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ABSTRACT

Spiking Neural Networks (SNNs) have recently garnered widespread attention due
to their high computational efficiency and low energy consumption, possessing
significant potential for further research. Currently, SNN algorithms are primarily
categorized into two types: one involves the direct training of SNNs using sur-
rogate gradients, and the other is based on the mathematical equivalence between
ANNs and SNNs for conversion. However, both methods overlook the exploration
of mixed-timestep SNNs, where different layers in the network operate with dif-
ferent timesteps. This is because surrogate gradient methods struggle to compute
gradients related to timestep, while ANN-to-SNN conversions typically use fixed
timesteps, limiting the potential performance improvements of SNNs. In this pa-
per, we propose a Quantization-Aware Conversion (QAC) algorithm that reveals
a profound theoretical insight: the power of the quantization bit-width in ANN
activations is equivalent to the timesteps in SNNs with soft reset. This finding
uncovers the intrinsic nature of SNNs, demonstrating that they act as activation
quantizers—transforming multi-bit activation features into single-bit activations
distributed over multiple timesteps. Based on this insight, we propose a mixed-
precision quantization-based conversion algorithm from ANNs to mixed-timestep
SNNs, which significantly reduces the number of timesteps required during in-
ference and improves accuracy. Additionally, we introduce a calibration method
for initial membrane potential and thresholds. Experimental results on CIFAR-10,
CIFAR-100, and ImageNet demonstrate that our method significantly outperforms
previous approaches.

1 INTRODUCTION

Spiking Neural Networks (SNNs), as the third generation of neural networks, are inspired by the way
biological neurons transmit information through spikes(Maass, 1997). Neurons in SNNs communi-
cate using sparse and discrete spikes, with complex membrane potential updates and neural dynamic
processes (Izhikevich, 2003; Ghosh-Dastidar & Adeli, 2009), which gives SNNs higher biological
plausibility compared to traditional Artificial Neural Networks (ANNs). Recently, SNNs have gar-
nered widespread attention due to their energy-efficient computational paradigm. It is well known
that the human brain operates at approximately 20W of power while containing around 86 billion
neurons(Herculano-Houzel, 2009), enabling it to perform complex reasoning and decision-making
tasks. In contrast, current state-of-the-art artificial intelligence models require vast computational
resources(Brown, 2020; Patterson et al., 2021; Xu & Poo, 2023), including hundreds of server racks
and thousands of GPUs to support inference, consuming substantial amounts of energy. This signifi-
cant energy consumption has raised widespread concerns due to its high economic cost. As a result,
researchers are turning to SNNs, relying on their energy-efficient computing paradigm to reduce
computational energy costs.

There are fundamental differences in the computational mechanisms between SNNs and ANNs
(Pfeiffer & Pfeil, 2018). The computation in ANNs can be simplified as performing linear transfor-
mations within each layer, while continuous real-valued information is passed between layers via
differentiable nonlinear activation functions. In SNNs, the results of linear transformations accu-
mulate in the neuron’s membrane potential, and spikes are triggered by non-differentiable nonlinear
activation functions (Stöckl & Maass, 2021). The information passed between layers is in the form
of discrete spike signals. Due to the advantage of sparse spike-based computation, recent studies
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have focused on fully leveraging the energy-efficient characteristics of SNNs to achieve low-power
computational models.

Currently, SNN learning methods are mainly categorized into two approaches: The first is through
surrogate gradient methods, which replace the non-differentiable activation functions of SNNs with
differentiable functions, enabling efficient training via backpropagation(Lee et al., 2016; Neftci
et al., 2019; Wu et al., 2018b; Lee et al., 2020; Deng et al., 2022; Li et al., 2021b). The second
approach exploits the mathematical equivalence between ANNs and SNNs, where the firing rates of
SNN spikes approximate the activations of ANNs, allowing pre-trained ANNs to be converted into
SNNs(Cao et al., 2015; Diehl et al., 2015; Rueckauer et al., 2016; Sengupta et al., 2019; Tavanaei
et al., 2019; Kim et al., 2020; Li et al., 2021a; Bu et al., 2023).

Our work focuses primarily on the ANN-to-SNN conversion algorithm, aiming to achieve low-
timestep, low-power, and high computational efficiency inference by converting pre-trained ANNs
into SNNs. Specifically, our contributions include the following:

• We propose Quantization-Aware Conversion (QAC), an ANN-to-SNN algorithm based on
mixed precision quantization, which can obtain SNNs with mixed time steps and high
accuracy. In addition, we revealed the equivalence between the quantization bit-width of
ANN activations and the timesteps in SNNs with soft-threshold resets.

• We found that when the weights are fixed, the residual membrane potential is related to the
initial membrane potential and the threshold. We introduced a method for calibrating the
initial membrane potential and the threshold to further improve the model’s accuracy.

