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Abstract

In this paper, we present an unsupervised
graph-based approach for the detection of
symptoms of COVID-19, the pathology of
which seems to be evolving. More generally,
the method can be applied to finding context-
specific words and texts (e.g. symptom men-
tions) in large imbalanced corpora (e.g. all
tweets mentioning #COVID-19). Given the
novelty of COVID-19, we also test the pro-
posed approach generalizes to the problem of
detecting Adverse Drug Reaction (ADR). We
find that the approach applied on Twitter data
can detect symptom mentions much prior to
their being reported by the Centers for Disease
Control (CDC).

1 Introduction

The COVID-19 pandemic has interrupted many
everyday behaviors. SARS-nCOV is a relatively
new virus and gaps in knowledge persist about how
it affects the body, and consequently, its symptoms
and symptom severity. In the early phases of the
pandemic, patients and providers in affected areas
used social media to exchange information about
symptoms and clinical treatment (Iacobucci, 2020;
Stokes et al., 2020). While social media can be non-
representative and contain misinformation (Singh
et al., 2020), it provides an open forum for the
public to share their perceptions, concerns, and
understanding of health and science. The use of
social media has increased dramatically (>20%) as
individuals shelter in place (Venkatraman, 2020).

Social media could enable early symptom dis-
covery for diseases such as COVID-19 where
the pathology is not completely known and our
knowledge of it is evolving (Del Rio and Malani,
2020). The most prominent symptoms such as
fever, cough, and shortness of breath were known
early on during the COVID-19 pandemic. However,
others such as changes in smell/taste, body aches,

and diarrhea were added later to the symptom list
by the CDC (Grant et al., 2020).

Using social media to gather information on pub-
lic health is a growing focus of research, with a spe-
cial emphasis on discovering side effects of drugs
(pharmacovigilence) (O’Connor et al., 2014), often
using labeled datasets to build supervised machine
learning models (Luo et al., 2017).

We propose a natural language processing frame-
work to automatically detect emerging symptoms
using Twitter data. Our approach is built on the
hypothesis that by identifying token embeddings
that capture the context of symptom mentions, new
tokens used in a similar context can be identi-
fied through embedding similarity (Devlin et al.,
2018). Our approach shares similarities with the
idea of lexicon development (Etzioni et al., 2008;
Bontcheva et al., 2013), which uses an unsuper-
vised graph-based approach for the labeling new
words given a few labeled words. However, the
graph is initiated with words of interest that have
already been identified.

Our method’s focus on a specific context allows
it to search through large imbalanced corpora to
identify context-specific (e.g. symptoms) tweets.
This differentiates it from previous works by (Wu
et al., 2019; Mpouli et al., 2020) that identify do-
main specific lexicon. Further, the approach by
(Wu et al., 2019) relies on a domain specific corpus
and topic modeling to build a lexicon, which would
require the construction of a symptom-specific
COVID-19 corpus.

2 Method

As is the case with several applications involv-
ing creating word lists associated with a construct
or topic (Das and Smith, 2012), symptom men-
tions associated with COVID-19 come in differ-
ent forms and shapes - often difficult to curate in



Figure 1: Comparative timeline of symptom detection by our approach against CDC reporting

advance (Rúa, 2007). The approach we propose
assumes that we know at least one word of interest
(i.e., a seed word) along with few corresponding
seed texts where the seed word has been used in the
desired context. For the case of emerging symptom
detection, cough, a seed text could be ‘I have a dry
cough, chest pain and feeling lethargic as hell plus
a headache’.

2.1 Manual Context-Text Approach

Given the seed word and corresponding seed texts,
BERT (bert-base) embeddings (Devlin et al., 2018)
for the seed word are extracted from each of the
texts. The BERT embedding for each token was
computed by summing the hidden states of the
last 4 layers of BERT. Individual embeddings from
each of the seed texts are then averaged to generate
a representative embedding for the seed word. We
use 5 seed texts that capture part of the considerable
variance associated with the symptom context.

Using the representative embedding for the seed
word, an exhaustive search is performed across the
dataset at a token level to identify the tokens that
are most similar to the seed word, where similarity
is measured using cosine similarity (one minus co-
sine distance). All tokens with a similarity value
less than a minimum threshold (set empirically at
0.3) are excluded. Similarity scores of all occur-
rences of a given word are averaged.

