (7)

Thus, the following optimization problems are equivalent
s∗ = argmin

s
L(s) = argmin

s
ACTION-GAP(s, s∗) , (8)

where the equality is up to an additive constant, and the minimum is achieved iff ∇st(x) = ∇s∗t (x).

See Appendix A for the proof. Proposition 1 indicates that minimizing Eq. (7) results in minimizing
the the ACTION-GAP from Eq. (5). However, unlike the intractable ACTION-GAP, minimising L is
tractable, as we can use the samples of qt to obtain its unbiased low variance estimate.

2

Figure 1: Examples of different noising processes used for different vision tasks. At t = 0, we start
from the data distribution. Depending on the task, the noising process gradually destroys all or partial
information of data, and replace it with prior noise.

3 Generative Modeling using Action Matching

Action Matching has a wide range of applications in generative modeling. In Action Matching
generative models, we first have to define a dynamics (i.e., noising process) that transforms samples
from the data distribution q0 = π to samples of a prior distribution q1 (e.g., standard Gaussian).
Action Matching is then used to learn the vector field ∇s⋆ of the chosen dynamics. Once ∇s⋆ is
learned, we can sample from the target distribution by first sampling from the prior, and then moving
the samples using a reverse ODE with the velocity ∇s⋆. Finally, Action Matching enables us to
compute the exact log-likelihood of the data.

Noising Processes in Action Matching Generative Models To learn the vector field∇s⋆, Action
Matching only requires samples from the intermediate distributions qt, t ∈ [0, 1], that define the
noising process. We now provide a broad family of noising processes that can be used for generative
modeling tasks. Consider the process

xt = ft(x0) + σtε, x0 ∼ π(x), ε ∼ p(ε) , (9)
where ft(x0) is some transformation of the data, which could be nonlinear. At t = 0, f0 is the identity
function, and σ0 = 0. Thus, x0 is distributed according to the data distribution, i.e., q0(x0) = π(x0).
The noising process then gradually eliminates information from the samples using ft, and increases
the variance of noise σt. At t = 1, ft would become the zero function and we have σ1 = 1. Thus, x1
would be distributed as q1(x1) = p(x1). See Fig. 1 for the examples of these sampling processes.
We will demonstrate Action Matching learning these dynamics in the experiment section.

Learning Once we define the noising process for qt, ∀t ∈ [0, 1], we apply Action Matching. It
samples points with different time-steps and then minimizes the objective (5) w.r.t. the parameters θ
of st(x, θ). In practice, we reduce the variance of the objective (5), by weighting it over time and
adaptively selecting the distribution of sampled time-steps. We derive the weighted objective in
Appendix A, and further discuss the details of training in Appendix B.

Sampling We sample from the target distribution via the trained function st(x(t), θ∗) by solving
the following ODE backward in time:

∂

∂t
x = ∇xst(x(t), θ

∗), x(t = 1) = ε , ε ∼ p(ε). (10)

Recall that this sampling process is justified by Eq. (3), where st(x(t), θ∗) approximates s∗t .

Evaluating the Log-likelihood for the generation tasks can be done by integrating the same ODE
forward, i.e.,

log q0(x(0)) = log q1(x(1)) +

∫ 1

0

dt ∇2s∗t (x(t)),
∂

∂t
x = ∇xs

∗
t (x(t)), x(t = 0) = x, (11)

where we approximate s∗t by st(x(t), θ∗) and assume the density q1(x) to be a known analytic
distribution.

3

Figure 2: Faster conver-
gence of Action Match-
ing (AM) compared to
Score Matching (SM)
in FID values and gen-
erated samples qual-
ity for the colorization
task on CIFAR-10.

Method Average MMD↓
AM (ours) 5.7 · 10−4 ± 3.1 · 10−4

ALD + SM 4.8 · 10−2 ± 4.8 · 10−3

ALD + SSM 4.7 · 10−2 ± 4.0 · 10−3

ALD + True Scores 3.6 · 10−2 ± 4.1 · 10−4

Table 1: Performance of Action Matching and
the Annealed Langevin Dynamics (ALD) for the
Schrödinger equation simulation. For ALD, we esti-
mate the scores in two ways: Score Matching (SM)
and Sliced Score Matching (SSM). We also demon-
strate that even using true scores does not allow for
the precise simulation.

