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Abstract
Regression trees are a human-comprehensible
machine-learning model that can represent com-
plex relationships. They are typically trained us-
ing greedy heuristics because computing optimal
regression trees is NP-hard. Contrary to this stan-
dard practice, we consider optimal methods and
improve the scalability of optimal methods by
developing three new dynamic programming ap-
proaches. First, we improve the performance of
a piecewise constant regression tree method us-
ing a special algorithm for trees of depth two.
Second, we provide the first optimal dynamic pro-
gramming method for piecewise multiple linear
regression. Third, we develop the first optimal
method for piecewise simple linear regression,
for which we also provide a special algorithm for
trees of depth two. The experimental results show
that our methods improve scalability by one or
more orders of magnitude over the state-of-the-art
optimal methods while performing similarly or
better in out-of-sample performance.

1. Introduction
Regression trees generalize linear regression by splitting the
data before learning a regression model, as seen in Fig. 1.
This makes regression trees a powerful tool for regression
analysis, with wide applications ranging from ecology anal-
ysis (De’ath & Fabricius, 2000) to clinical psychology (King
& Resick, 2014). Because of their rule-based nature, they
satisfy the need for complex, nonlinear models that are
human-comprehensible (Loh, 2014; Freitas, 2014; Carri-
zosa et al., 2021; Rudin, 2019).

Because human comprehensibility of decision trees is di-
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rectly related to the size of the tree (Piltaver et al., 2016),
we are interested in small trees with high performance, e.g.,
small mean squared error. Traditionally, heuristics, such
as CART (Breiman et al., 1984), dominate the decision
tree literature due to their scalability. Heuristics can learn
small trees but may yield a suboptimal representation of the
data. In contrast, optimal decision trees provably maximize
performance over training data for a given size limit. On
average, optimal trees also perform better in out-of-sample
tests (Bertsimas & Dunn, 2017; Bertsimas et al., 2017).

Since computing optimal decision trees is NP-hard (Hyafil
& Rivest, 1976), scalability (the ability to keep run time low
for larger data sets and larger tree sizes) remains a challenge.
For example, optimal approaches that use general-purpose
solvers such as Mixed-Integer Programming (MIP, Bert-
simas & Dunn, 2017), constraint programming (CP, Ver-
haeghe et al., 2020), or maximum satisfiability (MaxSAT,
Hu et al., 2020), often even do not scale beyond small data
sets and depth limits as small as depth three.

Recent work shows significant scalability improvements
using dynamic programming (DP) approaches (Aglin et al.,
2020a; Lin et al., 2020; Demirović et al., 2022). DP directly
exploits the recursive tree structure by solving subtrees as
independent subproblems, caching results to subproblems,
and using branching and bounding to limit the search space.

Most optimal decision tree methods consider only classifi-
cation. Dunn (2018) and Verwer & Zhang (2017) show how
their MIP models can also be used for regression. Dunn
(2018) considers both piecewise constant regression trees
(with a constant predictor in each leaf node) and piecewise
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Figure 1. The blue line represents standard linear regression (LR),
whereas orange and green show the advantage of adding one split
before linear regression.
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linear regression trees (with a linear predictor in each leaf
node, as seen in Fig. 1), whereas Verwer & Zhang (2017)
only consider constant predictors. However, Dunn (2018)
observes that lack of scalability prevents the use of MIP for
practical applications. Zhang et al. (2023) are the first to ap-
ply DP, but they only consider piecewise constant regression
trees. Moreover, they do not incorporate some of the latest
scalability improvements for optimal classification trees.

Therefore, we develop three novel contributions. First, we
provide a new DP algorithm with scalability improvements
for piecewise constant regression trees that incorporates
and adapts an efficient algorithm for classification trees
of depth two to regression. Second, we provide the first
optimal DP algorithm for piecewise linear regression trees.
Third, we consider the special case of piecewise simple
linear regression, which restricts each linear model to only
one independent variable, and provide another depth-two
algorithm that also yields large scalability improvements.

As commonly done, we train binary decision trees and as-
sume all possible tree predicates to be given, e.g., in the
form of binary features. The linear models in the leaf nodes
are trained with the original continuous features.

We compare our methods with ten methods from the liter-
ature, both heuristics and optimal methods. Our methods
surpass previous optimal methods by one or more orders of
magnitude in scalability, mainly because of our new depth-
two algorithms. Our methods’ out-of-sample performance
is on par with or better than the state-of-the-art.

2. Related work
Regression tree heuristics Since computation of optimal
decision trees is NP-Hard (Hyafil & Rivest, 1976), heuristics
are commonly used for computing regression trees. The first
regression tree heuristics was AID (Morgan & Sonquist,
1963) which greedily partitions a node such that the sum
of squared errors (SSE) is minimized. AID halts when no
partition exists which results in an improvement above a
certain threshold. CART (Breiman et al., 1984) is one of the
most-used heuristics for piecewise constant regression trees.
Instead of respecting a minimum improvement threshold,
CART grows trees that overfit on the data and then uses
cross-validation to prune overfitting branches. GUIDE (Loh,
2002) is a more recent greedy heuristic for both piecewise
constant and piecewise (simple) linear trees that uses χ2-
tests to address the bias of preferring to branch on features
with many unique values. Other examples of commonly
used greedy heuristics for piecewise linear and polynomial
regression trees are M5 (Quinlan, 1992; Wang & Witten,
1997), and MARS (Friedman, 1991), respectively.

