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Abstract

3D Gaussian Splatting (3DGS) has become the de facto
method of 3D representation in many vision tasks. This
calls for the 3D understanding directly in this representa-
tion space. To facilitate the research in this direction, we
first build a large-scale dataset of 3DGS using the com-
monly used ShapeNet and ModelNet datasets. Our dataset
ShapeSplat consists of 65K objects from 87 unique cate-
gories, whose labels are in accordance with the respective
datasets. The creation of this dataset utilized the computing
equivalent of 2 GPU years on a TITAN XP GPU.

We utilize our dataset for unsupervised pretraining and
supervised finetuning for classification and segmentation
tasks. To this end, we introduce Gaussian-MAE, which
highlights the unique benefits of representation learning
from Gaussian parameters. Through exhaustive experi-
ments, we provide several valuable insights. In particular,
we show that (1) the distribution of the optimized GS cen-
troids significantly differs from the uniformly sampled point
cloud (used for initialization) counterpart; (2) this change
in distribution results in degradation in classification but
improvement in segmentation tasks when using only the cen-
troids; (3) to leverage additional Gaussian parameters, we
propose Gaussian feature grouping in a normalized feature
space, along with splats pooling layer, offering a tailored
solution to effectively group and embed similar Gaussians,
which leads to notable improvement in finetuning tasks. Our
dataset and model are publicly available at ShapeSplat.

1 Introduction
3D Gaussian Splatting [22], a recent advancement in radi-
ance field that represents 3D scenes using Gaussian primi-
tives, has garnered significant research interest beyond view
synthesis task, including scene reconstruction and edit-
ing [56, 65], segmentation and understanding [43, 60], dig-
ital human [23, 42], and 3D generation [49, 62].
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Figure 1. ShapeSplat Dataset and Gaussian-MAE. We present
ShapeSplat, a large-scale dataset that took 2 GPU years to render
and rasterize. Thanks to the dataset and the proposed pretraining
method Gaussian-MAE, we outperform the point cloud counter-
part method by 0.55% in accuracy and 0.4% in mean IoU.

Gaussian splats representation offers numerous advan-
tages, including rapid rendering speeds, high fidelity, dif-
ferentiability, and extensive editability. These features es-
tablish 3D Gaussian Splatting as a potential game changer
for encoding the scenes in 3D vision pipelines.

To the best of our knowledge, there has been no explo-
ration of direct learning on trained parameters of Gaussian
splats in current research. A significant barrier in this re-
gard is the lack of a large-scale dataset of trained Gaussian
Splatting scenes. Despite 3DGS having considerably re-
duced the computation time, generating such a large-scale
dataset remains significantly time-consuming. This paper
seeks to address this challenge with the ShapeSplat dataset,
which comprises over 65K Gaussian splatted objects across
87 different categories. The dataset is designed to facilitate
research in self-supervised pretraining of Gaussian splats,
and to support downstream tasks, including classification,
and 3D part segmentation, as shown in Fig. 1.

https://unique1i.github.io/ShapeSplat/


With this large-scale dataset, we first perform unsuper-
vised pretraining in a masked autoencoder manner [17], fol-
lowed by supervised finetuning for classification and seg-
mentation tasks. Our extensive experiments demonstrate
that each Gaussian parameter—opacity, scale, rotation, and
spherical harmonics—can be effectively reconstructed dur-
ing the pretraining stage. Moreover, incorporating addi-
tional Gaussian parameters notably enhances performance
in downstream tasks.

We apply our model (pretrained on Gaussian centroids)
to the uniformly sampled point clouds, showcasing its gen-
eralizability. We observed that while using Gaussian cen-
troids alone is sufficient for the segmentation task, it leads
to a performance drop in the classification task. This might
be due to the complex spatial distribution of Gaussian pa-
rameters, as Gaussians tend to have larger scales and higher
opacity in planar regions, while in corners and edges, they
appear with smaller scale and opacity, as shown in Fig. 3.
To address this, we propose a Gaussian feature grouping
technique and splats pooling layer, whose effectiveness is
demonstrated in pretraining and finetuning.

