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ABSTRACT

Group-Relative Policy Optimization (GRPO) has emerged as an effective ap-
proach for training language models on complex reasoning tasks by normaliz-
ing rewards within groups of rollouts. However, GRPO’s group-relative advan-
tage estimation critically depends on dense step-wise reward signals throughout
the reasoning process. In practice, obtaining such dense supervision requires ex-
pensive human annotations of intermediate reasoning steps or carefully designed
step-wise reward functions. This creates a significant challenge specific to group-
relative methods: while GRPO performs best with dense intermediate feedback,
real-world scenarios often provide only sparse outcome supervision—such as fi-
nal answer correctness or binary trajectory labels. We propose Weakly-Supervised
Group-Relative Policy Optimization (WS-GRPO), which addresses this unique
limitation by learning to extract dense preference signals from sparse outcome
supervision while preserving GRPO’s group-relative normalization benefits. WS-
GRPO operates in two phases: first, it trains a preference model to distinguish be-
tween successful and unsuccessful reasoning patterns using only trajectory-level
outcomes; second, it leverages this learned preference model to provide step-wise
weakly-supervised rewards that are combined with sparse terminal rewards during
group-relative policy optimization. By treating consecutive partial trajectories as
preference pairs, our method generates dense feedback signals that complement
GRPO’s group normalization mechanism without requiring step-by-step human
annotations. Theoretically, we provide comprehensive guarantees for WS-GRPO
establishing preference model consistency under trajectory-level supervision, pol-
icy robustness to preference errors with controllable degradation rates, and gen-
eralization bounds that decompose error sources across policy learning, prefer-
ence modeling, and their interaction. Our experiments on reasoning benchmarks
demonstrate that WS-GRPO achieves competitive performance using only weak
supervision, making group-relative policy optimization practical when detailed
process supervision is limited.

1 INTRODUCTION

Large language models (LLMs) are emerging as general-purpose reasoning systems, with applica-
tions ranging from mathematical problem solving to scientific discovery. A central challenge is how
to reliably optimize these models so that their generated reasoning trajectories lead to correct and
coherent outcomes [Bommasani| (2021)); [Weidinger et al,| (2021). Prior works rely on Reinforce-
ment Learning from Human Feedback (RLHF) Ouyang et al.| (2022), yet face fundamental obstacles
including limited outcome signals such as final answer correctness and expensive intermediate an-
notations [Bai et al.| (2022); [Liu et al.|(2023)).

More recently, Group-Relative Policy Optimization (GRPO) has emerged as a promising direction.
By replacing a learned value function with group-normalized advantages, GRPO stabilizes training
and improves sample efficiency Shao et al.|(2024). This design yields strong sample efficiency and
memory savings. However, GRPO’s performs best when integrated with informative reward signals
throughout the reasoning process [Li et al.| (2025); Tan & Pan|(2025)); [Fei et al.|(2025). In practice,
most real-world scenarios provide only weak supervision—such as binary correctness of the final
answer—rather than dense step-level feedback Yuan et al.|(2024);|Cui et al.| (2025). The gap between
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Figure 1: Weakly-Supervised Step-Level Reward Generation: WS-GRPO employs a preference
model trained on trajectory-level outcomes to generate dense step-wise feedback signals. The model
evaluates reasoning progress by comparing consecutive partial trajectories of different lengths. For
instance, to assign a reward to step ¢ (e.g., step 3: “What is a radio shack?”), the preference model
compares steps up to (¢ — 1) against the extended trajectory containing steps up to ¢, producing
a preference score that quantifies the incremental contribution of step ¢. This transforms sparse
outcome supervision into dense process-level rewards without step-by-step human annotations.

GRPO’s reliance on rich intermediate reward and limited supervision signal in reality remains to be
addressed.

Recent work has explored weak supervision as a scalable alternative to explicit process labels. For
example, Yuan et al. |Yuan et al.|(2024) introduce free process rewards derived from outcome labels,
while |Cui et al.| (2025) propose implicit token-level rewards inferred from reasoning traces. Other
approaches refine noisy outcome-based labels into denser reward signals [Huang et al.| (2025); Y1
et al.| (2025), showing that weak but abundant labels can bootstrap effective reward models. These
work collectively show that weak supervision

In this work, we bring the merits from weak supervision to GRPO by proposing Weakly-Supervised
Group-Relative Policy Optimization (WS-GRPO). It addresses the challenges by augmenting GRPO
with intermediate rewards derived from a weakly supervised preference model (See Figure [I).
Specifically, our method operates in two phases: first, a preference model is trained to distin-
guish between positive and negative reasoning trajectories; second, the trained preference model
is reused to generate step-level rewards that complement correctness signals during GRPO opti-
mization. Thus, WS-GRPO provides dense feedback without requiring costly process annotations.
By combining weak supervision with group-relative optimization, our approach makes it possible to
train reasoning-capable language models under practical constraints. It offers a scalable path toward
LLMs in real-world tasks.

Our contributions are as follows:

* We establish comprehensive theoretical guarantees for weakly-supervised group-relative
policy optimization through three fundamental results: preference model consistency
bounds with optimal convergence rates, policy robustness bounds with controllable error
propagation, and generalization bounds decomposing multiple uncertainty sources through
union bound analysis.