4 Experiments
Generative modeling We apply Action Matching to MNIST, CelebA (Liu et al., 2015) and CIFAR-
10 datasets for a variety of computer vision tasks. Namely, we perform unconditional image generation
via diffusion as well as conditional generation for super-resolution, in-painting, and colorization
tasks. In addition to these settings, we also learn unconditional image generation on a torus, where
Denoising Score Matching can not be applied in the original formulation. We train all models for
300k iterations and report the negative log-likelihood in bits per dimension (BPD) and FID scores
(Heusel et al., 2017) in Table 2. We illustrate the generative process in github.com/action-matching.

We observe that Denoising Score Matching performs better than Action Matching on all tasks due to
the additional information that the Denoising Score Matching objective uses about the underlying
process. However, we expect Action Matching to converge faster on the conditional image generation
tasks, as it only needs to learn a cross-domain transformation, rather than learning the conditional
generation from the Gaussian noise. We experimentally verified this hypothesis by evaluating the
FID throughout the training process, on the colorization task, shown in Fig. 2.

Schrödinger equation simulation We demonstrate that Action Matching can learn a wide range of
stochastic dynamics by applying it to the dynamics of a quantum system evolving according to the
Schrödinger equation. Here, for the ground truth dynamics, we take the dynamics of an excited state
of the hydrogen atom, which is described by the following equation

i
∂

∂t
ψ(x, t) = − 1

∥x∥
ψ(x, t)− 1

2
∇2ψ(x, t). (12)

The function ψ(x, t) : R3×R→ C is called a wavefunction and it completely defines the distribution
of the coordinates x by defining its density as qt(x) := |ψ(x, t)|2.

For the baseline, we take Annealed Langevin Dynamics as considered in (Song & Ermon, 2019).
It approximates the ground truth dynamics using only scores of the distributions by running the
approximate MCMC method (which does not have access to the densities) targeting the intermediate
distributions of the dynamics (see Algorithm 2). For the estimation of scores, we consider Score
Matching (SM) (Hyvärinen & Dayan, 2005), Sliced Score Matching (SSM) (Song et al., 2020a),
and additionally evaluate the baseline using the ground truth scores. For further details, we refer the
reader to Appendix D.2 and the code github.com/action-matching.

Action Matching outperforms both Score Matching and Sliced Score Matching, precisely simulating
the true dynamics (see Table 1). Note, that even using the ground truth scores in Annealed Langevin
Dynamics does not match the performance of Action Matching (see Table 1) since it is itself an
approximation to the Metropolis-Adjusted Langevin Algorithm. Finally, we provide animations
of the learned dynamics for different methods (see github.com/action-matching) to illustrate the
performance difference.

4

https://github.com/action-matching
https://github.com/action-matching/action-matching
https://github.com/action-matching/action-matching

References
Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the

space of probability measures. Springer Science & Business Media, 2008.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge university
press, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. 2001.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Tim Salimans and Jonathan Ho. Should ebms model the energy or the score? In Energy Based
Models Workshop-ICLR 2021, 2021.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University Press on
Demand, 2007.

5

A Action Matching

Proposition. For an arbitrary variational action s, the gap can be characterized as

ACTION-GAP(s, s∗) = L(s) +
1

2

∫ t1

t0

Eqt(x)∥∇s
∗
t (x)∥

2
dt , (13)

where

L(s) = Eqt0 (x)
[st0(x)]− Eqt1 (x)

[st1(x)]︸ ︷︷ ︸
action-increment

+

∫
Eqt(x)

[
1

2
∥∇st(x)∥2 +

∂st
∂t

(x)

]
dt︸ ︷︷ ︸

smoothness (regularization)

. (14)

Thus, the following optimization problems are equivalent

argmin
s
{L(s)} = argmin

s
{ACTION-GAP(s, s∗)} , (15)

where the equality is up to an additive constant, and the minimum is achieved iff ∇st(x) = ∇s∗t (x).