Apart from greedy heuristics, Hemmateenejad et al. (2011)
and Grubinger et al. (2014) propose to use ant colony op-

timization and evolutionary algorithms. Yang et al. (2016)
greedily choose a single continuous splitting feature for the
whole tree, and then use MIP on this tree to globally opti-
mize a piecewise linear model for each leaf node. Bertsimas
et al. (2021) use Adam (Kingma & Ba, 2015) for gradient
optimization of tree splits and then apply polynomial ridge
regression in the leaf nodes. Blanquero et al. (2022) use
randomized splits to transform the problem into a nonlinear
continuous optimization problem with better scalability, but
with reduced interpretability. Dunn (2018) uses local search
with random restarts to iteratively optimize a single node
in the tree. Similarly, Yang et al. (2017) use local search to
iteratively optimize a single split decision together with the
leaf node regression function using MIP.

Optimal classification trees In contrast to heuristics, op-
timal decision tree methods guarantee global optimality
over the training data for the given tree size limit. Early
approaches focused on classification. Bertsimas & Dunn
(2017) propose a first MIP model, with improved models
quickly following after (Verwer & Zhang, 2017; 2019; Zhu
et al., 2020; Aghaei et al., 2021); Verhaeghe et al. (2020) pro-
pose a constraint programming approach; whereas Narodyt-
ska et al. (2018); Janota & Morgado (2020) use SAT to find a
perfect tree of minimum size; and Hu et al. (2020) maximize
accuracy using MaxSAT. However, despite improvements,
these methods based on general-purpose solvers struggle to
scale beyond a thousand data points. Therefore, Schidler &
Szeider (2021), for example, propose to combine heuristics
and optimal methods, such as SAT, to improve scalability.

Better scalability results are obtained with dynamic pro-
gramming approaches of which DL8 is one of the first (Nijs-
sen & Fromont, 2007). Aglin et al. (2020a;b) extend DL8
into DL8.5 by adding bound-based pruning of the search
space. Hu et al. (2019) and Lin et al. (2020) combine ideas
from DP with new lower bounds and sparsity-based pruning.
Demirović et al. (2022) contribute several improvements,
among which a similarity-based lower bound and a special
algorithm for trees of at most depth two that significantly
improves scalability by applying smart precomputations.

DP has also been successfully applied beyond classifica-
tion, for example, to classification under a group fairness
constraint (Van der Linden et al., 2022) and survival anal-
ysis (Huisman et al., 2024). Van der Linden et al. (2023)
show that dynamic programming can be used for any opti-
mization task for which optimal solutions to subtrees can
be computed independently of the rest of the tree. This
indicates that the improvements obtained in DP for optimal
classification trees may also be applied to regression.

Optimal regression trees Optimal MIP models for re-
gression trees were proposed by Bertsimas et al. (2017) and
Verwer & Zhang (2017). Dunn (2018) presents an optimal
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MIP method for both piecewise constant and linear trees,
but observes the lack of scalability and then proposes to use
a local search heuristic instead. The only optimal DP-based
approach for piecewise constant regression trees is OSRT
(Zhang et al., 2023). They observe that for each subtree with
at most k nodes, the error of an optimal k-means clustering
provides a lower bound for the current subtree, which can
be computed efficiently by using the algorithm by Wang &
Song (2011) and Song & Zhong (2020).

Summary Only a few of the many regression tree meth-
ods are optimal and among those, scalability remains chal-
lenging. Furthermore, no scalable optimal piecewise linear
regression method exists yet. We address these gaps by
improving the scalability of piecewise constant regression
methods and by providing the first optimal DP approaches
for piecewise simple and multiple linear regression trees.

3. Preliminaries
This section introduces the notation, provides a formal prob-
lem definition, and explains the basics of the DP approach.

Notation Let F be a set of features, Fb a correspond-
ing set of binarized features, and D a data set of instances
(x, b, y). The vector x ∈ R|F| represents the continuous
feature vector and b ⊆ Fb represents the binary feature vec-
tor, where f ∈ b means the binary predicate f is satisfied
in vector b. Similarly, let f̄ represent f /∈ b. The symbol
y ∈ R represents the label of an instance. Data sets can
be split on binary features f into two data sets Df and Df̄

that respectively contain all instances (x, b, y) that satisfy
(f ∈ b) or do not satisfy (f /∈ b) feature f . Similarly, we
define Dfi,fj as the subset of D that satisfies both fi and fj .
Let ȳ denote the mean of the labels of a data set D.

Problem definition A binary regression tree is a function
τ : R|F| × P(Fb) → R that maps an instance (x, b) to
a predicted output label ŷ. Here P denotes the power set.
Each branching node performs a binary feature test from Fb

and directs instances to the left or right subtree. Leaf nodes
assign output labels to every instance that ends up in it. The
quality of a decision tree is determined by computing the
error, such as the Sum of Squared Errors (SSE), of the tree
output with respect to the true values.

Optimal regression trees provably globally optimize the SSE
for a given size limit (number of nodes or depth of the tree).
To prevent overfitting, we penalize the size of the tree, given
by the number of branching nodes N(τ), by a regularization
parameter λ, which we scale by the total sum of squares of
the training data. Therefore, given a maximum depth d and

a training data set D, the objective function is:

min
τ

∑
(x,b,y)∈D

(y − τ(x, b))2 + λN(τ) (1)

Dynamic programming approach The basis of the dy-
namic programming approach is the recursive formulation
of the problem. A simplified version of the recursive
formulation for minimizing misclassification score from
(Demirović et al., 2022) is as follows:

T (D, d) =


mink̂∈K

∑
(b,k)∈D 1(k ̸= k̂) if d = 0

minf∈Fb
{T (Df , d− 1) +

T (Df̄ , d− 1)}
if d > 0

(2)

In this equation, the maximum depth of the tree d and the
data set D define the DP state. K is the set of labels, k
the true label and k̂ the predicted label. At each branching
node (d > 0), all possible branching decisions f ∈ Fb

are considered, resulting in two independent subproblems
each. Leaf nodes (d = 0) select the label with the lowest
misclassification costs. For brevity of notation, this and
subsequent DP formulations only consider complete trees.