* We introduce WS-GRPO, a two-phase approach that transforms trajectory-level outcomes
into step-level rewards through consecutive partial trajectory comparisons, bridging the gap
between GRPO’s supervision requirements and practical constraints.

* We develop a technique for extracting dense feedback signals by treating consecutive rea-
soning prefixes as preference pairs, enabling step-wise credit assignment from trajectory-
level preference models without intermediate annotations.

* Through experiments on reasoning benchmarks (AI2-ARC and CommonsenseQA), we
demonstrate that WS-GRPO achieves competitive performance under weak supervision,
with results revealing task-dependent effectiveness and architecture sensitivity.
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2 RELATED WORKS

2.1 GROUP-RELATIVE POLICY OPTIMIZATION

Improving the reliability of reasoning in large language models remains an open challenge. Re-
inforcement Learning from Human Feedback (RLHF) has driven progress, but it relies on sparse
outcome supervision and costly process-level annotations (Christiano et al.[(2017); |Bai et al.| (2022));
Cui et al.| (2025). Group-Relative Policy Optimization (GRPO) offers a more efficient alternative
by using group-relative baselines in place of value functions, aligning well with preference-based
reward models |[Shao et al.[(2024); Liu et al.| (2025). Recent extensions of GRPO incorporate richer
forms of supervision. DrGRPO corrects systematic length bias for more stable training |Liu et al.
(2025). BranchGRPO incorporates dense process-level rewards through branch sampling and prun-
ing strategies |Li et al.|(2025). [Tan & Pan| (2025)) introduce token-level (GTPO) and sequence-level
(GRPO-S) reward advantages inside the GRPO framework. Another direction incorporates GRPO
in process reward model (PRM) to score both intermediate steps and final outcomes, yielding dense
feedback |Yang et al.| (2025); [Fei et al.| (2025). Additionally, theoretical analyses provides conver-
gence guarantees |[Pang & Jin| (2025) and interpret GRPO as KL-regularized contrastive learning
Mroueh! (2025)).

These works establish both the practical effectiveness and the theoretical grounding of group-relative
estimation |Li et al.| (2025); |[Zhang et al.| (2025); Mroueh| (2025). Yet obtaining dense, step-level
supervision remains difficult and costly. This opens the possibility of adapting GRPO to weak
supervision. Our method addresses this gap: we extend GRPO by introducing step rewards derived
from weak trajectory signals, bridging sparse outcome-level supervision and dense process-level
credit assignment.

2.2  WEAK SUPERVISION

Weak supervision has been explored to reduce dependence on costly process annotations. Ap-
proaches such as PRIME leverage implicit token-level signals derived from outcome labels to pro-
vide dense process rewards without explicit human labeling |Cui et al.|(2025). Other work proposes
weakly labeled data through heuristics or confidence calibration [Yuan et al.[(2024). Complemen-
tary approaches combine reinforcement learning with supervised objectives to stabilize training in
weakly supervised regimes |Y1 et al.| (2025). Another direction explores self-training frameworks.
Self-training approaches such as STaR Zelikman et al.| (2022) and Self-Refine Madaan et al.| (2023
transform outcome signals into weak process labels through rationale generation, critique, and it-
erative refinement, with further work showing that self-correction can improve initial weak labels
Huang et al.| (2025)). Recent works have utilized verifiers to provide weak signals [Lightman et al.
(2023)); [Hosseinti et al.| (2024). Large-scale verifier pipelines and judge models generalize this strat-
egy across multi-step reasoning tasks |Guo et al.| (2023)). More broadly, weakly supervised RL has
been studied in the control literature, where indirect signals such as demonstrations or outcome
preferences guide policy learning without dense labels Lee et al.| (2020); Finn et al.| (2016).

Taken together, our method unifies these directions by leveraging weak supervision to construct
preference-labeled CoT data, training a preference model from these signals, and integrating it into
GRPO’s group-relative advantage estimation. It utilizes the benefits of weak supervision to bridge
the gap between GRPO’s limitation to sparse outcome supervision and the need for dense process
signals by generating step-wise feedback from minimal trajectory-level supervision.

3 PRELIMINARIES

3.1 WEAKLY-SUPERVISED LEARNING

Weakly-supervised learning refers to training with noisy annotations, partial supervision, or pairwise
comparisons Zhou| (2018)). In the context of controllable behavior, one often assumes access to a
dataset of observation pairs (s1, so) with binary factor labels y € {0,1}%, indicating whether a
latent factor has increased or decreased. A common goal is to learn an encoder e : S — RX that
disentangles these factors via a contrastive or ranking loss on weak labels.
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3.2 GROUP-RELATIVE PoOLICY OPTIMIZATION (GRPO)

Given a prompt ¢, GRPO samples G independent rollouts {;}$ , from policy 7y, where each
rollout receives scalar return 7; = r4(g, 7;). The group-relative advantage is computed as:

. 1 G

A, = , whereF:—E ri, Op =
G 4 i
=

(r; — 7)2. (1)

The GRPO objective uses PPO-style clipping with probability ratios and KL regularization:
1 G 1 |73 . R
Jarro(0) = Eq 1 el Zzzl m ; min (pi’t(H) A, clip(pii(0),1 —€,14€) Ai) — B Lk,

2

where Probability ratio and KL divergence are defined as:
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4  WEAKLY-SUPERVISED-GROUP-RELATIVE PREFERENCE OPTIMIZATION
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Figure 2: WS-GRPO Framework Overview: A preference dataset is first constructed from trajec-
tories generated by an initial policy model and is used to train a preference model. The trained model
then assigns step-level rewards to individual trajectory steps. These step-level rewards, combined
with outcome-level rewards, are used to refine the policy model.