In summary, our key contributions are as follows:
• We present ShapeSplat, a large-scale Gaussian splats

dataset spanning 65K objects in 87 unique categories.
• We propose Gaussian-MAE, the masked autoencoder-

based self-supervised pretraining for Gaussian splats, and
analyze the contribution of each Gaussian attribute during
the pretraining and supervised finetuning stages.

• We propose novel Gaussian feature grouping with
splats pooling layer during the embedding stage, which are
customized to the Gaussian splats’ parameters, enabling
better reconstruction and higher performance respectively.

2 Related Work
2.1 3D Object Datasets
Since the rapid advancement of 3D deep learning, despite
the challenges of collecting, annotating, and storing 3D
data, significant progress has been made in 3D datasets [3–
6, 10, 13, 34, 38, 50, 53, 55, 68] in recent years, thanks to
the dedicated efforts of the community. ShapeNet [3] has
been a foundational platform for modeling, representing,
and understanding 3D shapes in 3D deep learning. It offers
over 3 million textured CAD models, with a subset called
ShapeNet-Core containing 52K models, organized by mesh
and texture quality. Similarly, ModelNet [55] provides 12K
CAD models, while OmniObject3D [53] includes 6K ob-
jects with more category variation. To further scale up, ef-
forts like Objaverse [5] and Objaverse-XL [6] have been
introduced, containing 800K and 10.2 million models re-
spectively and with rich text annotation, significantly accel-
erating research in large-scale 3D understanding. We se-
lected ShapeNet [3] as our choice for a pretrained Gaus-
sian splats dataset due to its extensive size. For valida-
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(c) Bathtub (d) microphone
Figure 2. Qualitative Results of ShapeSplat Rendering. We
present high-quality renderings used for ShapeSplat on complex
surfaces, shadows, and thin objects.

Dataset ShapeNet-GS ShapeNetPart-GS ModelNet-GS

Task Classification Segmentation Classification
Category 55 50 40
Objects 52,121 16,823 12,308
GPU(days) 548.41 175.23 51.03
Gaussians 24,267 23,689 22,456
PSNR 44.187 44.542 45.104
JSD[70] 0.231 0.207 0.230
MMD[70] 0.137 0.087 0.135

Table 1. Dataset Statistics. We provide the specifications for the
proposed ShapeSplat dataset, highlighting its quality and differ-
ence from the initial datasets in spatial distribution and the sub-
stantial preparation effort involved.

tion datasets in classification and 3D segmentation tasks, we
chose ModelNet and ShapeNet-Part [61]. Additionally, we
included ScanObjectNN [50] for real-world applications.
These choices were made because they offer similar cat-
egories and provide well-established benchmarks for 3D
deep learning methods. Related to our work, [20, 31] build
NeRF [32] representation on ScanNet and Omniobject3D.
Instead, we use Gaussian splats as 3D representation.

2.2 Gaussian Splatting
A plethora of research has focused on achieving better ren-
dering quality, real-time speed, and scene editability with
the advent of neural radiance fields, yet none have success-
fully addressed all these aspects. Building upon the raster-
ization technique, Kerbl et al. [22] proposed to represent
the scene with a set of 3D Gaussian primitives, which sig-
nificantly increased the rendering speed and obtained state-
of-the-art rendering quality. Inspired by the success of 3D
Gaussian Splatting (3DGS), a surge of following works fur-
ther improve the rendering quality, geometry, and scene
compression, extend to dynamic tasks, and utilize it as the
representation bridging images and 3D scenes.

To represent accurate surface geometry, [16, 19, 65] have
introduced a rasterized method for computing depth and
normal maps based on the Gaussian splats, and apply regu-



larization for better surface alignment. Research on Gaus-
sian scene compression [33, 35] utilized a learnable mask
strategy or vector clustering technique to reduce total pa-
rameters without sacrificing rendering performance. Some
works [14, 24, 30, 59] extended the 3D Gaussians to dy-
namic scenes and deformable fields by explicitly modeling
the Gaussians across time steps or using a deformation net-
work to decouple the motion and geometry structure. At-
tracted by the efficiency of 3DGS, [1, 47, 64] explored its
optimization capability on re-rendering for pose estimation
and mapping tasks. Researchers also have combined 3DGS
with diffusion models to achieve efficient inpainting [28]
and text-to-3D generation [48, 62]. Furthermore, there were
efforts to lift 2D features from foundation models to at-
tributes of Gaussian primitives [43, 69], enabling language-
driven probes and open-world scene understanding. Unlike
these methods, our pipeline explores the rich information
encoded in the Gaussian parameters without using any ex-
ternal features or supervision.