Proof.

ACTION-GAP(s, s∗)

=
1

2

∫ t1

t0

ωtEqt(x)∥∇s−∇s∗∥2dt

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s−∇s∗∥2dxdt

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt−
∫ t1

t0

ωt

∫
x

qt(x)⟨∇st(x),∇s∗t (x)⟩dxdt+

K︷ ︸︸ ︷
1

2

∫
Eqt(x)∥∇s∗∥2dt

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt−
∫ t1

t0

ωt

∫
x

⟨∇st(x), qt(x)∇s∗t (x)⟩dxdt+K

(1)
=

1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt+
∫ t1

t0

ωt

∫
x

st(x)[∇ · (qt(x)∇s∗t (x))]dxdt+K

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt−
∫ t1

t0

(∫
x

ωtst(x)
∂qt(x)

∂t
dx

)
dt+K

(2)
=

∫ t1

t0

ωtEqt(x)

[
1

2
∥∇st(x)∥2

]
dt−

(
ωtEqt(x)[st(x)]

∣∣t1
t0

−
∫
x

Eqt(x)

[
st(x)

dωt

dt
+ ωt

∂st(x)

∂t

]
dt

)
+K

=

∫ t1

t0

ωtEqt(x)

[
1

2
∥∇st(x)∥2 +

∂st(x)

∂t
+ st(x)

d logωt

dt

]
dt− ωt1Eqt1 (x)[st1(x)] + ωt0Eqt0 (x)[st0(x)] +K

= L(s) +K ,

where in (1), we have used
∫
V
⟨∇g,f⟩dx =

∮
∂V
⟨fg,ds⟩ −

∫
V
g(∇ · f)dx, and in (2) we have used

integration by parts.

B Generative Modeling in Practice

In practice, we found that the naive application of Action Matching for complicated dynamics such
as image generation might exhibit poor convergence due to the large variance of objective estimate.
Moreover, the optimization problem

min
st

1

2

∫
Eqt(x)∥∇st(x)−∇s

∗
t (x)∥

2
dt (16)

might be ill posed due to the singularity of the ground truth vector field∇s∗t . This happens when the
data distribution q0 is concentrated close to a low dimensional manifold, and the final distribution q1
has a much higher intrinsic dimensionality (e.g., Gaussian distributions). In this case, the deterministic
velocity vector field must be very large (infinite in the limit), so that it can pull apart the low
dimensional manifold to transform it to higher dimensions.

6

Algorithm 1 Generative Modeling using Action Matching (In Practice)

Require: dataset {xi}Ni=1, x
i ∼ π(x) = q0(x), batch-size n

Require: parameteric model st(x, θ), weight schedule ω(t)
for learning iterations do

sample a mini-batch of data {xi0}ni=1 from the dataset {xi}Ni=1
sample a mini-batch of noise {εi}ni=1 ∼ q1(x1)
sample times {ti}ni=1 ∼ p(t)
sample two batches {xi1}ni=1, {xiti}

n
i=1 using xiti = fti(x

i
0) + σtiε

i

Li =

[
s0(x

i
0)ω(0)− s1(xi1)ω(1) + 1

2

∥∥∇st(xiti)∥∥2ω(ti) + ∂st(x
i
ti
)

∂t ω(ti) + st(x
i
t)

∂ω(ti)
∂ti

]
L =

∑n
i=1

1
p(ti)Li

update the model θ ← Optimizer(θ,∇θLθ)
end for
return trained model st(x, θ∗)

We now discuss an example of this behavior, when the data distribution is a mixture of delta functions.
Consider the sampling process

xt = ft(x0) + σtε, x0 ∼ π(x), ε ∼ N (x | 0, 1) , (17)

where the target distribution is a mixture of delta-functions

π(x) =
1

N

N∑
i

δ(x− xi). (18)