Demirović et al. (2022) significantly enhance scalability
by introducing a specialized algorithm for depth-two trees.
Instead of using the default recursion, this algorithm effi-
ciently precomputes class occurrences for the whole data
set and all possible depth-two splits, to prevent traversing
the whole data set repeatedly for computing the misclassifi-
cation score for each possible leaf node. In the next section,
we describe how a similar idea can be used to significantly
improve computation of regression trees up to depth two.

4. Piecewise Constant Regression Trees
This section explains how optimal piecewise constant re-
gression trees can be computed using DP and how a special
solver for trees of depth two greatly improves scalability.

Dynamic programming formulation The following
equation adapts Eq. (2) for regression:

T (D, d) =


∑

(b,y)∈D (y − ȳ)2 if d = 0

min
f∈Fb

{T (Df , d− 1) +

T (Df̄ , d− 1) + λ}
if d > 0

(3)

The updated formulation selects the mean ȳ as the leaf
node’s label and returns the SSE as its cost. Adding a
branching node is penalized with a regularization parame-
ter λ. See Appendix A for the full pseudocode including
non-complete trees, caching, and bound-based pruning.

Precomputing per-instance costs As introduced in the
preliminaries, Demirović et al. (2022) obtain a major in-
crease in scalability because of their special solver for trees
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P (D)

P (D)−Q(fi) Q(fi)

P (D)−Q(fi)−
Q(fj)+Q(fi, fj)

Q(fj)−Q(fi, fj) Q(fi)−Q(fi, fj) Q(fi, fj)

f̄i fi

f̄j
fj f̄j

fj

Computed

Derived

Figure 2. For depth-two trees, only the green values need to be
precomputed per feature pair fi and fj . This can be done efficiently
by looping only over the list of satisfied features per instance in D.
The other (blue) values can be derived according to Eq. (7).

of maximum depth two. This is obtained by precomputing
class occurrences before looping over every possible combi-
nation of feature splits. As a result, instead of traversing the
whole data set for every combination of two features, the
precomputation only considers the features that are present
for every instance. This algorithm is shown to be very ef-
fective for classification, and Van der Linden et al. (2023)
generalize this special depth-two solver to any optimization
task, provided that the costs for a leaf node can be expressed
as a function of the per-instance contribution to the costs.

However, for regression, the error of each instance depends
on the mean of all instances in a leaf node, and when one
instance is added to or removed from a leaf node, the error
of every other instance changes. Despite this, we can rewrite
the SSE as a function of three sums over the instances: the
sum of y, the sum of y2, and the number of instances |D|:

∑
(b,y)∈D

(y − ȳ)2 =
∑

(b,y)∈D

y2 −
(
∑

(b,y)∈D y)2

|D|
(4)

For example, with labels 4, 5, and 6, we have ȳ = 5, and the
SSE is 2. Eq. (4) yields 42 +52 +62 = 77, (4 + 5+ 6)2 =
225, and |D| = 3, so 77 − 225/3 = 2. Therefore, Eq. (4)
allows us to define the per-instance costs as a three-tuple
(y, y2, 1), which can be summed for multiple instances using
element-wise addition. Let P represent the sum of per-
instance cost for a data set D:

P (D) =
∑

(b,y)∈D

(y, y2, 1) (5)

The resulting sums of
∑

y,
∑

y2 and n = |D| can be used
to obtain the SSE through Eq. (4).

C(
∑

y,
∑

y2, n) =
∑

y2 − (
∑

y)2

n
(6)

The optimal label ŷ = ȳ is obtained through
∑

y/n.

Algorithm 1: Depth-two tree search for a data set D
and a feature set Fb. BestL.C and BestR.C are the
best left and right subtrees respectively.

Q(fi)← (0, 0, 0) ∀fi ∈ Fb

Q(fi, fj)← (0, 0, 0) ∀fi, fj ,∈ Fb s.t. i < j
for (b, y) ∈ D do

for fi ∈ b do
Q(fi)← Q(fi) + (y, y2, 1)
for fj ∈ b, s.t. i < j do

Q(fi, fj)← Q(fi, fj) + (y, y2, 1)

for fi ∈ Fb do
for fj ∈ Fb do

CL = C(Q(f̄i, fj)) + C(Q(f̄i, f̄j))
CR = C(Q(fi, fj)) + C(Q(fi, f̄j))
if BestL.C(fi) > CL then

BestL.C(fi)← CL

if BestR.C(fi) > CR then
BestR.C(fi)← CR

return minfi∈Fb
BestL.C(fi) +BestR.C(fi)

This break-down in per-instance costs allows for a similar
performance gain as in (Demirović et al., 2022) by precom-
puting Q(fi) = P (Dfi) and Q(fi, fj) = P (Dfi,fj ). Based
on these precomputations, the values for other splits, such
as P (Df̄i,fj ) = Q(f̄i, fj) can be obtained as follows:

Q(f̄i) = P (D)−Q(fi)

Q(fi, f̄j) = Q(fi)−Q(fi, fj)

Q(f̄i, fj) = Q(fj)−Q(fi, fj)

Q(f̄i, f̄j) = P (D)−Q(fi)−Q(fj) +Q(fi, fj)

(7)

Fig. 2 and Algorithm 1 show how the values for Q(fi) and
Q(fi, fj) can be efficiently computed by looping only over
the features present for every instance. After precomputing
the values for P (D), Q(fi), and Q(fi, fj), the algorithm
loops over all possible combinations of two feature splits,
computes the costs of the four resulting leaf nodes, and
for each first-level split fi, stores the costs of the best left
and right subtree. Finally, it finds the first-level split that
minimizes the total cost.

This procedure reduces the run time for finding depth-two
trees from O(|F|2|D|) to O(m2|D|), with m the maximum
number of positive features in any instance. Since binary
features are commonly sparse, this results in a significant
decrease in run time at the cost of O(|F|2) extra memory.