2.2 Graph-based Iterative Training
Approach

The previous model required text for every new
seed word and didn’t allow multiple runs with dif-
ferent seeds to learn from each other. To address
this, we propose an iterative trainable search model
that develops a similarity-based word graph. The
model retains the search methodology of the ear-
lier approach, but also includes a graph element

and a trainable search parameter that improves the
detection of context-specific words with increased
iterations.

The directed and weighted word graph of the
model represents the connections (based on sim-
ilarity) between tokens. Each node in the graph
corresponds to a word and is characterized by the
representative embedding of the word. The edges
have weights corresponding to the similarity score
between the connected words (nodes). The sec-
ond component of the model is the so-called ‘Con-
text Embedding’, which represents the trainable
parameter of the model. The context embedding is
conceptualized to be an embedding vector that rep-
resents the specific context that we are interested
in. Initialized by the representative embedding of
the seed word, the context embedding incorporates
embeddings from other words over iterations, to
develop into a more robust representation of the
specified context.

2.3 Algorithm

Initialization Initialize graph G by setting the
root node with the representative embedding of the
seed word. Initialize a queue Q by adding the seed
word to it. The context embedding CEmb is also
initialized to the representative embedding of the
seed word. CEmb ← Emb{Seed word}, where
Emb{x} denotes the representative embedding of
token x.

Procedure The specific steps used in the algo-
rithm are as follows:

1. Pop next word from Q, denoted by t. Initialise
a new node in G corresponding to t and set
the node embedding to Emb{t}.

2. Initialise the query embedding q as q ← k ∗
CEmb + (1− k) ∗ Emb{t}.

3. Iterate through all tokens in the data, com-
paring their embeddings against the query



embedding q. All tokens with similarity
less than the minimum similarity threshold
minSimThresh are dropped.

4. Select the top n words based on their similar-
ity to q. Add these words to Q. Instantiate new
nodes (if one doesn’t already exist) for these
words in G and add outgoing edges from t to
these new nodes.

5. If all words for a given depth are explored, the
top m words corresponding to that depth are
selected based on similarity to CEmb. The
context embedding is then updated by aver-
aging CEmb with the representative embed-
dings of the selected words, as shown in Eq
1

CEmb←
CEmb +

∑m
i=0 Emb{xi}

m+ 1
(1)

6. Stop iterations when either Q is empty or
when the maximum depth maxDepth of G
is achieved. Otherwise, repeat from Step 1.

3 Experiments

3.1 Manual Context-Text Approach
We tested our approach on a Twitter dataset contain-
ing tweets related to COVID-19, collected between
March 12 to April 23 using the #COVID-19 tag.
Our experiments were run on a random subset of
this dataset containing 1 Million tweets.

Table 1: Words returned (and their similar scores) by
our approach

Seed : Cough (Manual)
Word Sim.

fever 0.67
throat 0.62
##tis (pneumonitis) 0.61
headache 0.61
nose 0.59
breathing 0.58
congestion 0.57
##itis (bronchitis) 0.57
taste 0.55
##raine (migraine) 0.54

Seed : Cough (Graph model)
Word Sim.
vomiting 0.84
fever 0.83
throat 0.82
congestion 0.75
headache 0.71
coughing 0.70
asthma 0.69
##itis (bronchitis) 0.64
nausea 0.63
##hea (diarrhea) 0.45

Our objective for this dataset is to be able to
identify new symptoms of COVID-19 mentioned
in tweets. We ran tests with cough, an established
symptom, as the seed word. Seed texts (tweets)
were selected where cough was used as a symptom
to ensure that the correct context is captured. Top
10 results are shown in Table 1. With just a single
seed word and corresponding text as input, the
model could identify key symptoms of COVID.

3.2 Graph-based Iterative Training
Approach

We evaluate our graph-based approach on 2 differ-
ent datasets, with each dataset having a different
context - namely COVID-19 Symptom Detection
and Adverse Drug Reaction Identification.

3.2.1 COVID-19 Symptom Detection
We repeat our tests on the COVID-19 Twitter
dataset on a subset of 1M tweets. We use cough
as the seed word, while k is 0.3, maxDepth is 3
and n is 5. The resulting graph from our model is
shown in Figure 2. The size of the nodes represent
the number of occurrences of a token as a symptom
while the color intensity of the nodes represent the
similarity values computed for the node during the
graph building process.