Denoting the distribution of xt as qt(x), we can solve the continuity equation

∂qt
∂t

= −∇ · (qtvt) (19)

analytically (see Appendix C) by finding one of the many possible solutions

vt =
1∑

i q
i
t(x)

∑
i

qit(x)

[
(x− ft(xi))

∂

∂t
log σt +

∂ft(x
i)

∂t

]
, qit(x) = N (x | ft(xi), σ2

t). (20)

Note that vt is not a gradient field in general, and thus is not the solution of action matching. However,
it can be written as

vt(x) =
∑
i

qit(x)∑
i q

i
t(x)
∇sit(x), where sit(x) =

1

2
(x− ft(xi))2

∂

∂t
log σt +

〈
∂ft(x

i)

∂t
, x

〉
.

Given that the density of Gaussian distributions drop exponentially fast, we can conclude that for
small values of t around each xi, qjt (x)∑

j qjt (x)
is close to 1 if i = j, and close to 0 if i ̸= j. Thus,

vt(x) around each xi can be locally approximated with the gradient vector field ∇sit(x). Now
suppose ∇s∗t (x) is the solution of action matching, i.e., the unique gradient vector field that solves
the continuity equation in every region, including regions around each xi. Given the uniqueness of
gradient vector fields that solve continuity equation, we can conclude that∇sit(x) locally matches
∇s∗t (x) around each xi.

For generative modeling, it is essential that q0 = π(x); hence, limt→0 σt = 0 and limt→0 ft(x) = x.
Assuming that σ2

t is continuous and differentiable at 0, in the limit, around each xi, we have

for t→ 0 , ∥∇s∗t (x)∥
2 ∝ 1

σ2
t

, and
1

2
Eqt(x)∥∇s

∗
t (x)∥

2 ∝ 1

σ2
t

. (21)

Thus, the loss can be properly defined only on the interval t ∈ (δ, 1], where δ > 0. In practice, we
want to set δ as small as possible, i.e., we ideally want to learn st on the whole interval t ∈ [0, 1]. We
can prevent learning the singularity functions just by re-weighting the objective in time as follows

1

2

∫
Eqt(x)∥∇st(x)−∇s

∗
t (x)∥

2
dt −→ 1

2

∫
ω(t)Eqt(x)∥∇st(x)−∇s

∗
t (x)∥

2
dt. (22)

7

To give an example, we can take σt =
√
t and ft(x) = x

√
1− t, then ω(t) = (1 − t)t3/2 cancels

out the singularities at t = 0 and t = 1.

The second modification of the original Algorithm is the sampling of time-steps for the estimation of
the time integral. Namely, the optimization of Equation (22) is equivalent to the minimization of the
following objective

L(s) = ω(t0)Eqt0 (x)
[st0(x)]− ω(t1)Eqt1 (x)

[st1(x)]︸ ︷︷ ︸
weighted action-increment

(23)

+

∫ t1

t0

Eqt(x)

[
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t

]
dt︸ ︷︷ ︸

weighted smoothness

, (24)

which consists of two terms. Estimation of the weighted action-increment involves only sampling
from qt0 and qt1 , while the weighted smoothness term estimate depends on the distribution of time
samples p(t), i.e., ∫ t1

t0

p(t)

p(t)︸︷︷︸
=1

Eqt(x)

[
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t

]
dt (25)

= Et∼p(t)Ex∼qt(x)
1

p(t)

[
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t

]
. (26)

Note that p(t) can be viewed as a proposal importance sampling distribution, and thus every choice of
it results in an unbiased estimate of the original objective function. Thus, we can design p(t) to reduce
the variance of the weighted smoothness term of the objective. In our experiments, we observed
that simply taking p(t) proportionally to the standard deviation of the corresponding integrand
significantly reduces the variance, i.e.,

p(t) ∝
√
Ex∼qt(ζt − Ex∼qtζt)

2, ζt =
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t
. (27)

We implement sampling from this distribution by aggregating the estimated variances throughout
the training with exponential moving average, and then followed by linear interpolation between the
estimates.