While GRPO has shown effectiveness in multi-step reasoning tasks [Shao et al.| (2024); |Guo et al.
(2023), its performance depends critically on informative reward signals throughout the reasoning
process. In practice, obtaining such dense supervision requires expensive human annotations of
intermediate reasoning steps or carefully designed step-wise reward functions. Most real-world
scenarios provide only sparse supervision—such as binary correctness of the final answer—rather
than the rich intermediate feedback that GRPO’s group-relative advantage estimation requires.

To address this limitation, we propose Weakly-Supervised Group-Relative Policy Optimization
(WS-GRPO), which augments GRPO with auxiliary rewards derived from a preference model
trained on trajectory-level outcomes. Figure 2] provides an overview of WS-GRPO framework. In
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this section, we begin by formalizing the problem setting (Section[4.T)), then describe our two-phase
approach: weakly-supervised preference learning (Section and WS-GRPO policy optimization

(Section4.3).

LLM Usage: We used large language models solely for grammar refinement and minor wording
edits in drafting parts of this paper.

4.1 PROBLEM FORMULATION

We consider multi-step reasoning tasks where a language model generates a sequence of rea-
soning steps to solve a problem. Given a question g, the policy my generates a trajectory 7 =
(81,82, ...,sT) where each s; represents an individual reasoning step.

GRPO operates by sampling G trajectories {7'1}?:1 for each question and computing group-relative
advantages based on trajectory-level rewards R;, typically binary indicators of final answer correct-
ness. While this approach enables policy optimization without learned value functions, it faces a
fundamental limitation of insufficient signal for effective credit assignment across reasoning steps
due to sparse terminal rewards.

Our objective is to train a policy my that maximizes reasoning quality under weak supervision con-
straints, where only trajectory-level outcomes are available rather than step-level annotations. This
setting exemplifies weak supervision, where learning occurs from noisy, incomplete, or indirect
labels rather than direct step-level annotations. In our case, the weak supervision signal consists
of binary trajectory-level outcomes that provide limited information about the quality of individ-
ual reasoning steps. This challenge motivates a two-phase approach that bridges sparse outcome
supervision and dense reward requirements. In Phase I, we train a preference model to distinguish
between successful and unsuccessful reasoning patterns using only complete trajectory comparisons.
The key insight is that a model capable of assessing overall reasoning quality can be repurposed to
evaluate incremental progress by comparing partial trajectories of different lengths. In Phase II,
we leverage this preference model to generate step-level rewards by treating consecutive reason-
ing prefixes (s1..—1 Vs S1.¢) as preference pairs, thereby extracting dense feedback signals from the
trajectory-level preference model without requiring costly intermediate annotations.

4.2 PHASE I: WEAKLY-SUPERVISED PREFERENCE LEARNING

To bridge the gap between sparse outcome supervision and dense reward requirements, we employ
a weakly-supervised approach that trains a preference model to distinguish successful from unsuc-
cessful reasoning patterns using only trajectory-level outcomes as shown in Algorithm |l|. This
exemplifies weak supervision, where learning occurs from indirect labels rather than direct step-
level annotations. For each question ¢, we sample K reasoning trajectories {71, ..., 7k } using the
initial policy mg,, where each 7, = (s;1, S;.2, ..., 8;,1;) receives a binary label y € {0,1} based
solely on final answer correctness, providing limited information about the quality of individual
reasoning steps.

The preference model architecture leverages the intuition that semantic representations of reason-
ing chains contain implicit quality signals. We employ a frozen text encoder E to compute ques-
tion embeddings h, = E(q) and trajectory embeddings for correct (ht = E(77)) and incorrect
(h~ = E(77)) reasoning chains. A lightweight MLP preference scorer P,, processes the concate-
nated embeddings to produce a preference score indicating which trajectory demonstrates superior
reasoning:

2= Pu(lhgsh™5h7]), g =0(2). @)

We train this preference model using symmetric binary cross-entropy loss to ensure consistent pref-
erence learning regardless of input ordering:

Lprer = B [BCE(Py([hg; A5 h7]), 1) + BCE(Py ([hg; b3 17), 0)] - 5)
This training procedure produces a preference model that captures reasoning quality patterns from

outcome-level supervision, which we subsequently leverage to generate step-level rewards during
policy optimization.
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Algorithm 1 Phase I: Weakly-Supervised Preference Learning

Require: Dataset D, base policy g, , frozen encoder £, preference head P,,, training epochs F.r
1: Data Generation

2: for each question ¢ € D do

3 Sample K reasoning trajectories {1, ..., 7x } where 7, = (s; 1, ..., S;,1;) using g,
4: Label each 7; with y; € {0, 1} based on final answer correctness

5: end for
6
7
8

: Preference Model Training
: for e = 1to Byt do
: Sample trajectory pairs (¢, 77,77 ) where 7 correct, 7~ incorrect
9:  Compute embeddings: hy = E(q), hy = E(77), h_ = E(17)
10 Compute preference logits: z = P,,([hqg; hy;h_]), z— = P,([hq; h—; hy])
11: Update preference head: w < w — nV,, [BCE(z4,1) + BCE(2_,0)]
12: end for

4.3 PHASE II: WS-GRPO PoLiCcY OPTIMIZATION

In Phase II, we leverage the preference model from Phase I to provide auxiliary step-level rewards
during policy as shown in Algorithm 2] The key insight is to combine learned step-level prefer-
ences with sparse outcome rewards to enable effective credit assignment within GRPO’s group-
normalization framework.