• The results on the CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate that, com-
pared to previous conversion methods, our approach achieves higher accuracy with fewer
time steps. For instance, ResNet18 achieves 95.29 % accuracy on CIFAR-10 using only
2.76 time steps.

2 RELATED WORKS

Mixed Precision Quantization. Early quantization approaches typically applied the same quanti-
zation bit-width across different layers (Zhang et al., 2018; Choi et al., 2018; Bhalgat et al., 2020).
However, different layers in neural networks exhibit varying sensitivities to quantization. When con-
strained by a uniform average bit-width, using the same quantization bit-width across all layers can
lead to performance degradation (Dong et al., 2019). To address this issue, mixed-precision quanti-
zation methods assign different bit-widths to different parts of the model to balance ”performance-
efficiency”: layers more sensitive to quantization are allocated higher bit-widths to minimize per-
formance loss due to quantization, while layers less sensitive to quantization are assigned lower
bit-widths to reduce storage and computational demands. The current mixed-precision quantiza-
tion approaches can be categorized into four types: (1) Optimization based on sensitivity metrics:
HAWQ (Dong et al., 2020; Yao et al., 2021) were among the first proposed methods for mixed bit-
width quantization. These methods use loss and Hessian matrix information of model weights to
gauge the quantization sensitivity of each layer and select quantization bit-widths accordingly. (2)
Optimization using reinforcement learning: Methods like ReLeQ Elthakeb et al. (2020) and HAQ
(Wang et al., 2019) employ reinforcement learning to allocate mixed bit-widths. Their state space
includes different quantization bit-widths, and the reward is either the ratio of quantized accuracy
to floating-point accuracy or a combination of task performance and simulated hardware perfor-
mance. (3) NAS-based solutions: DNAS (Wu et al., 2018a) draws on differentiable search works
DARTS(Liu et al., 2018), utilizing gradient-based methods to optimize bit-widths. Subsequent ef-
forts like HMQ (Habi et al., 2020) fall under this category. (4) Learning-based mixed precision
quantization solutions: (Uhlich et al., 2019; Wang et al., 2020; Yang & Jin, 2021)

ANN-to-SNN Conversion. The initial studies on ANN-to-SNN conversion were undertaken by
(Cao et al., 2015), (Diehl et al., 2015; Rueckauer et al., 2016; Sengupta et al., 2019) further nar-
rowed the gap between ANNs and SNNs through scaling and normalization of weights. Han &
Roy (2020) proposed the use of soft-reset spiking neurons to further reduce conversion errors and
minimize information loss. (Deng & Gu, 2021; Li et al., 2021a)revealed conversion errors by catego-
rizing them into clipping and quantization error. (Ho & Chang, 2021) introduced Trainable Clipping
Layers (TCL) to set thresholds effectively. (Bu et al., 2023) building on (Li et al., 2021a) work,
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introduced “unevenness error”, further refining the error analysis theory for ANN-to-SNN conver-
sion. To further improve the accuracy of the converted SNN, (Wang et al., 2022) proposed signed
spiking neurons model to enhance neuron performance. (Li et al., 2021a) introduced quantization
fine-tuning to calibrate weights and biases, adjusting the biases at each layer under the assumption
of a uniform current distribution. (Bu et al., 2022) assumed a uniform distribution of activations and
demonstrated that half of the threshold is the optimal initial membrane potential. By adjusting the
initial membrane potential to this value, neurons could spike more uniformly. However, as noted
by (Datta & Beerel, 2022), the assumption of uniform activation distribution is incorrect, and thus
a more detailed distribution function was used to optimize the activation distribution. (Hao et al.,
2023a;b) proposed an optimization strategy based on Residual Membrane Potential (SRP), which
effectively reduces “unevenness error” at low latency. Given the exceptional performance of trans-
former model architectures, some studies (Wang et al., 2023; You et al., 2024; Jiang et al., 2024b)
have considered converting transformer structures.

3 PRELIMINARIES

3.1 NEURON MODEL

In Spiking Neural Networks (SNNs), the soft-reset Integrate-and-Fire (IF) neuron model (Cao et al.,
2015) is commonly used. A key feature of this model is the soft-reset mechanism (Han et al., 2020),
where the membrane potential is updated instead of being reset to a fixed value. The membrane
potential is given by:

vl(t) = ml(t)− vl
ths

l(t) (1)

where vl(t) represents the membrane potential of neurons in the l-th layer after a spike at time
t, while vl

th is the firing threshold, and sl(t) denotes the spike output at time t. The membrane
potential before the spike firing is as follows:

ml(t) = vl(t− 1) +W lvl−1
th sl−1(t) (2)

where ml(t) denotes the postsynaptic membrane potential accumulated from the previous time step
xl(t − 1) and synaptic input at the current time step of layer l. The neuron fires a spike when its
membrane potential ml(t) exceeds the threshold vl

th. The spike firing function is typically defined
using the Heaviside function H(·), as follows.

sl(t) = H(ml(t)− vl
th) (3)

3.2 CONVERSION FRAMEWORK

We follow the general conversion rules outlined in (Bu et al., 2022; 2023), transferring the weights
from ANNs to SNNs. The forward propagation Equation 4 for SNNs is derived by substituting
Equation 2 into Equation 4, summing both sides, and then leveraging the discrete nature of spike
generation in SNNs. The detailed derivation of Equation 1 can be found in the Appendix.