C Sparse Data Regime

In this section, we find velocity vector fields that satisfy the continuity equation in the case where the
data distribution q0 is a delta function or a mixture of delta functions; and the conditional kt(xt |x) is
a Gaussian distribution.

C.1 Delta Function Data Distribution

We start with the case where the dataset consists only of a single point x0 ∈ Rd

q0(x) = δ(x− x0), kt(xt |x) = N (xt | ft(x), σ2
t). (28)

Then the distribution at time t is

qt(x) =

∫
dx′ q0(x

′)kt(x |x′) = N (x | ft(x0), σ2
t). (29)

The ground truth vector field v comes from the continuity equation

∂qt
∂t

= −∇ · (qtv) =⇒ ∂

∂t
log qt = −⟨∇ log qt, v⟩ − ∇ · (v). (30)

8

For our dynamics, we have
∂

∂t
log qt =

∂

∂t

[
− d

2
log(2πσ2

t)−
1

2σ2
t

∥x− ft(x0)∥2
]

(31)

= − d ∂
∂t

log σt +
1

σ2
t

∥x− ft(x0)∥2
∂

∂t
log σt +

1

σ2
t

〈
x− ft(x0),

∂ft(x0)

∂t

〉
(32)

= − d ∂
∂t

log σt +
1

σ2
t

〈
x− ft(x0), (x− ft(x0))

∂

∂t
log σt +

∂ft(x0)

∂t

〉
; (33)

∇ log qt = − 1

σ2
t

(x− ft(x0)); (34)

∂

∂t
log qt = − d ∂

∂t
log σt −

〈
∇ log qt, (x− ft(x0))

∂

∂t
log σt +

∂ft(x0)

∂t

〉
. (35)

Matching the corresponding terms in the continuity equation, we get

v = (x− ft(x0))
∂

∂t
log σt +

∂ft(x0)

∂t
. (36)

We note that since the above vector field is a gradient flow, it is the unique vector field that the action
matching would recover.

C.2 Mixture of Delta Functions Data Distribution

For the mixture of delta-functions, we denote

q0(x) =
1

N

N∑
i

δ(x− xi), qt(x) =
1

N

N∑
i

qit(x), qit(x) = N (x | ft(xi), σ2
t). (37)

Due to the linearity of the continuity equation w.r.t. q, we have∑
i

∂qit
∂t

=
∑
i

∇ ·
(
qitv

)
=⇒

∑
i

qit

(
∂

∂t
log qit + ⟨∇ log qit, v⟩+∇ · (v)

)
= 0. (38)

We first solve the equation for ∂ft
∂t = 0, then for ∂

∂t log σt = 0 and join the solutions.

For ∂ft
∂t = 0, we look for the solution in the following form

vσ =
A∑
i q

i
t

∑
i

∇qit, qit(x) = N (x | f it (xi), σ2
t). (39)

Then we have

∇ · (vσ) =
〈
∇ A∑

i q
i
t

,
∑
i

∇qit
〉
+

A∑
i q

i
t

∑
i

∇2qit (40)

= − A

(
∑

i q
i
t)

2

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

+
A∑
i q

i
t

∑
i

qit

[∥∥∇ log qit
∥∥2 − d

σ2
t

]
, (41)

(∑
i

qit
)
∇ · (vσ) = − A∑

i q
i
t

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

+A
∑
i

qit

[∥∥∇ log qit
∥∥2 − d

σ2
t

]
, (42)

and from (38) we have∑
i

qit

(
− d ∂

∂t
log σt +

〈
∇ log qit, vσ + σ2

t

∂

∂t
log σt∇ log qit

〉
+∇ · (vσ)

)
= 0. (43)

From these two equations we have∑
i

qit∇ · (vσ) = − A∑
i q

i
t

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

+A
∑
i

qit

[∥∥∇ log qit
∥∥2 − d

σ2
t

]
= (44)

=
∑
i

qit

(
d
∂

∂t
log σt

)
− A∑

i q
i
t

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

− σ2
t

∂

∂t
log σt

∑
i

qit
∥∥∇ log qit

∥∥2.
(45)