2.3 Self-supervised 3D Representation Learning

Self-supervised learning (SSL) has gained traction in com-
puter vision due to its ability to generate supervisory signals
from data itself [2, 15, 17]. In 3D representation learning,
SSL methods using Vision Transformers (ViTs) [9, 44, 51]
are also advancing. These methods generally fall into two
categories: contrastive and generative approaches. Con-
trastive pretraining focuses on learning discriminative rep-
resentations to differentiate between samples, but applying
this to ViTs-based 3D pretraining is challenging due to is-
sues like overfitting and mode collapse [41, 45]. In contrast,
generative pretraining, inspired by the mask and reconstruct
strategy from BERT [7] and adapted to vision as masked
autoencoder (MAE) [17], has been extended to 3D by tar-
geting point clouds [36, 66], meshes [26], or voxels [18].

On this road, several works have advanced 3D represen-
tation learning by tailoring model architectures to specific
input modalities, such as point clouds and voxel grids. Zhao
et al. [67] developed self-attention layers for point clouds
that are invariant to permutations and cardinality. Yang et
al. [58] adapted the Swin Transformer [27] for voxel grids,
enabling scalability to large indoor scenes. Building on
these architectures, some studies have explored encoding
features from various scene representations using SSL. For
instance, Yu et al. [66] utilized a standard transformer and
BERT-style pretraining with dVAE [46] for point patches.
Irshad et al. [21] applied MAE pretraining on Neural Ra-
diance Fields, which enhanced scene-level tasks but faced
challenges with scalability and data preparation. To the best
of our knowledge, there is no prior work exploring the rep-
resentation of trained 3D Gaussian splats parameters.

Figure 3. Distribution Comparison of Gaussian Splats Cen-
troid and Point Cloud. We highlight the difference between
Gaussian centroids (left) and the point cloud used for initializa-
tion (right).

(a) Opacity (b) Scale

(c) Rotation (d) RGB from SH
Figure 4. Splats Centroid Colorized Based on Individual Gaus-
sian Parameter Values. The visualization reveals the complexity
of the parameter distribution with respect to spatial dimensions.

3 ShapeSplat Dataset Generation
Since the datasets we choose are in CAD format, we first
need to render 2D images at chosen poses to train Gaus-
sian splats[57]. To address the limitations of the original
3DGS [22], which often results in high redundancy [29],
we incorporate important-score based pruning [12].
Model Rendering. We adapt the code from [32] to ren-
der CAD models in Blender. Each model is rendered from
72 uniformly spaced views, with an image resolution of
400×400 to balance quality and rendering time. A white
background is used for clear object distinction, and prob-
lematic CAD models are filtered out. Fig. 2 shows our qual-
itative rendering results.
3DGS Training. After obtaining the image-pose pairs, we
initialize the Gaussian centroids using a point cloud of 5K
points uniformly sampled from mesh surfaces, following
similar practice as in ShapeNet[3] and ModelNet[55]. To
reduce the scale artifacts, we employ the regularization term
from [64] to penalize large scales. The training process
takes approximately 15 minutes per scene over 30,000 it-
erations. The total time required is detailed in Tab. 1.



Figure 5. Gaussian-MAE Framework. Given the downsampled Gaussian splats, parameters for the grouping feature G(·) and embedding
feature E(·) are first selected. G(·) is used to split the splats into n groups, while E(·) serves as the reconstruction target in the MAE.
After the splats pooling layer, the grouped splats are tokenized into group tokens T , which are then masked and the visible Tv is passed into
the encoder fθ to obtain latent z. Following the concatenation of z and the learnable tokens Tl, the decoder gθ then recovers the masked
tokens T̂m, which are projected to obtain the embedding components Êm for calculating the reconstruction loss Lrecon. As an example, we
use G(C) for grouping and E(C, S,R) for embedding, other inputs follow the same process.