Figure 2: Symptom model graph for COVID-19 Tweet
dataset

We observe that the model identified a wide
range of symptoms ranging from common symp-
toms like fever, fatigue to less common ones like
headache, vomiting, (chest) congestion, nausea,
mig-##raine.

Evaluation Though a quantitative evaluation of
our approach is not straightforward, we evaluate
our approach by computing the precision in detect-
ing correct words that fit the specified context.

For the problem of symptom detection, preci-
sion is calculated as the percentage of the actual
symptoms detected by our model. Given that our
model outputs a ranked list of words, precision is
computed by looking at the top p results, where p
represents the threshold for computing precision
(Table 2).

Through a manual inspection of the top 100 re-
sults, rare to-be-confirmed symptoms like eye irri-
tation, vertigo, anemia were detected. This marks
a key utility of our approach as it helps generate



Table 2: Precision for Symptom Detection

Model Seed word Precision
p = 5 p = 10 p = 20

Manual cough 0.8 0.9 0.8
Manual fever 1.0 0.9 0.75
Manual fatigue 0.8 0.8 0.75
Graph cough 1.0 0.9 0.9

potential symptom candidates which can guide fur-
ther evaluation.

3.2.2 Adverse Drug Reaction (ADR)
Detection

For the second dataset, we use an annotated ADR
dataset (Sarker and Gonzalez, 2015), where 13%
of the tweets are labeled as ADR. The objective
of this dataset is the identification of words denot-
ing adverse drug reactions. Therefore, the specific
context that we are interested in capturing is dif-
ferent from the previous dataset where the context
of interest was the identification of symptoms of a
disease. By testing our model on this dataset, we
also test the ability of our approach to generalize
to new tasks.

For the experiment, the seed word used is pain.
k is 0.2, maxDepth is 3 and n is 5. The resulting
graph from our model is shown in Figure 3.

Figure 3: ADR model graph for Statins dataset

Some of the key ADR identified include inflam-
mation, bleeding, muscle (pain), (skin) lesions,
tremors, discomfort, and (calcium) deposits.

Evaluation Similar to COVID-19 symptom de-
tection evaluation, we evaluate the model’s perfor-
mance for ADR detection, where a positive word
represents an adverse reaction to a drug (Table 3).

Table 3: Precision for ADR Detection

Model Seed word Precision
p = 5 p = 10 p = 20

Manual pain 1.0 0.9 0.8
Graph pain 1.0 0.9 0.95

4 Discussion

The COVID-19 pandemic evolved in a global cli-
mate of confusion and uncertainty. The profes-
sional and lay public alike speculated on disease
course, severity, and symptoms. The COVID-19
symptoms first observed appeared to be largely non-
specific to COVID-19 (e.g., cough, fever). Finding
COVID-specific symptoms (such as the sudden loss
of the sense of smell) is important and potentially
of clinical significance as large populations are be-
ing risk-assessed. The “digital exhaust” of social
media encodes informal case reports of symptoms
and discussions of media content about the virus
alike. In principle, it could allow for the generation
of a “master list” of COVID-19 symptom candi-
dates, which the public health and medical commu-
nity can, in turn, consider for further evaluation as
COVID-specific markers (Chan et al., 2020).

In this study, we present a unsupervised learn-
ing approach to generate such a “master” list
of COVID-19 symptoms, using the identification
of words matching a specific symptom context.
Through a preliminary evaluation, our approach
shows high sensitivity in detected words. The cur-
rent drawbacks of our approach include the inabil-
ity to detect multi-word phrases as well as slow
processing time. As can be seen in Figure 1, the
approach detected headache, chills, sore throat, di-
arrhea, and other symptoms around a month be-
fore the CDC reported them. Given the novelty of
COVID, the current method is hard to evaluate. We,
therefore, considered the approach in the more stud-
ied context of detecting adverse drug reactions and
show that the approach generalizes to this domain.

The approach relies on the Context Embedding
contribution parameter (k). By varying k, we ob-
serve a phenomenon analogous to ‘Exploration vs
Exploitation’ (Coggan, 2004): which, in principle,
means that this method can be calibrated for dif-
ferent use cases. In the early phase of the disease,
for example, a low k parameter may be chosen to
aid in the generation of symptom candidates to be
considered in light of the emerging clinical litera-
ture on COVID-19 and known physiological and
biological interactions in the human body. A high
k may be chosen to yield the subset of COVID-19
symptoms that are more robustly associated with
the disease, at the cost of missing infrequent (albeit
potentially specific) disease markers.
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