9

Thus, we have

A = −σ2
t

∂

∂t
log σt. (46)

For ∂
∂t log σt = 0, we simply check that the solution is

vf =
1∑
i q

i
t

∑
i

qit
∂ft(x

i)

∂t
. (47)

Indeed, the continuity equation turns into∑
i

qit

(〈
∇ log qit, vf −

∂ft(x
i)

∂t

〉
+∇ · (vf)

)
= 0. (48)

From the solution and the continuity equation we write
∑

i q
i
t∇ · (vf) in two different ways.∑

i

qit∇ · (vf) = − 1∑
i q

i
t

〈∑
i

∇qit,
∑
i

qit
∂ft(x

i)

∂t

〉
+
∑
i

〈
∇qit,

∂ft(x
i)

∂t

〉
(49)

= −
〈∑

i

∇qit, vf
〉
+

∑
i

〈
∇qit,

∂ft(x
i)

∂t

〉
(50)

Thus, we see that (47) is indeed a solution.

Finally, unifying vσ and vf , we have the full solution

v = −
(
∂

∂t
log σt

)
σ2
t∑
i q

i
t

∑
i

∇qit +
1∑
i q

i
t

∑
i

qit
∂ft(x

i)

∂t
, qit(x) = N (x | ft(xi), σ2

t), (51)

v =
1∑
i q

i
t

∑
i

qit

[
(x− ft(xi))

∂

∂t
log σt +

∂ft(x
i)

∂t

]
. (52)

10

Dataset Task BPD↓ FID↓
SM AM SM AM

CelebA Diffusion 2.56 3.78 4.60 18.07
CelebA Superres – – 1.22 4.92
CelebA Inpainting – – 2.02 10.71
CelebA Torus – 3.90 – 18.09

CIFAR-10 Diffusion 3.19 4.31 12.05 53.86
CIFAR-10 Superres – – 5.94 26.42
CIFAR-10 Colorization – – 5.35 7.91
CIFAR-10 Torus – 6.42 – 39.42

Table 2: Experimental results for Ac-
tion Matching (AM) and Score Match-
ing (SM) on computer vision tasks.
Diffusion and Torus map images to
known distributions; hence, for them,
we report negative log-likelihood in
bits per dimension (BPD). For all tasks,
we report FID evaluated between gen-
erated images and the test data. For
CelebA, we use 20k images. For
CIFAR-10, we use 10k images.

Figure 3: Illustration
that Action Matching
can learn one to many
relations using low
variance noise added
to the image. Here, we
sample different col-
orizations starting from
the same grayscale
input adding different
samples of noise.

D Implementation Details

D.1 Details of Action Matching Generative Models

For the architecture of the neural network parameterizing st, we follow (Salimans & Ho, 2021). In
more details, we parameterize st(x) as ∥unet(t, x)− x∥2, where unet(t, x) is the U-net architecture
(Ronneberger et al., 2015). For the U-net architecture, we follow (Song et al., 2020b) with the only
difference is that we set the channel multiplier parameter to 64 instead of 128, thus, narrowing down
the architecture. We have to narrow down the architecture since Action Matching requires taking
the derivative w.r.t. the inputs at each iteration, which is a downside compared to Denoising Score
Matching. Otherwise the training of one model takes a week on 4 gpus. We consider the same U-net
architecture for the baseline to parameterize∇ log qt.

For diffusion, we take VP-SDE from (Song et al., 2020b), which corresponds to αt =

exp(− 1
2

∫
β(s)ds) and σt =

√
1− exp(−

∫
β(s)ds), where β(s) = 0.1+19.9t. For other tasks we

take σt = t and αt = 1− t. All images are normalized to the interval [−1, 1]. For image generation
on the torus, we first normalize the data such that every pixel is in [0.25, 0.75]. Thus we make sure
that the shortest distance between the lowest and the largest pixel values is maximal on the circle
[0, 1].