Lower bounds Scalability is further increased by lower
bounds that help prune the search. We incorporate the equiv-
alent points, k-means, and look-ahead lower bound from
(Zhang et al., 2023), and the similarity lower bound from
(Demirović et al., 2022) by using the worst-case contribu-
tion of one instance from (Dunn, 2018). We implement the
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equivalent points lower bound by grouping instances with
equivalent feature vectors b as one instance with a weight,
label y, and y2 equal to the sum of the combined instances.

5. Piecewise Linear Regression Trees
Instead of a constant predictor in each leaf node, this section
explains how optimal trees with linear regression models in
each leaf node can be computed using DP. We consider both
multiple linear and simple linear regression models.

5.1. Multiple Linear Regression

For multiple linear regression, we optimize an elastic net re-
gression model in every leaf node. An elastic net promotes
model sparsity by penalizing the L1-norm of the coeffi-
cients β̂ with a factor κ and the L2-norm with a factor γ.
We reuse the DP formulation of Eq. (3), but replace the base
case (d = 0) with the following:

min
β̂0,β̂

∑
(x,b,y)∈D

(y − β̂0 − xT β̂)2 + κ∥β̂∥1 + γ∥β̂∥22 (8)

We use the GLMNet coordinate descent algorithm (Fried-
man et al., 2010) to compute the elastic net model. With
GLMNet, standardization of the data takes O(|D||F|) steps.
Each iteration in the coordinate descent takes O(m|F|)
steps, where m is the number of nonzero coefficients in the
model. Adding a new nonzero coefficient takes O(|D||F|)
steps. We stop the computation after 10,000 iterations or
when the change in SSE is less than 0.1%.

5.2. Simple Linear Regression

It remains an open challenge to formulate an efficient per-
instance cost breakdown for multiple linear regression, and
therefore we do not provide a special algorithm for trees of
depth two. Instead, we consider the special case of simple
linear regression. Simple linear regression considers only a
single explanatory variable. This makes it easier to compute
and also more human-comprehensible because the model
can easily be plotted in 2D. The leaf node function becomes:

min
j,β̂0,β̂j

∑
(x,b,y)∈D

(y − β̂0 − xj β̂j)
2 + γβ̂2

j (9)

In this case, we only use the L2-norm (ridge) penalization,
since the main aim for the L1 penalization is to reduce the
number of non-zero coefficients, but simple linear regression
already considers only one non-zero coefficient.

Per-instance costs In Appendix B, we derive the formulas
for an optimal simple linear regression model, which we

here rewrite in terms of sums that we can precompute:

β̂0 =
∑

y/n− β̂j

∑
xj/n (10)

β̂j =
n
∑

xjy −
∑

y
∑

xj

n
∑

x2
j − (

∑
xj)2 + nγ

(11)

By expanding Eq. (9), and rewriting it in terms of com-
putable sums, it can be seen that the SSE of a model with
intercept β̂0 and slope β̂j is:∑

y2 − 2β̂j

∑
yxj − 2β̂0

∑
y + β̂2

j

∑
x2
j

+ 2β̂0β̂j

∑
xj + γβ̂2

j + |D|β̂0 (12)

The sums necessary for computing Eqs. (10)-(12), can be
precomputed as in the piecewise constant case:

P (D) =
∑

(x,b,y)∈D(y, y
2, 1,

x1, x
2
1, x1y, ..., x|F|, x

2
|F|, x|F|y) (13)

The breakdown of the per-instance costs of simple linear
regression is more complex than in the constant case. Be-
fore, only the sum of y, the sum of y2, and the number of
instances were computed, but now also for every continuous
feature f the sum of xf , x2

f , and xfy is computed, resulting
in a tuple of size 3+3|F|. With this new definition of P (D),
we again apply Eq. (7) to indirectly compute the sums for
all possible leaf nodes in a depth-two tree. With all these
sums precomputed as before using the technique from Algo-
rithm 1, we can compute the SSE Cj(.) for when feature j
is used as the explanatory variable using Eqs. (10)-(12). We
do this for each feature and select the linear model with
the smallest SSE: C(

∑
y, ...) = minj Cj(

∑
y, ...). Algo-

rithm 1 can now be applied in the same way as before and
again yields a large scalability improvement.

6. Experiments
In our experiments, we first provide a scalability analysis
and measure the effect of the depth-two algorithms. Second,
we compare out-of-sample performance with the state-of-
the-art. The results show that our methods outperform the
state-of-the-art optimal methods in scalability by one or
more orders of magnitude and that the depth-two algorithm
improves scalability by one order of magnitude on average.
The out-of-sample analysis shows that our methods have
similar out-of-sample performance as the state-of-the-art.

6.1. Experiment Setup

Data Table 2 lists the benchmarking data sets. All data
sets were obtained from the UCI Repository (Dua & Graff,
2017) and split into five folds. Categorical variables are
binarized using one-hot encoding. Numerical features are
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Figure 3. Run time comparison for optimal methods for d = 1...9. Each line shows for what percentage of problem instances the optimal
tree could be computed within the given run time (higher is better). The right-most plot shows the effect of our depth-two algorithms. Our
methods outperform previous optimal methods by one or more orders of magnitude. Note the logarithmic scale on the horizontal axis.

binarized by training a regression tree for only that feature
with at most 10 branching nodes. The splits on each branch-
ing node are used as binary predicates. The DP methods use
the binarized features as predicates for the tree splits. The
other methods use the original numerical data. All piece-
wise linear regression methods compute their linear models
on the numerical data.

Hardware Experiments were run with one thread on an
Intel Xeon E5-6248R 3.0GHz with 100GB RAM. All ex-
periments were run with a time-out of 15 minutes.