Gaussian Pruning. Following the approach in [12], the
importance score is calculated based on the contribution of
each Gaussian splat to the rendered pixels, taking into ac-
count factors such as scale, rotation, and opacity. We prune
60 % of the Gaussians at iterations 16k and 24k. To avoid
artifacts due to pruning, we incorporate pruning during the
training process rather than as a post-processing step, ensur-
ing necessary densification occurs throughout training. The
final number of Gaussians is reported in Tab. 1.

Dataset Evaluation. Tab. 1 details the statistics of Shape-
Splat, including object and category number, training time,
number of Gaussians and the average PSNR (peak signal-
to-noise ratio) of the renderings used for training. Note that
ShapeNet-Part is a subset of ShapeNet-Core, and we report
its training time for completeness. The average number of
Gaussians exceeds 20K, notably higher than the input with
8K points in the point cloud baseline [36]. Furthermore, we
compute the Jensen–Shannon Divergence (JSD) and Maxi-
mum Mean Discrepancy (MMD) [70] metrics between the
trained Gaussian centroids and the initializing point cloud.
These metrics are computed using 50x50 bins and averaged
across three views, mapped onto the x, y, and z planes. De-
spite being initialized from the point cloud, the distribution
of Gaussian splat centroids differs substantially. The visual
differences in distribution are presented in Fig. 3.

4 Gaussian-MAE

Preliminary: 3D Gaussian Splatting. 3DGS parame-
terizes the scene space with a set of Gaussian primitives
{Xi}Ni=1, stacking the parameters together,

X = [C,O, S,R, SH] ∈ RN×59, (1)

with centroid C ∈ RN×3, opacity O ∈ RN×1, scale S ∈
RN×3, quaternion vector R ∈ RN×4 and sphere harmonics
SH ∈ RN×48. We refer to them as Gaussian features or
Gaussian parameters. Each Gaussian can be seen as softly
representing an area of 3D space with its opacity. A point q
in scene space is influenced by a Gaussian Xi according to
the Gaussian distribution value weighted by its opacity:

fi(q) = Oi exp

(
−1

2
(q − Ci)

TΣ−1
i (q − Ci)

)
, (2)

where the covariance matrix Σi can be formulated as Σi =
RiSiS

T
i R

T
i .

As the name ”splatting” suggests, the influence function
f can be cast onto a 2D image plane for every Gaussian.
The rendered color of a pixel is the weighted sum over the
colors ci in its influencing Gaussians set S, calculated by
the alpha-blending equation using the sorted front-to-back
order:

cpixel =
∑
i∈S

cif
2D
i

i−1∏
j=1

(1− f 2D
j ) . (3)

Through differentiable rasterization, the rendering loss is
back-propagated to the trainable Gaussian parameters.

4.1 Gaussian MAE Framework
Fig. 5 illustrates the pipeline of Gaussian-MAE. We report
detailed algorithm in Algorithm 1. We define two key fea-
tures: embedding feature E (E ⊆ X ′ with E ∈ Rp×fE ),
a subset of X ′ selected as input to the tokenizer, which
is the reconstruction target, its dimension fE depends on
the chosen parameters; and grouping feature G (G ⊆ X ′

with G ∈ Rp×fG ), another subset of X ′ used to compute
distances during the grouping process and its dimension



Algorithm 1: Gaussian-MAE
Input: Object with N Gaussian splats

X = [C,O, S,R, SH] ∈ RN×59

Output: Reconstructed embedding feature Êm for
masked regions

1. Randomly downsample to p Gaussian splats:
X ′ ∈ Rp×59.

2. Select parameters for the grouping feature G(·) and
embedding feature E(·).

3. Compute n center splats from the grouping feature:

CT = FPS(G), CT ∈ Rn×fG .

4. Find k neighboring splats and obtain their embedding
features:

Egroup = KNN(E;G,CT ), Egroup ∈ Rn×k×fE .

5. Forward the embedding features to the tokenizer to
obtain tokens:

T = Tokenizer(Egroup), T ∈ Rn×D.

6. Masking with a ratio r, resulting in visible tokens
Tv ∈ R(1−r)n×D , masked tokens Tm ∈ Rrn×D. and
masked embedding feature Em.