For G rollouts {7;}$ , generated by the current policy 7 for prompt ¢, we compute step-wise
preference rewards by treating consecutive partial trajectories as preference pairs. For each step
t > 2 in trajectory 7;:
f
o =0 (Po (hg, E(si1:-1), E(si,1:0)))

where the preference model assesses whether extending the reasoning from step ¢ — 1 to step ¢

. . £ £
represents progress toward a successful solution. The total preference reward is RY™ = ‘;‘2 e

We combine this with the binary outcome reward Ri" = 1[a; = a(q)], where @ is the final answer
and a(q) is the ground truth. The combined reward signal uses mixing weight A € [0, 1]:

RYS = A\ RV 4 ), R

The advantage estimates Aﬂs are computed using the standard GRPO procedure with these com-
bined returns. The final WS-GRPO training objective becomes:

G [74]
1 1 . - . A
Jws-arro(0) = Eq (7} G E I E min <Pi,t(9) AN clip(pie(6),1 —€,1+¢) AX\QS) — B LkL
=1 t=1

|7:]
(6)

4.4 THEORETICAL ANALYSIS

We now provide theoretical analysis for WS-GRPO, establishing key properties regarding preference
model consistency, robustness to errors, and generalization bounds. Our analysis builds toward a
comprehensive union bound that characterizes the overall performance of our approach. Detailed
proof is in Appendix [A.T]

Theorem 4.1 (Preference Model Consistency).

Let P, be the optimal preference model trained with complete step-level annotations, and P,
be our weakly-supervised preference model trained on n trajectory pairs with only outcome-level
supervision. Under regularity conditions, the preference model error satisfies:

- \/ 2dp log(2en/dp) + 2log(2/4) 7

o < L

HPUD - P,

n

with probability at least 1 — §, where dp is the VC-dimension of the preference model class.
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Algorithm 2 Phase II: WS-GRPO Policy Optimization

Require: Dataset D, frozen encoder FE, trained preference head F,, policy 7y, reference policy
Tref, MiX Weight A, clip e, rollouts G

1: while not converged do
2 Sample batch of queries {¢} ~ D
3 for each ¢ do
4 Generate GG Rollouts
5: > Compute step-wise preference rewards
6 fori =1to G do
7 fort =2to|r;| do
8 Compute step reward rf’rf f using preference model on consecutive prefixes
9: Accumulate: RY" « R 4 P!
10: end for )
11: Combine rewards: les =\ R};ret + Ao R?“a‘
12: end for
13: > Compute GRPO advantages using Eq/[I]
14: > Policy update using Eq. [6]
15: end for

16: end while

This follows from treating the preference learning as empirical risk minimization over trajectory
comparisons and applying uniform convergence bounds for VC-classes (Lei et al.||2023; Bartlett &
Mendelson, 2002).

Theorem 4.2 (Policy Robustness to Preference Errors).

Let €y = || Py, — P ||, be the preference model error bound from Theorem{.1} Given trajec-
tories with bounded length |T| < Tyax and bounded policy class, the performance degradation of
WS-GRPO satisfies:

[E[Jws-crro(0)] — E[J*(0)]] < Alﬂmax

where \1 is the mixing weight for preference rewards and J*(0) represents the ground-truth objec-
tive with perfect step-level rewards.

* Eprefy (8)

This bound leverages the Lipschitz property of the sigmoid activation (L, = 1/4) and shows linear
degradation in the preference error, controlled by the mixing weight (Mohri et al., 2018)).

Theorem 4.3 (WS-GRPO Generalization Bound).

Let H be the policy hypothesis class with VC-dimension d, preference model bounded by |P;, (+)] <
B, and trajectories with length |7| < Tyax. For any § > 0, with probability at least 1 — 0, the
generalization error of WS-GRPO satisfies:

N ~ dmax )\2 Bﬂnax 2
R(mg) — R(m) = O (\/ Al ) ) ; ©)

n

where dy.x = max(d,dp), n is the number of training queries, dp is the preference model VC-
dimension, and O hides logarithmic factors in n and 0.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We conduct experiments on two reasoning benchmarks spanning diverse domains: ARC (Clark
et al.,2018]) consists of science exam questions testing commonsense and scientific reasoning. Table
E] shows training, validation, and test data split for both datasets. Specifically, we use 1,813 train-
ing examples, 129 validation examples, and 648 test examples. CommonsenseQA (Talmor et al.,
2019) evaluates commonsense reasoning through multiple-choice questions with 7,673 training ex-
amples, 549 validation examples, and 2,740 test examples. These datasets represent complementary
reasoning challenges from scientific knowledge application to commonsense inference.
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Dataset ‘ Training Validation  Testing
ARC 1813 129 648
CommonsenseQA 7673 549 2740

Table 1: Training/Validation/Testing Split for ARC and CommonsenseQA datasets.
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Figure 3: Pass@1 validation accuracy during training for ARC and CommonsenseQA datasets.
Results are shown for Qwen2.5-3B-Instruct and Llama-3B-Instruct models, comparing WS-GRPO
against GRPO and Dr.GRPO baselines across training steps.