Although Action Matching learns deterministic mappings, it is possible to learn one-to-many map-
pings by adding small amount of noise to the data. For example, each row of Fig. 3 shows that Action
Matching has learned to generate different colorizations from a single grayscale CIFAR-10 image,
using different noise samples added to the grayscale image in

xt = αtx0 + σt(10
−1ε+ gray(x0)) . (53)

D.2 Details on the Schrödinger Equation Simulation

For the initial state of the dynamics

i
∂

∂t
ψ(x, t) = − 1

∥x∥
ψ(x, t)− 1

2
∇2ψ(x, t) , (54)

11

we take the following wavefunction

ψ(x, t = 0) ∝ ψ32−1(x) + ψ210(x), and q∗t=0(x) = |ψ(x, t = 0)|2, (55)

where n, l,m are quantum numbers and ψnlm is the eigenstate of the corresponding Hamiltonian (see
Griffiths & Schroeter (2018)). For all the details on sampling and the exact formulas for the initial
state, we refer the reader to the code github.com/action-matching. We evolve the initial state for
T = 14 · 103 time units in the system ℏ = 1,me = 1, e = 1, ε0 = 1 collecting the dataset of samples
from q∗t . For the time discretization, we take 103 steps; hence, we sample every 14 time units.

To evaluate each method, we collect all the generated samples from the distributions qt, t ∈ [0, T]
comparing them with the samples from the training data. For the distance metric, we measure the
MMD distance (Gretton et al., 2012) between the generated samples and the training data at 10
different timesteps t = k

10T, k = 1, . . . , 10 and average the distance over the timesteps. For the
Annealed Langevin Dynamics, we set the number of intermediate steps for M = 5, and select the
step size dt by minimizing MMD using the exact scores∇ log qt(x).

For all methods, we use the same architecture, which is a multilayer perceptron with 5 layers 256
hidden units each. The architecture h(t, x) takes x ∈ R3 and t ∈ R and outputs 3-d vector, i.e.
h(t, x) : R × R3 → R3. For the score-based models it already defines the score, while for action
matching we use st(x) = ∥h(t, x)− x∥2 as the model and the vector field is defined as∇st(x).

Algorithm 2 Annealed Langevin Dynamics

Require: score model st(x), step size dt, number of intermediate steps M
Require: initial samples xi0 ∈ Rd

for time steps t ∈ (0, T] do
set the target distribution qt, such that st(x) ≈ ∇ log qt(x)
for intermediate steps j ∈ 1, . . . ,M do
εi ∼ N (0,1)

xit = xit +
dt
2 st(x

i
t) +
√
dt · εi

end for
save samples xit

end for
return samples {xit}Tt=0

E Samples of Action Matching Generative Models

Figure 4: Action Matching generated images on MNIST for diffusion (on the left), for torus (on the
right). Prior distribution is not shown.

12

https://github.com/action-matching/action-matching

Figure 5: Action Matching on CelebA for diffusion. Prior distribution is on the left, generated images
are on the right.

Figure 6: Action Matching on CelebA for superres. Prior distribution is on the left, generated images
are on the right.

Figure 7: Action Matching on CelebA for inpaint. Prior distribution is on the left, generated images
are on the right.

13

Figure 8: Action Matching on CelebA for torus. Prior distribution is on the left, generated images are
on the right.

Figure 9: Action Matching on CIFAR-10 for diffusion. Prior distribution is on the left, generated
images are on the right.

Figure 10: Action Matching on CIFAR-10 for superres. Prior distribution is on the left, generated
images are on the right.

14

Figure 11: Action Matching on CIFAR-10 for colorization. Prior distribution is on the left, generated
images are on the right.

Figure 12: Action Matching on CIFAR-10 for torus. Prior distribution is on the left, generated images
are on the right.

15

	Problem Formulation of Learning Continuous Dynamics
	Action Matching
	Generative Modeling using Action Matching
	Experiments
	Action Matching
	Generative Modeling in Practice
	Sparse Data Regime
	Delta Function Data Distribution
	Mixture of Delta Functions Data Distribution

	Implementation Details
	Details of Action Matching Generative Models
	Details on the Schrödinger Equation Simulation

	Samples of Action Matching Generative Models