7. Obtain the latent z from the encoder: z = fθ(Tv).
8. Concatenate z with learnable token Tl and then pass to

the decoder gϕ(·) to get the recovered masked token
T̂m = gϕ(z ⊕ Tl)

9. Projector Φ output the recovered embedding feature
Êm = Φ(T̂m)

10. Minimizing the reconstruction loss Lrecon:

min
θ,ϕ

E
E∼τ

[
Lrecon

(
Em, Êm

)]
.

fG depends on the chosen parameters. We use centroid
grouping G(C) for experiments in Tabs. 2 to 4. Multiple
Conv1d projectors Φ are used for different gaussian pa-
rameters. Chamfer-Distance [11] is used for the reconstruc-
tion loss Lrecon of centroid and L1 is used for the rest.

4.2 Gaussian Feature Grouping
Building on Algorithm 1, we propose considering more
than centroid during grouping. The reasons for separat-
ing grouping and embedding are twofold: firstly, sampling
only in centroid space assumes a similar correlation be-
tween all Gaussian parameters and its center coordinate,
which is not the case. As shown in Fig. 4, Gaussian splats
with varying opacity and scale can blend together on the
surface. Secondly, using additional Gaussian features for
grouping allows for the clustering of splats that are not only
spatially close but also similar in other attributes. To bal-
ance the grouping across gaussian parameters, we recen-
ter all parameters (excluding quaternions) to zero mean and

map them to the unit sphere in their respective dimensions.
To avoid the complexity of grouping with high-dimensional
features, we select only the SH base ∈ Rp×3 for grouping.

4.3 Splats Pooling Layer
Gaussian feature grouping effectively cluster Gaussians into
groups by similarity. To further balance the contribution of
each parameter, we propose a learned temperature-scaled
splats pooling layer customed to Gaussian parameters, aim-
ing to efficiently aggregate information from the embedded
feature of the potential neighbors.

Let B denote the batch size, n the number of groups,
P the number of potential neighbors per group, k the de-
sired number of nearest neighbors, and D the intermedi-
ate embedding dimension. For each center splat, P neigh-
bors are first selected by using KNN on centroids. Then,
we apply Conv1d layers to obtain embedding F , where
F ∈ RB×n×P×D. For each group in the batch, the query
item yb,n is obtained by applying max pooling to F across
the dimension P . We then compute the pairwise distances
between the query item yb,n and potential neighbors as
db,n,p = ∥yb,n − Fb,n,p∥2 for p ∈ [1, P ].

To introduce learnable temperature, we define γ ∈ Rk

and β ∈ Rk, respectively. The temperatures are computed
as t = exp(γ)+β. Once the softmax weights are calculated
by applying a temperature-scaled softmax to the pairwise
distances, the resulting weight tensor is W ∈ RB×n×k×P .
These weights are used for feature aggregation, producing
the aggregated tensor Z ∈ RB×n×k×D, where Zb,n,k,d =∑P

p=1 Wb,n,k,p · Fb,n,p,d. Z is then served as the input to
derive the token for the splats group.

Per-dimension temperature here can depend on the query
item, enabling the model to learn when it is beneficial to av-
erage more uniformly across the embedding space with high
temperature and with low temperature when it should focus
on some distinct neighbor embeddings. This is especially
needed as Gaussian attributes can exhibit highly uneven dis-
tribution as shown in Fig. 4.

5 Experiments
In this section, we extensively present the pretraining re-
sults, finetuning performance, generalization experiments,
effect of Gaussian space grouping and splats pooling layer,
as well as an ablation study. Please refer to our supplement
for implementation details.

5.1 Pretraining Results
We conduct extensive pretraining experiments with the pro-
posed Gaussian-MAE method, demonstrating that Gaussian
parameters can be successfully reconstructed. Detailed re-
construction analysis is reported in Fig. 6 and qualitative
results are included in the supplement. Align with Sec. 4.2
we use E(·) and G(·) for gaussian parameters for embed-
ding and grouping. To distinguish different models in self-



Method ModelNet10 ModelNet40

Supervised Learning Only

PointNet [39] × 89.2
PointNet++ [40] × 91.9
PTv1 [67] × 90.6
PTv2 [54] × 91.6

with Standard ViTs Self-Supervised Learning (FULL)