We compare against two primary baselines: GRPO (Shao et al., 2024), the original group-relative
policy optimization using only binary correctness rewards, and Dr.GRPO [Liu et al.| (2025)), which
incorporates distributional reward normalization for improved training stability. Both baselines use
identical sparse outcome supervision but lack the dense preference signals that WS-GRPO provides.

Our implementation uses instruction-tuned language models: Qwen2.5-3B-Instruct Team| (2024)
and Llama-3.2-3B-Instruct |Grattafiori et al.| (2024). For Phase I preference learning, we gener-
ate 4 reasoning trajectories per question using the initial policy mg, and create 10,000 preference
pairs based on trajectory-level outcome comparisons. We split these into 9,000 training and 1,000
validation pairs. The preference model employs a frozen sentence-transformer encoder (all-mpnet-
base-v2) producing 768-dimensional embeddings, followed by a lightweight MLP with 512 hidden
units. We train the MLP for 20 epochs across all experimental conditions. Phase II policy optimiza-
tion uses G' = 8 generations per problem with learning rate = 1 x 10~°. We set mixing weights
A1 = 1.0 and A2 = 5.0 to emphasize outcome correctness while incorporating preference signals.

5.2 MAIN RESULTS

Table [2] presents Pass@1 accuracy for 3B parameter models across ARC and CommonsenseQA.
The results show that WS-GRPO maintains competitive performance on ARC while exhibiting vari-
able performance on CommonsenseQA. On ARC, performance gaps vary by model: Qwen2.5-3B
shows WS-GRPO at 79.80% compared to GRPO’s 82.60% (a 2.8% decrease), while Llama-3B
shows WS-GRPO at 76.04% compared to GRPO’s 79.47% (a 3.4% decrease), suggesting that pref-
erence signals can effectively substitute for dense supervision in structured reasoning tasks. Fig-
ure [3] shows Pass@1 validation accuracy during training for ARC and CommonsenseQA datasets
across Qwen2.5-3B-Instruct and Llama-3B-Instruct models, comparing WS-GRPO against GRPO
and Dr.GRPO baselines.

CommonsenseQA reveals a more complex pattern where model architecture significantly influences
the effectiveness of learned preferences. While Qwen2.5-3B shows degraded performance with
WS-GRPO (67.90% vs 77.10%), Llama-3B demonstrates improvement (72.70% vs 70.40%). This
divergence indicates that the interaction between preference model representations and base policy
architectures affects how well trajectory-level supervision translates into useful step-wise guidance.

The consistent near-competitive performance on ARC across both model architectures suggests that
scientific reasoning tasks may be particularly amenable to the type of incremental progress signals
that our preference model captures. The step-wise comparison approach appears well-suited for
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Model | Dataset | GRPO  DrGRPO  WS-GRPO
ARC 82.60 82.10 79.80

Qwen2.5-3B CommonsenseQA 77.10 78.10 67.90

Llama-3B ARC 79.47 81.48 76.04
CommonsenseQA 70.40 70.80 72.70

Table 2: Pass@1 (%) on ARC and CommonsenseQA Test Dataset for 3B models.

tasks requiring logical progression through factual knowledge. The mixed results across datasets re-
flect the varying demands of different reasoning domains. Structured reasoning tasks like ARC may
benefit from step-wise decomposition signals that our preference model provides, while common-
sense tasks require different forms of intermediate guidance. The variability in CommonsenseQA
results suggests that the effectiveness of learned preferences depends on the alignment between the
preference model’s implicit biases and the reasoning patterns required by specific tasks.

6 CONCLUSION

We propose WS-GRPO to bridge the gap between GRPO’s dependence on dense step-wise su-
pervision and the reality of sparse outcome signals in practice. Our two-phase approach trains a
preference model on trajectory-level outcomes and leverages it to generate auxiliary step-level re-
wards, eliminating the need for costly process annotations. Theoretically, we establish rigorous
foundations for this approach through three key results that collectively provide the first comprehen-
sive analysis of weakly-supervised group-relative optimization. We prove preference model con-
sistency with optimal convergence rates, demonstrating that trajectory-level supervision contains
sufficient signal for step-wise credit assignment. Our robustness analysis shows that policy perfor-
mance degrades linearly with preference errors, controlled by mixing weights that provide principled
trade-offs between robustness and signal strength. Finally, our generalization bounds decompose
total error across policy learning, preference modeling, and their interaction, characterizing how
weak supervision affects statistical efficiency. Experiments on reasoning benchmarks (AI2-ARC
and CommonsenseQA) demonstrate that WS-GRPO achieves competitive performance using only
weak supervision, though effectiveness varies by task domain and model architecture. The results
show that scientific reasoning tasks like AI2-ARC are more amenable to our approach than com-
monsense reasoning tasks, and that the interaction between preference model representations and
base policy architectures significantly affects performance. This work represents an important step
toward making group-relative policy optimization practical under realistic supervision constraints,
opening directions for more flexible weakly supervised optimization methods.
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A APPENDIX

A.1 DETAILED PROOFS
Theorem A.1 (Preference Model Consistency). Following (?Bartlett & Mendelson, 2002), to es-

tablish the consistency of the weakly-supervised preference model F;, , we show that the empirical
risk minimization converges to the population optimum under trajectory-level supervision.
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Setup and Definitions: Let D,, = {(q;,7;", 7, )}, be the training dataset where T;" and ;" are
trajectories with correct and incorrect final outcomes, respectively. Let P denote the preference
model class with VC-dimension dp.