Methods We have implemented our methods in C++ us-
ing the STreeD framework (Van der Linden et al., 2023)
and provide it as a Python package.1 We name our STreeD
regression tree methods SRT-C, SRT-SL, and SRT-L, refer-
ring to our piecewise constant, simple linear, and multiple
linear regression methods respectively.2

1https://github.com/AlgTUDelft/pystreed
2See https://github.com/mimvdb/regression-

murtree for our experiment setup.

Table 1 lists all methods included in our experiments. From
(Dunn, 2018; Bertsimas & Dunn, 2017; Bertsimas et al.,
2017), we include the univariate optimal MIP methods for
both piecewise constant and linear regression (ORT and
ORT-L). In the same work, Dunn (2018) also proposes a
local search method for both cases, which confusingly are
also named ORT and ORT-L. Instead, we refer to these
methods as IAI and IAI-L after their implementation by
Interpretable AI (2023). For the piecewise linear methods,
we adhere to the rule of thumb that the number of training
samples for a linear model should be at least 10 times the
number of independent variables, thus requiring each leaf
node to have at least 10|F|, or 10 instances in the case of
simple linear regression. The MIP methods optimize the
mean absolute error and are solved with Gurobi 9.5.

6.2. Scalability

Comparison with optimal methods To compare the scal-
ability of optimal methods, we run each optimal method
on each full data set for depth d = 1...9 and for normal-
ized λ = 0.1, 0.01, 0.001, and 0.0001 (except the much
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Table 1. Overview of the analyzed methods. The DP methods
split on the binarized data. The piecewise linear methods use the
numerical data for training the linear models in the leaf nodes.

Method Type Reference

Piecewise constant regression trees
CART Greedy Breiman et al. (1984)
GUIDE Greedy Loh (2002)
IAI Local search Dunn (2018)
ORT Optimal MIP Dunn (2018)
DTIP Optimal MIP Verwer & Zhang (2017)
OSRT Optimal DP Zhang et al. (2023)
SRT-C Optimal DP This paper

Piecewise simple linear regression trees
GUIDE-SL Greedy Loh (2002)
SRT-SL Optimal DP This paper

Piecewise linear regression trees
GUIDE-L Greedy Loh (2002)
IAI-L Local search Dunn (2018)
ORT-L Optimal MIP Dunn (2018)
SRT-L Optimal DP This paper

larger Household data set, which we use below to measure
scalability with respect to data set size).

Fig. 3 shows a cumulative distribution plot of the run time
required for finding the optimal solution, divided in rows
for different depth limits. It shows how our DP approach
outperforms the MIP approaches by several orders of magni-
tude, both for piecewise constant and linear trees. The MIP
methods ORT and DTIP do not scale beyond depth two and
ORT-L only scales for larger depth for the smallest data sets.
It also shows that SRT-C on average is 18 times faster than
OSRT (geometric mean performance ratio). The difference
is smaller for larger depth limits because then the effect
of the depth-two solver for SRT-C becomes smaller. The
greatest difference is observed for computing trees of depth
three: SRT-C is on average 131 times faster than OSRT.

Comparison with heuristics The heuristics CART and
GUIDE(-L) easily outperform all optimal methods in scala-
bility and are therefore not included in our scalability anal-
ysis. IAI was not included in Fig. 3 because it is not an
optimal method and its license requirement prevented us
from running it on our distributed experiment server setup.
Instead, we compared IAI with SRT-C separately on a local
machine with an Intel i7-6600U CPU with 8GB RAM.

On average, SRT-C is faster than IAI for d = 3 and d = 4
by 26 and 5 times, respectively. For d = 6, IAI is 9 times
faster. This is expected, as IAI is a local search method
and SRT-C an optimal method. SRT-L and IAI-L show a
similar relationship, but not as pronounced. SRT-L is faster
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Figure 4. Run time increase for the number of instances (House-
hold data set) and features (Seoul Bike data set) for d = 4. OSRT
exceeds the memory limit for |D| ≥ 106.

than IAI-L up to d = 3 and has similar performance for
d = 4 and d = 5. At d = 6, IAI-L is approximately 2 times
faster than SRT-SL. Though SRT-C and SRT-L scale expo-
nentially with the number of features and maximum depth
and IAI and IAI-L scale linearly for the number of features
and depth, both SRT-C and SRT-L remain competitive in
run time with these local search algorithms for the cases we
considered, while guaranteeing optimal solutions.

Scalability break down Fig. 4 shows that –as expected–
all DP methods scale linearly for the number of instances
and exponentially for the number of features.

Surprisingly, the performance of SRT-SL is very close to
SRT-C’s performance and much better than OSRT’s, which
means we can now fit a simple linear regression model in
each leaf node even faster than previous methods could fit
constant predictors in each leaf node.

Even SRT-L, which fits a full linear regression model in its
leaves, scales similarly to OSRT (with constant predictors)
for an increasing number of features. However, because of
the coordinate descent algorithm, it scales slightly worse
for an increasing number of instances. OSRT exceeds the
memory limit of 100GB for |D| ≥ 106.

Effect of the depth-two algorithms Fig. 3 and Fig. 4 also
show the effect of our depth-two algorithm. For SRT-C
and SRT-SL, on average, it improves the run time by a
factor 8 and 10 respectively. For trees of depth three, it
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Table 2. Out-of-sample R2 results for the piecewise constant methods with maximum depth d = 5. Time-outs indicated by ‘-’. Best
results are marked bold. |D| is the number of instances, |F| the number of original features and |Fb| is the number of binary features.