Point-BERT† [63] 94.82 93.20
Point-MAE† [37] 94.93 93.20
Gaussian-MAE; E(C) 93.72 91.77
Gaussian-MAE; E(C,O) 93.83 91.78
Gaussian-MAE; E(C, SH) 93.83 92.41
Gaussian-MAE; E(C, S,R) 94.27 93.19
Gaussian-MAE; E(O,C, S,R) 95.48 92.42
Gaussian-MAE; E(All) 95.37 93.35

with Standard ViTs Self-Supervised Learning (MLP-LINEAR)

Point-BERT† [63] 93.06 90.56
Point-MAE† [37] 93.17 90.24
Gaussian-MAE; E(C) 92.73 87.84
Gaussian-MAE; E(C,O) 91.30 87.43
Gaussian-MAE; E(C, SH) 91.19 86.38
Gaussian-MAE; E(C, S,R) 93.28 88.73
Gaussian-MAE; E(O,C, S,R) 93.72 88.93
Gaussian-MAE; E(All) 93.83 90.64

with Standard ViTs Self-Supervised Learning (MLP-3)

Point-BERT† [63] 94.27 91.82
Point-MAE† [37] 93.61 92.63
Gaussian-MAE; E(C) 92.84 90.06
Gaussian-MAE; E(C,O) 93.39 89.86
Gaussian-MAE; E(C, SH) 93.39 90.72
Gaussian-MAE; E(C, S,R) 94.16 90.15
Gaussian-MAE; E(O,C, S,R) 93.72 91.29
Gaussian-MAE; E(All) 95.26 92.74

Table 2. Classification Accuracy on ModelNet (overall accuracy
↑ [%]). Best results are highlighted as first , second . † denotes
the model pretrained and finetuned both on point clouds. Ours
with all inputs as embedding feature E yields the best accuracy.

supervised learning, we use an * to indicate models pre-
trained on Gaussians and tested on point clouds, † for mod-
els pretrained and fine-tuned both on point clouds. Unless
otherwise specified, we default to downsampling to 1024
Gaussians and using a mask ratio of 0.6 in our experiments.

5.2 Classification Experiments
To assess the efficacy of the pretrained model, we gauged
its performance under three kinds of transfer protocols
like [8, 41, 45] for classification tasks during finetuning,
i.e., (a) Full: finetuning pretrained models by updating all
backbone and classification heads. (b) MLP-Linear: The
classification head is a single-layer linear MLP, and we only
update these head parameters during finetuning. (c) MLP-
3: The classification head is a three-layer non-linear MLP

Method ModelNet40 OBJ BG OBJ ONLY PB T50 RS

Supervised Learning Only

PointNet [39] 89.2 73.3 79.2 68.0
PointNet++ [40] 91.9 82.3 84.3 77.9
DGCNN [52] 92.9 82.8 86.2 78.1
PointCNN [25] 92.5 86.1 85.5 78.5

with Standard ViTs Self-Supervised Learning (FULL)

Point-MAE† [36] 93.20 90.02 88.29 85.18
Gaussian-MAE*; E(C) 92.78 87.61 88.64 84.98

with Standard ViTs Self-Supervised Learning (MLP-LINEAR)

Point-MAE† [36] 90.24 82.58 83.52 73.08
Gaussian-MAE*;E(C) 88.49 70.74 72.63 66.55

with Standard ViTs Self-Supervised Learning (MLP-3)

Point-MAE† [37] 92.63 84.29 85.24 77.34
Gaussian-MAE*; E(C) 90.36 81.93 85.37 75.02

Table 3. Generalization evaluation on ModelNet and ScanOb-
jectNN (overall accuracy ↑ [%]). * indicates models pretrained on
Gaussians and tested on point clouds. Despite being pretrained on
Gaussian splats, Gaussian-MAE achieves reasonable accuracy on
point clouds, even surpassing the dedicated point cloud baseline in
OBJ ONLY accuracy on ScanObjectNN. PB-T50-RS refers to the
hard variant where ours did not lead.

(i.e., the same as the one used in FULL), and we only update
these head parameters during finetuning.