Define the empirical risk for symmetric preference learning:

n

Ru(P) = = 37 [0Pollhgs 17 1),1) + Pl i 51 ), 0)] (10

i=1

and the population risk under trajectory-level supervision:

R(PW) = ]E(q,TJr,T*) [K(Pw([th h+§ h_]) ) + é( ([hqv h~ h+]) )} (11)
where £ : Rx{0,1} — Ry is the binary cross-entropy loss: {(z,y) = —ylogo(z)—(1—y)log(1—
o(2)).

We begin by decomposing the population risk as:
R(P,) = R*(Pu) + R"™(Py) (12)

where R*(P,,) represents the risk under perfect step-level supervision and R"“*(P,,) captures the
bias from using trajectory-level labels.

Under the unbiasedness assumption, for any trajectory T, let Yuq;(T) € {0,1} be the binary tra-
Jectory outcome and yj,ep(T) be the true step-level quality indicator. The unbiasedness condition

states:
E[Yiraj(7)|7] = Elygiep (T)7] (13)
This implies:
R (Py) = B+ =) [U(Po(lhgs B3 h 7)), Y (7)) = 6(Pu([hgs BT h7)), 55, (7)) (14)
+E(grt ) [P 5 8F]), 1 = yui(77)) = U(P([hgs B3 hY]), 1 = 35, (77))]

15)
By the unbiasedness assumption and linearity of expectation:
E[R"®(P,)] =0 (16)
for the preference model class P with VC-dimension d p, the Rademacher complexity is bounded by:
2dp log(2en/d
R (P) < \/ M (17)
By the symmetrization lemma and Rademacher complexity bounds, for any 6 > 0:
- 2log(2/d
P [sup [Ra(P) = R(P)| = 29%,(P) + g(”] < ()
PeP n
Substituting the Rademacher complexity bound:
- 2dp log(2en/d 2log(2/6
P [sup |[Rn(P) — R(P)| > 2\/ p log(2en/dr) +\/ o8(2/ )] <9 (19)
PeP n n
Now we analyze the empirical risk minimizer. Let P, = argminpcp 7%n(P) and P, =
arg minpcp R(P). By the definition of empirical risk minimizer:
Ru(Pa,) < Ra(Por) (20)
Using the triangle inequality and uniform convergence:
R(P‘:)n) - R(Pw*) < |R(Pd)n) - ﬁn(Pd)n” + |7én(P@n) - ,ﬁ'n(Pw*)l (21
+ |7%n(Pw*) _R(Pw*) (22)
< 2sup [Ry(P) — R(P)| (23)
PeP
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To convert risk bounds to parameter bounds, we assume the loss function { is L-Lipschitz in its first
argument and the preference model outputs are bounded. For the binary cross-entropy loss, we have
L =1 (since |0'(z)| < 1/4 and the loss derivative is bounded). Using the strong convexity of the
loss and the fact that the preference model is parameterized by w:

R(Ps,) = R(Pur) = 5l — | (24)

where > 0 is the strong convexity parameter. However, for the (., norm bound on function
space, we use the covering number approach. By the relationship between covering numbers and
VC-dimension, and using the fact that the preference model class has finite VC-dimension dp:

| Ps,, — P~

n

w < C-sup |7A€n(P) —R(P)| (25)
PepP

for some universal constant C. Combining all results and using the uniform convergence bound:

|Po, — Pl < C- (2\/2dp log(2en/dr) flog(z/a)) o6
n n
- \/ 2dp log(2en/dp) + 21og(2/) o
n

where the last inequality absorbs the constant C' and uses \/a + b < \/a + /b for a,b > 0.
Therefore, with probability at least 1 — §:

- \/2dp log(2en/dp) + 21og(2/6) 28)

n

HPGJn — P oo

Theorem A.2 (Policy Robustness to Preference Errors). Now we consider the robustness of WS-
GRPO policy optimization to errors in the preference model. Following the analysis in (Mohri et al.|
2018)), we bound the performance degradation in terms of the preference model error.