Heuristic Optimal DP

Data set |D| |F| |Fb| CART GUIDE IAI OSRT SRT-C

Airfoil 1503 5 28 0.61 0.59 0.69 - 0.67
Auction 2043 7 26 0.95 0.89 0.97 0.97 0.97
Auto MPG 392 7 38 0.77 0.80 0.80 - 0.81
Energy (C) 768 8 37 0.96 0.95 0.96 0.97 0.97
Energy (H) 768 8 37 0.99 0.97 0.99 1.00 1.00
Household 2049280 3 26 1.00 - - - 0.98
Optical Net. 640 7 42 0.96 0.91 0.93 0.95 0.95
Real Estate 414 6 46 0.66 0.62 0.63 - 0.66
Seoul Bike 8760 9 57 0.72 0.62 0.74 - -
Servo 167 2 17 0.78 -0.02 0.78 0.89 0.89
Synch. 557 4 34 1.00 1.00 1.00 0.99 0.99
Yacht 308 6 43 0.99 0.99 0.99 - 0.99

Best 5 2 5 4 7

improves the run time of SRT-C and SRT-SL on average
by a factor 20 and 12 respectively. At larger depth, the data
set splits are much smaller and thus the effect of the depth-
two solver is less significant. For SRT-SL, the performance
improvement remains significant even at larger depth limits.
The benefit of the depth-two algorithm increases with more
features. SRT-C sees a diminishing impact of the depth-two
algorithm for an increasing number of instances, but for
SRT-SL its impact is even greater.

6.3. Out-of-Sample Performance

Setup For out-of-sample analysis, each method is tested
on each of the five folds of the data sets with the other
folds as training data. For CART, OSRT, SRT-C, SRT-SL,
and SRT-L we hyper-tune the regularization parameter λ
using five-fold cross-validation. For GUIDE, GUIDE-SL,
GUIDE-L, IAI, and IAI-L, we use the default hyper-tuning
as included in these methods. Furthermore, SRT-L and
IAI-L tune the Lasso and Ridge penalization (if applica-
ble) in a second hyper-tuning phase, as explained in (Dunn,
2018). The piecewise constant and linear methods are
trained with a maximum depth of five and four respectively.
The MIP models ORT, ORT-L, and DTIP resulted in time-
outs for almost every scenario even without hyper-tuning,
and are therefore left out of the results. We show training
scores at time-out (without hyper-tuning) for the MIP meth-
ods and all other methods in Appendix C. Every method,
except LR, CART, SRT-C, and SRT-SL resulted in time-outs
or out-of-memory errors for the Household data set.

Results Table 2 shows that the out-of-sample coefficients
of determination (R2) for all piecewise constant methods are

close, with each method scoring best for at least one data set.
SRT-C most often performs best. With a 5% significance
level, Wilcoxon signed rank tests show that SRT-C performs
better than GUIDE and equal to IAI, ORST, and CART.
OSRT results in time-outs for several data sets.

Table 3 shows the out-of-sample R2-scores for all piece-
wise linear methods. For comparison, the results of linear
regression are also included. Since IAI-L uses lasso penal-
ization, we compare it with both SRT-L using only lasso
regularization and also elastic net regularization.

All methods perform significantly better than standard lin-
ear regression. SRT-SL, with its simple linear regression
models, performs best for most data sets. The runner-up is
SRT-L (with either regularization technique). Both SRT-SL
and SRT-L perform significantly better than GUIDE-SL and
GUIDE-L. The other differences are not significant.

Binarization and optimality To show the effect of pre-
processing the feature data for possible binary tree splits
and the difference between optimal and non-optimal meth-
ods, we also compare the training R2 score of SRT-C with
that of IAI and CART when the latter are trained with the
original numerical and with the binarized data. Fig. 5 shows
that SRT-C, despite losing information in the binarization,
obtains approximately the same training R2 score as IAI
and outperforms IAI and CART clearly when those methods
are also trained with binary features.

Discussion Our analysis shows that our optimal meth-
ods have better out-of-sample generalization than previous
heuristics, although the differences are small. The opti-
mal methods guarantee optimality on the training data for
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Table 3. Out-of-sample R2 results for the piecewise linear methods with d = 4. Time-outs indicated by ‘-’. The best results are marked in
bold. Optimal methods are marked with an *.

Simple Regression Multiple Regression

Data set LR GUIDE-SL SRT-SL* GUIDE-L IAI-L SRT-L* (Lasso) SRT-L* (Elastic Net)

Airfoil 0.51 0.65 0.72 0.85 0.88 0.89 -
Auction 0.38 0.89 0.96 0.94 0.94 0.94 0.94
Auto MPG 0.82 0.83 0.84 0.84 0.84 0.84 0.84
Energy (C) 0.89 0.95 0.97 0.97 0.97 0.97 0.97
Energy (H) 0.92 0.98 1.00 0.99 0.99 0.99 0.99
Household 1.00 - 1.00 - - - -
Optical Net. 0.29 0.15 0.96 0.20 0.59 0.73 0.77
Real Estate 0.58 0.59 0.58 0.62 0.63 0.63 0.63
Seoul Bike 0.56 0.69 - 0.79 - - -
Servo 0.45 -0.05 0.64 -0.03 0.50 0.49 0.53
Synch. 1.00 0.96 1.00 0.95 1.00 1.00 1.00
Yacht 0.63 0.99 0.99 0.98 0.98 0.99 0.99

Best per category 3 10 5 7 8 9
Best overall 2 1 9 3 4 6 5

2 3 4 5 6 7
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Figure 5. Training R2 score for Airfoil. SRT-C (with binary fea-
tures) performs similarly to IAI with original features, better than
IAI with binary features, and better than CART in both cases

a given size limit and binarization. However, the choice
of binarization and tree-size hypertuning techniques have
not been studied well enough yet in the literature, which
prevents full utilization of the strength of optimal methods.