We report classification results on ModelNet10 and
ModelNet40 datasets in Tab. 2. Note that we use G(C) for
grouping and analyzing how different attributes contribute
to this tasks. Compared to the supervised-only method, our
Gaussian-MAE effectively learns shape priors from unla-
beled data. Even when using only the Gaussian centroids,
our results surpass those of the supervised-only methods.
However, we observe that when using only the center posi-
tions of the Gaussians, our results are inferior to the unsu-
pervised baseline, Point-MAE, on point clouds. This may
be due to the uneven distribution of the Gaussians. Notably,
when we use other Gaussian parameters, our performance
improves significantly by 0.55%. Each component con-
tributes positively to the results, with the scale and rotation
components providing the greatest benefit to classification.
Furthermore, the performance increase over the baseline be-
comes even larger when using linear (0.66%) and MLP-
3 (1.65%) probing, suggesting that the pretrained features
learned by our approach are stronger and more robust.

5.3 Segmentation Experiments
Following the same setting as point cloud pretraining meth-
ods like Point-Bert [63], Point-MAE [36], we use the pre-
trained weight from ShapeNet and finetine on ShapeNet-
Part for the part segmentation task. From the results re-
ported in Tab. 4, we observed that employing only Gaus-
sian centroid resulted in higher class mIoU compared to
Point-MAE, indicating that pretraining on Gaussian cen-
troids offers greater benefits for segmentation. This aligns
with our previous findings, as Gaussian distributions, con-
centrated at boundaries, capture crucial semantic variations.



Method mIoUC (%) ↑ mIoUI (%) ↑

Supervised Representation Learning

PointNet [39] 80.4 83.7
PointNet++ [40] 81.9 85.1
Transformer [51] 83.4 85.1
PTv1 [67] 83.7 86.6

with Self-Supervised Representation Learning

Point-BERT† [63] 84.1 85.6
Point-MAE† [37] 84.2 86.1
Gaussian-MAE*; E(C) 84.6 86.1
Gaussian-MAE; E(C) 84.4 85.8
Gaussian-MAE; E(C,O) 84.6 86.1
Gaussian-MAE; E(C, SH) 84.0 85.8
Gaussian-MAE; E(C, S,R) 84.4 86.0
Gaussian-MAE; E(C,O, S,R) 84.2 85.8
Gaussian-MAE; E(C,All) 84.4 86.0

Table 4. Part Segmentation on ShapeNet-Part. * indicates
models pretrained on Gaussians and tested on point clouds. The
class mIoU (mIoUC ) and the instance mIoU (mIoUI ) are reported.
Gaussian-MAE yields 0.4% gain in mIoUC .

Unlike classification, utilizing opacity, scale, and rotation
improves segmentation results, while adding spherical har-
monics (SH) negatively impacts performance.

5.4 Generalization to Point Clouds
We report results of employing only the Gaussian centroids
for pretraining followed by finetuning on point clouds in
Tab. 3. Note that we tested on the point cloud data of Mod-
elNet40 and ScanObjectNN. From the results, we can see
that when joint training the encoder, the Gaussian-MAE
pretraining on Gaussian centroids yields finetuning results
close to Point-MAE pretraining on point clouds, and even
outperforms the baseline in the Object-only results. How-
ever, when freezing the encoder and only training the de-
coder, the significant difference between the centroid distri-
bution leads to a performance drop, and this gap becomes
larger when using a Linear Classification head.

In the segmentation task reported in Tab. 4, we were
pleasantly surprised to find that the model pretrained on
Gaussian centroids outperformed the point cloud baseline.
This suggests that the encoder learned features from the
Gaussian data that are more beneficial for segmentation.

5.5 Grouping Feature Grouping Analysis
Effectiveness of Grouping Feature Grouping and Splats
Pooling Layer. We first evaluate the effect of grouping
on multiple Gaussian parameters for ModelNet10 classifi-
cation in Fig. 7. Compared to the baseline which groups
only by Gaussian center, adding additional parameters indi-
vidually leads to up to 1.1% increase in classification accu-
racy. The same accuracy boost also results from the splats
pooling layer, which uses the center for grouping but learns
to combine multiple patterns for aggregating features from
the group. For both methods, including all Gaussian pa-
rameters yields diminishing gains, as the baseline encodes

Method ModelNet10-GS ModelNet40-GS ShapeNetPart-GS

splats input number ablation (FULL)

1024 95.37 93.35 84.4
2048 93.29 92.29 84.4
4096 94.82 93.02 84.8
8192 95.26 93.05 84.5

mask ratio ablation (FULL)

mask ratio=0.2 95.48 91.73 84.6
mask ratio=0.4 96.03 91.89 84.7
mask ratio=0.6 95.37 93.35 84.4
mask ratio=0.8 95.81 92.46 83.0