Let Jws.grro(0) and J*(0) denote the expected returns under WS-GRPO and oracle GRPO with
perfect step-level rewards, respectively:

e ||
1 1 .
Jws.crro(0) = Eq (7,1 G Z Tl Z We(ai>t|3i,t>A¥f (29)
i=1 =1
(18 )
T O)=Eqiry |52 o > wo(ai]si) Aggee (30)
i=1 't g=1

where the advantages are computed using the GRPO normalization:

ws DWS
A= 31
’ g
2 oracle Rzimzcle _ Roracle
Agaele — 1+ 32)
,t Uuracle

with group statistics R = & Zil R;and o = \/é Zil(Ri - R)2

We begin by analyzing the reward decomposition. The WS-GRPO reward combines preference and
final outcome components:

RYS = M\ RV 4 N R (33)
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For each trajectory T;, the preference reward is computed as:

|7i

R =" 0(Py, (hg, E(si1:-1), Esi14))) (34)
t=2

where Py, (hq, Pshort, hiong) outputs a preference score for the longer trajectory segment.

The oracle reward uses the true preference model P, :

R;;mcle — )\1 R(i)mcle-pref + )\2 R/Znal (3 5)
where:
|7
Rgrade'pmf = Z (P (hqy E(Si1:0-1), E(8i,1:1))) (36)
t=2
Using the bounded error assumption €pr = || Py, — P+, and the Lipschitz property of the sig-
moid function, we can bound the preference reward error. The sigmoid function o(z) = H% has
derivative o' () = 0(2)(1 — 0(z)) < 1, making it 3-Lipschitz.
For each step-wise preference reward:
lo(Pa, (hg, E(si1:0-1), E(8i,1:t))) — 0(Pos(hg, E(si,1:4-1), E(8i,1:¢)))| (37)
1
< Z|Pwn(hq, E(sin:t-1), E(si1:t)) — Pox (hg, E(si1:6-1), E(8i.1:4))] (38)
1
S Zepref (39)
Summing over all steps in trajectory T;:
|7
re; oracle-pre;
| R — Ry = | [0(Pa, () — 0(Por ()] (40)

t=2

kel

<D 10(Pa, () = o(Pur ()] (41)
=2

kgl

1

<> o 42)
t=2
Ti| — 1

= %emf (43)
Tmax

S = s (44)

where Tinax is the maximum trajectory length.

|RZVS o R(i;racle| _ |)\1R€ref+ )\QR]Znal . AlRé?racle-pref _ )\QR]Znal| (45)
— |)\1 (R[i)ref _ R;)racle-pref)‘ (46)
_ )\l |R€ref - R;?racle-pref| (47)
Tmax
< )\1 Tepref (48)
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The advantage functions are computed using group normalization. For the group statistics:

pWS poracle 1 < ws 1 < oracle
|RS — Reracle| = EZRZ- —EZRi (49)
=1 i=1
G
a Z RWS Roracle) (50)
G_
< 5 Z |RWS Roracle| 51)
1 Tinax
< E -G - )\174:l Epref (52)
Tmax
=\ 4 Epref (53)

For the standard deviations, assuming bounded rewards and using the fact that standard deviation

is Lipschitz with constant 1:
Tmax

|O_WS o Uoracle‘ S )\1 Epref (54)

The advantage difference can be bounded as:
WS _ pWS 1 poracl
Ri — R B R;}rac e _ Roracle

|AZE/E - A;_)’r;“'le‘ = oWs goracle (55)
WS __ poracle pPWS __ poracle
< MR- R R - R (56)
mln(O'WS, o-omcle) mlD(O'WS, O-oraale)
R{_)mcle _ Romcle .| +WS __ soracle
7 [l — gt -

(O-WS) (o-oracle)
Assuming the group standard deviations are bounded away from zero (i.e., ™5, 0! > g5 > 0),
we get:
AW. Aoracl
AV — Agace| < CpyTmex,,, (58)

for some constant C > 0 depending on o, and reward bounds.

Since the policy class is uniformly bounded, there exists M > 0 such that |mg(als)| < M for all
0, a, s. The objective difference is:

|E[Jws.crro(0)] — E[J* ()] (59
|73
But) [ 30y 3 ol A5 - @
|74l R R
q {m:} G Z Z |7T9 al t|sz t |A3/§ — Ag’rgde (61)
1 G 1 |73 . R
<M -Bygny | G 2 iy 2o 14T - AT (62)
i=1 """ 1
< M.ON T, (63)

Absorbing the constants M and C' into a single constant, we obtain:

AT max
[Elus.crro(0)] — ELT*(O))] € =7 - g (64)

This bound holds with probability at least 1 — & when €y is the bound from Theorem[A.1}
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Theorem A.3 (WS-GRPO Generalization Bound). Now we establish the comprehensive general-
ization bound for WS-GRPO by combining all error sources through a union bound. Following (??),
we decompose the generalization error into three components.

Let R(mg) denote the true risk (expected performance) and R(my) denote the empirical risk com-

puted on the training set of size n. We want to bound R(mg) — R (7).
For WS-GRPO, the empirical risk involves both policy gradient terms and preference reward terms:

n G [75,i

5 1 1 1 .
R(’]Te) = E Z 6 Z m Z 10g W@(aj,i,t‘sj,i,t)A;‘jit (65)
i=1 "

j=1 t=1

where A;‘jﬁt are advantages computed using WS-GRPO rewards.

For the policy class H with VC-dimension d, the Rademacher complexity of the policy class is:

1< 2dlog(2en/d
Rn(H) =Es | sup — Z oil(m,z;)| < 2dlog(2en/d) (66)
neH N =1 n
where o = (01, . .., 0y) are independent Rademacher variables and ((, ©;) represents the loss for

policy m on example x;.