Though our method SRT-C obtains the same optimal so-
lutions as OSRT by Zhang et al. (2023), our conclusion is
more cautious than theirs, when they conclude that OSRT
outperforms CART, GUIDE, and IAI in out-of-sample per-
formance. Differences that may explain this are: (1) they
compare all methods on the binarized data, whereas we train
methods with the original numerical data if possible; (2) for
most data sets, they binarize numerical features into four
binary features, instead of at most 10, as we do; (3) their
setup for GUIDE mistakenly reuses the train predictions to
assess the test performance, which explains why they report
a poor performance for GUIDE; and (4) they do not test the
statistical significance of their results.

7. Conclusion
We present three new dynamic programming (DP) ap-
proaches for regression trees: a new algorithm for com-
puting piecewise constant regression trees that improves
scalability using a special algorithm for depth-two trees;
and the first optimal DP methods for piecewise multiple and
simple linear regression trees. For piecewise simple linear
regression trees, we also provide a special algorithm for
depth-two trees. The results show that our methods improve
scalability by one or more orders of magnitude in compar-
ison to the state-of-the-art, and mainly so because of our
depth-two algorithms. The out-of-sample performance of
our methods is on par with or better than the state-of-the-art.

Complexity-tuning techniques should be further researched
to fully exploit the power of optimal regression trees. Other
extensions include dealing with non-binary features for the
branching decisions, as done for example in (Mazumder
et al., 2022), and further exploiting the subtree independence
through parallelization of the algorithm.

Impact Statement
This paper advances the use of regression trees. There are
many potential societal consequences of our work, none of
which we feel must be specifically highlighted here.
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A. Pseudocode
Algorithm 2 shows the full pseudocode for SRT. It first
checks if the data set size is at least the minimum leaf node
size. If the depth budget d or node budget n is zero, it returns
the SSE of a leaf node using either Eq. (4), (8), or (9), for
SRT-C, SRT-SL, and SRT-L respectively. If the depth or
node budget exceeds what is possible according to the other
budget, the budgets are updated and SRT is called again.
If the regularization costs λ multiplied by the node budget
exceeds the upper bound, the node budget is updated. SRT
then checks the cache to see if the subproblem has been
encountered before, and if so, returns it. If the depth budget
is at most two, SRT uses the special depth-two algorithm as
explained in Algorithm 1 (not for SRT-L).

In all other cases, SRT will consider all possible branching
decisions and node budget divisions. If a split does not
respect the minimum leaf node size, it is skipped. Otherwise,
lower bounds are obtained (from cache or using the lower
bounds specified in the main paper). If the lower bound
for a split exceeds the upper bound, the split is skipped.
Otherwise, a left and right subtree are generated, while
updating the upper bound by subtracting the lower bound
and the regularization parameter from the current upper
bound. If the combination of the two solutions yields a
better solution, the current best solution is replaced. Finally,
if a solution below the upper bound has been found, it is
stored in the cache. Otherwise, the upper bound is stored as
a lower bound in the cache.

B. Simple Linear Regression Derivation
The error for simple linear regression, including the Ridge
L2-norm penalization, is as follows:

SSE =

n∑
i=1

(yi − β̂0 − β̂xi)
2 + γβ̂2 (14)

The optimal value for the intercept β̂0 is found by setting
the derivative to zero:

∂ SSE

∂β̂0

=

n∑
i=1

(−2yi + 2β̂0 + 2β̂xi) (15)

0 =

n∑
i=1

(−yi + β̂0 + β̂xi) (16)

β̂0 =
1

n

n∑
i=1

(yi − β̂xi) (17)

β̂0 = ȳ − β̂x̄ (18)

The optimal value for the slope β̂ is also found by setting

Algorithm 2: Pseudo-code for SRT given a data set D,
feature setsF andFb, a depth budget d, a node budget n,
an upper bound ub, a complexity cost λ and a minimum
leaf node size M .
SRT(D, d, n, ub)

if |D| < M then return∞
if d = 0 ∨ n = 0 then

s← solveLeaf(D)
if s ≥ ub then return∞
return s

if n > 2d − 1 then return SRT(D, d, 2d − 1,ub)
if d > n then return SRT(D, d, d, ub)
if nλ > ub then return SRT(D, d, ⌊ub/λ⌋)
⟨s, lb, stat⟩ ← cache[D, d, n]
if lb ≥ ub then return∞
if stat = optimal then return s
if d ≤ 2 then s← SolveD2(D, d, n)
else

s← solveLeaf(D)
if s ≥ ub then s←∞
for f ∈ Fb, nL ∈ [0, n− 1] do

if |Df | < M ∨ |Df̄ | < M then continue
nR ← n− nL − 1
lbL ← LB(Df̄ , d− 1, nL)

lbR ← LB(Df , d− 1, nR)
lb = lbL + lbR + λ
if lb ≥ ub then continue
ubL ← ub− lbR − λ
sL ← SRT(Df̄ , d− 1, nL)

if sL =∞ then continue
ubR ← ub− sL − λ
sR ← SRT(Df , d− 1, nR)
if sR =∞ then continue
if sL+ sR+λ < s then s← sL+ sR+λ

if s ̸=∞ then cache[D, d, n]← ⟨s, s, optimal⟩
else cache[D, d, n]← ⟨∞,ub, lowerbound⟩
return s

the derivative to zero, and by filling in Eq. (18) for β̂0:

∂ SSE

∂β̂
=

n∑
i=1

(−2xiyi + 2β̂0xi + 2β̂x2
i ) + 2γβ̂ (19)

0 =

n∑
i=1

(−xiyi + β̂0xi + β̂x2
i ) + γβ̂ (20)

=

n∑
i=1

(
−xiyi +

(
ȳ − β̂x̄

)
xi + β̂x2

i

)
+ γβ̂ (21)

β̂ =

∑n
i=1(xiyi − ȳxi)∑n

i=1(x
2
i − x̄xi) + γ

(22)
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By observing that ȳ =
∑

i yi/n and x̄ =
∑

i xi/n, we can
rewrite to Eq. (10) and (11):

β̂0 =

n∑
i=1

yi/n+ β̂

n∑
i=1

xi/n (23)

β̂ =
n
∑n

i=1 xiyi −
∑n

i=1 yi
∑n

i=1 xi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2 + nγ

(24)

We set the ridge penalty γ = σ2γ′, with σ2 the variance of
the feature vector x, and γ′ a hyper-parameter. We tune for
γ′ ∈ {0, 0.01, 0.1, 1, 10, 100, 1000}.