Table 5. Ablation on Number of Splats and Mask Ratio.

stronger features from the parameter space.
Reconstruction Analysis on Grouping Feature Group-
ing. Fig. 6 reports the relative reconstruction error of each
Gaussian parameter with different grouping and embed-
ding input. First, we observe that each feature achieves
the lowest reconstruction error when it is both embedded
and grouped exclusively. Additionally, grouping and em-
bedding with other features have a negative impact on cen-
troid reconstruction, while opacity, scale, and rotation af-
fect more than SH as shown in the error bars for the center.
This observation intuitively aligns with Fig. 4, as most col-
ors in ShapeSplat are uniform. We also observe that when
grouped with centroid, each parameter has the highest re-
construction error, as indicated by the light yellow bars of
opacity, scale, rotation, and SH. As shown by the rightmost
light blue bars, when all the attributes are taken into ac-
count when grouping and embedded, the reconstruction er-
rors are large and affect unevenly for different parameters,
which we hypothesize results from the imbalance weighting
of each feature. These observations highlight that Gaussian
parameters are complexly distributed with respect to spatial
dimensions. Furthermore, we conclude from Figs. 6 and 7
that a smaller overall reconstruction error on the target em-
bedding feature enhances performance in classification.
Input Dimension Ablation for Parameter Space Group-
ing and Splats Pooling Layer. Fig. 8 ablates the total input
dimension for Gaussian feature grouping and splats pooling
layer with respect to the absolute classification accuracy on
ModelNet10. We observe that for Gaussian feature group-
ing, more dimensions consistently correspond to higher ac-
curacy, whereas for the splats pooling layer, it’s generally
the case. We obtain the highest accuracy of 95.82% among
our experiments using splats pooling layer with the input of
center, opacity, scale, and rotation.

5.6 Further Ablation Study
Ablation on Gaussian Splats Number for Finetuning.
Tab. 5 ablates the effect of the number of splats used dur-
ing finetuning. For the classification task, the best perfor-
mance occurs when the number of input splats matches that
used in pretraining (1024 in this case), likely due to consis-



Figure 6. Per-attribute Reconstruction of Different Grouping Method. Relative reconstruction error is reported for each Gaussian
parameter using different grouping feature G represented by three different color shades, namely centroid grouping, feature grouping
without centroid, and feature grouping with centroid. We observe that better overall reconstruction leads to better performance, cf . Fig. 7.

Figure 7. Ablation on Gaussian Feature Grouping and Splats
Pooling Layer. Classification accuracy on ModelNet10 signifi-
cantly improves with the inclusion of both Gaussian feature group-
ing and splats pooling layer, across different embedding features.

Figure 8. Effect of Input Dimension on Gaussian Feature
Grouping and Splats Pooling Layer. Higher input dimensions
consistently improve classification accuracy with both modules.

tent aggregation patterns for patch embeddings. Accuracy
improves again as the number of input splats increases fur-
ther. For segmentation, the mIoUC generally improves with
a higher number of input splats.
Ablation on Mask Ratio in Pretraining. Tab. 5 reports
the finetuning performance using the pretrained model with
different mask ratios. The results show that as the mask ra-
tio increases initially, both classification and segmentation

performance improve, credited to the stronger representa-
tion learned by the MAE. As the mask ratio approaches 1,
the pretraining target gets much more challenging, which in
turn hinders the performance in downstream tasks.

6 Limitation
Compared to the original number of Gaussian Splats shown
in Tab. 1, we significantly downsample them before pre-
training, which mimics the processing of point clouds. This
approach is sub-optimal because downsampling splats lose
crucial details in appearance and geometry, impairing the
representation. Exploring efficient methods to work directly
with original splats could be a promising future direction.

7 Conclusion
We present ShapeSplat dataset which enables the masked
pretraining directly on 3DGS parameters. Experiments
show that naively treating Gaussian centroids as point
clouds does not perform well in downstream tasks. In
contrast, our Gaussian-MAE method excels by effectively
aggregating features using Gaussian feature grouping and
splats pooling layer. We hope this work opens a new av-
enue for self-supervised 3D representation learning.
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