Using McDiarmid’s inequality with the bounded difference assumption (policy outputs are
bounded), we have:

. 2log(2/8
P SU?I?L Rareo(T) — RGRPO(TF)‘ > 2R, (H) + gfl/l)] <d (67)
S
Substituting the Rademacher complexity bound:
. 2dlog(2en/d 2log(2/6
P lSUP Raereo(T) *RGRPO(W)‘ > 2\/ g(2en/d) +\/ 82/ 1)] <4 (63)
TEH n n
Using the inequality \/a + /b < \/2(a + b) for a,b > 0:
- 8dlog(2en/d) + 8log(2/6
P lsug Rarro(T) —RGRPO(W)‘ > \/ B(2en/ )n 8%/ 1)] <0 (69)
TE
Each preference reward is bounded:
[7i I7i]
IR =13 0(Pa,())] £ 1= |r| =1 < Tinax (70)
t=2 t=2
Since the preference model output is bounded by | P, (-)| < B, and o(z) € [0, 1], we have:
| R < BTmax (71)
The preference-augmented loss function is:
G ref |7
1 )\1Rp ’
bry(m, 0, {7i}) = ; oy tzzllogw(ai,t\si,t) (72)

Since |log m(als)| < log(1/mmin) < Lx for some constant L, the preference loss is bounded by:

G

1 M BThax

|£pref<7T7Q7 {7—1})‘ < 6 § ! . |Tz| : L7r = AlBTmaxLﬂ (73)
=1

|7i]
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Applying Hoeffding’s inequality to the bounded preference rewards:

2
> 1] < 2exp (2“) (74)

P [’E[Eﬁref] - Ewpre] ()‘1BTmaxL7r)2

Setting the right-hand side equal to 65 and solving for t:

log(2/4
t = A\ BToux L M (75)
2n
Absorbing L into the bound and using a looser but cleaner bound:
- 2log(2/4
P | [E[R"] — B[R] > X1 BT ngl/"’)] <6y (76)

From Theorems[A.I|and the preference model error contributes an additional term. The prefer-
ence model error is bounded by:

_ \/ 2dp log(2en/dp) + 2log(2/d3)

€pref = || Pa,, — P+ || oo < - 77)
This error propagates to the policy objective with the bound from Theorem[A.2}
IE[Jws.crro(8)] — E[J*(0)]] < Alﬂm" Epref (78)
Substituting the preference model error bound:
Eluscarol0)] — B (0)) < 2o, [2drloaCen/de) + 210s(2/5) g
This gives us:
P {EUuscaro®)] — BL*(0)] > 2T [20p logen/de) + 2Uos@/00) | 5 g

Now we combine all error sources using the union bound. Setting 61 = 02 = d3 = /3 and applying
the union bound, with probability at least 1 — §:

R(mg) — R(mg) < |Rerro(me) — Rorro(Ts)| (81)
+ |E[€pref] - IAEMW_)‘H (82)
+ |E[Jws.grro(6)] — E[J*(6)]| (83)

Substituting the individual bounds:

8dlog(2en/d) + 8log(6/9)

R(mp) — R(mg) < \/

(84)
n
BTy 222010 (85)
n
N )\ﬂ;lmax \/2dp log(2en/d:) + 2log(6/6) (86)

To obtain a more compact form, we combine these three terms. Let dy,.x = max(d,dp) and ob-
serve that all terms have the same O(y/logn/n) rate. Using the inequality /a + Vb 4+ \/c <
3(a + b+ ¢) and factoring out common terms:
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? ! log(1
R(mg) — R(mg) < \/8d Og(2€n/d)n+ 8log(12/9) .
A BT 2108012/9) s
n

Tinax [ 2dplog(2 21log(12

n A1 mdx\/ dp Og( €7’l/dp) -+ Og( /6) )
4 n
2 2

< \/Cldmax log(en/dmax) + C?l)\l(Bﬂnax) +Cy 10g(1/6) 00)

where C1, Cy, Cs > 0 are universal constants that absorb the numerical factors. This compact form
shows that the generalization error scales as:

R(m9) — R(mp) = O <\/dmalX + A%(BTmaX)z) o

n

where O hides logarithmic factors in n and 6. This demonstrates that WS-GRPO maintains the
standard statistical learning rate while the preference-specific terms contribute additively to the
complexity, controlled by the mixing weight \1 and model capacities.

Prompt : AI2-ARC Scientific Reasoning

System Prompt:

A conversation between User and Assistant. The User asks a question, and the Assistant
solves it. The Assistant first thinks about the reasoning process in the mind and then provides
the User with the answer. The reasoning process is enclosed within <think> </think>
and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think>
reasoning process here </think> <answer> answer here</answer>. <answer> must
contain only the letter of your choice (A, B, C, D).

User Prompt:

<Question>
<Options>

Prompt : CommonsenseQA Reasoning

System Prompt:

A conversation between User and Assistant. The User asks a question, and the Assistant
solves it. The Assistant first thinks about the reasoning process in the mind and then provides
the User with the answer. The reasoning process is enclosed within <think> </think>
and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think>
reasoning process here </think> <answer> answer here</answer>. <answer> must
contain only the letter of your choice (A, B, C, D, or E).

User Prompt:

<Question>
<Options>
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