C. Training Results
Tables 4 and 5 show the training R2-scores for all methods.
We train each method on the five folds of each data set and
report the average training score. When at least one run
resulted in a time-out (> 900s), we mark it with an asterisk
and report the training score at time-out.

MIP results The results show that (even without hyper-
tuning) DTIP never finishes before the time-out and ORT
and ORT-L only twice and four times respectively. Further-
more, they never exceed the training score of SRT-C and
SRT-L.

To keep the objective linear, we train DTIP, ORT, and ORT-L
by minimizing the mean absolute error. We have also
tested minimizing the quadratic mean squared error, but
this yielded even larger run times. This difference can ex-
plain why ORT, when it obtains the optimal solution, is still
worse than SRT-C.

Because the MIP methods time out in almost every case even
without hyper-tuning, we did not include these methods in
our evaluation in the main text.

GUIDE is a greedy algorithm like CART but differs in a
few ways: it creates unbiased splits, it can group multiple
values for categorical variables in one branch, and it uses sig-
nificance tests for each split. These significance tests prevent
overfitting and also explain why GUIDE’s training accuracy
is typically lower than CART’s in Table 4. GUIDE-SL is
always worse than SRT-SL in Table 5. GUIDE-L is best for
one data set, and similar or worse for all others.

IAI IAI and IAI-L do not provide a time limit parameter.
Therefore, when these methods exceeded the time limit for
the household data set, we reran it with a reduced number
of random restarts until the observed run time was only
just above the time limit. For the household data set, we
ran IAI with 18 random restarts and IAI-L with 15 random
restarts. For the other data sets, we use the default 100
random restarts.

The training performance of IAI and SRT-C are close. On
four data sets, IAI’s R2 is marginally better because it uses
the numerical feature data directly instead of the binarized
features. On three data sets, SRT-C is marginally better than
IAI because its exhaustive search considers trees that IAI’s
local search does not find.

Similarly, for multiple linear regression, the performance is
close. IAI-L is marginally better for one data set. SRT-L is
marginally better for one data set and significantly better for
two others.

OSRT The two DP methods OSRT and SRT-C obtain as
expected the same training score. The only differences are
for the household data set, where OSRT runs out of memory,
and the Seoul-bike data set, where OSRT does not find the
optimal solution within the time limit but SRT-C does.
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Table 4. Training R2 scores (without hyper-tuning) for trees with constant predictors at d = 5. An * indicates this is the best result
obtained at the time-out (900s). The best results per category are shown in bold. OoM indicates out of memory.

Heuristic Optimal MIP Optimal DP

Data set CART GUIDE IAI DTIP ORT OSRT SRT-C

Airfoil 0.68 0.67 0.77 0.40 * 0.56 * 0.76 0.76
Auction 0.96 0.91 0.97 0.14 * -0.49 0.97 0.97
Auto MPG 0.93 0.91 0.94 0.91 * 0.88 * 0.94 0.94
Energy (C) 0.96 0.96 0.97 0.94 * 0.93 * 0.98 0.98
Energy (H) 0.99 0.98 0.99 0.97 * 0.96 * 1.00 1.00
Household 1.00 OoM 1.00 * OoM OoM OoM 0.98
Optical Net. 1.00 0.80 1.00 1.00 * 0.96 * 1.00 1.00
Real Estate 0.86 0.76 0.89 0.80 * 0.78 * 0.88 0.88
Seoul Bike 0.73 0.63 0.75 -0.08 * -1.19 0.24 * 0.76
Servo 0.96 0.12 0.99 0.98 * 0.93 * 0.99 0.99
Synch. 1.00 1.00 1.00 0.99 * 0.99 * 0.99 0.99
Yacht 1.00 1.00 1.00 1.00 * 0.99 * 1.00 1.00

Best 4 2 9 2 0 7 8

Table 5. Training R2 scores (without hyper-tuning) for trees with linear predictors at d = 4. An * indicates this is the best result obtained
at the time-out (900s). The best results per category are shown in bold. OoM indicates out of memory.

Simple linear regression Multiple linear regression

Heuristic Optimal DP Heuristic Optimal MIP Optimal DP

Data set GUIDE-SL SRT-SL GUIDE-L IAI-L ORT-L SRT-L

Airfoil 0.69 0.80 0.86 0.92 0.79 * 0.92
Auction 0.91 0.96 0.94 0.95 -0.50 0.95
Auto MPG 0.91 0.93 0.87 0.90 0.89 * 0.90
Energy (C) 0.96 0.98 0.97 0.97 0.97 * 0.97
Energy (H) 0.98 1.00 0.99 0.99 0.98 * 0.99
Household OoM 1.00 OoM 1.00 * OoM 1.00 *
Optical Net. 0.68 0.98 0.27 0.11 -0.01 0.90
Real Estate 0.76 0.85 0.68 0.75 0.70 * 0.75
Seoul Bike 0.69 0.76 0.80 0.77 -0.97 * 0.76 *
Servo 0.10 0.87 0.04 0.75 0.34 0.76
Synch. 0.97 1.00 0.95 1.00 1.00 1.00
Yacht 0.99 1.00 0.99 0.91 0.91 * 0.99

Best per category 0 12 4 8 2 11
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