Φl(Tl) =
vl
th

Tl
clip

(⌊
W lΦl−1(Tl) · Tl − vl(Tl) + vl(0)

vl
th

⌉
, 0, Tl

)
(4)

where, Tl represents the timestep of the l-th layer, and vl
th denotes the threshold, ⌊·⌉ denotes round

function. Φl(Tl) is the equivalent output of the l-th layer in the SNN, Φl(Tl) =
∑Tl

t=1 sl(t)vl
th

Tl
.

The general framework for converting ANNs to SNNs aims to approximate the equivalent output
Φl(Tl) of each SNN layer to the corresponding ANN output xl, i.e. xl ≈ Φl(Tl). When xl−1 =

Φl−1(Tl−1) and the residual term ϵ = vl(Tl)−vl(0)

vl
th

is sufficiently small, the equivalent conversion

from ANN to SNN can be achieved, i.e. xl = Φl(Tl). For the purpose of simplifying the derivation
of the formulas, Bu et al. (2022; 2023); Li et al. (2021a) assume that the residual membrane potenti
vl(T ) ∈ [0,vl

th]. To improve conversion accuracy, (Hao et al., 2023a) calibrates the remaining
membrane potential. (Li et al., 2021a) assumes the initial membrane potential vl(0) = 0 , while (Bu

et al., 2023) retains the initial membrane potential vl(0) and sets vl(0) =
vl
th

2 during SNN inference.
We do not make assumptions about retaining ϵ and calibrate the initial membrane potential vl(0)
and the remaining membrane potential vl

th in Section 4.3.
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Figure 1: The quantization bit-width of each layer in VGG-16 for ANNs and the corresponding
timesteps for SNNs on the CIFAR-10 dataset.

4 METHORDS

In this section, we first establish the connection between the quantization bit-width of ANNs and the
timesteps in SNNs. Building on this insight, we propose a mixed-timestep conversion method for
SNNs. Additionally, we discover that SNNs are highly sensitive to the initialization of membrane
potential. To further enhance the accuracy of SNNs, we introduce a calibration method for the initial
membrane potential and threshold.

4.1 THE EQUIVALENCE RELATIONSHIP BETWEEN ANN AND SNN

Quantization maps x ∈ R to discrete values {q1, ..., qI} through two steps: clipping and projec-
tion. Clipping constrains the values within a specific range from qmin to qmax, while projection
maps them to predefined quantization levels. When ReLU activations are quantized into unsigned
integers, where qmin = 0, qmax = 2n − 1, and vmax = d · qmax, where vmax is the maximum
value of the activation. To further improve the performance of quantizers, several works (Choi et al.,
2018; Gong et al., 2019; Bhalgat et al., 2020)have treated quantization parameters as learnable vari-
ables, updating them through gradients during Quantization-Aware Training (QAT). When vmax is a
learnable parameter α, and the activation quantization levels are not strictly constrained to unsigned
integer quantization 2n − 1, in the context of SNN conversion instead we use 2n, the activation
quantization formula can be expressed as follows, where ⌊·⌉ denotes the round function:

Q(x) =
α

2n
· clip

(⌊
x · 2

n

α

⌉
; 0, 2n

)
(5)

This is consistent with (Bu et al., 2023) approach to minimizing conversion error by using the quan-
tization clip-floor-shift (QCFS) function to train quantized ANNs. QCFS utilize shared parameters
within layers, represented as λ. For simplicity, we use the parameter α to represent the shared pa-
rameter. The learnable clipping threshold α can adaptively adjust the size of the quantization step
for the activation output.

We further reveal the equivalence between the quantization levels of ANN activation outputs and the
timesteps in the converted SNNs, leading to the following theorem.

Theorem 1. The timesteps of SNNs with soft reset are equivalent to the quantization levels of
activations in ANNs.

TSNN ≃ 2nANN (6)

Proof. Equation 4 represents the inference process of SNNs, where Φl−1(T ) denotes the out-
put of the (l − 1)-th layer in SNNs. Equation 5 can be further expressed as: xl = α

2n ·
clip

(⌊
W lxl−1·2n

α

⌉
; 0, 2n

)
, where xl and W l represent the output and weights of the l-th layer,

4
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respectively. By comparing equations 4 and 6, we observe that when xl−1 = Φl−1(T ) and the
residual term ϵ = vl(Tl)−vl(0)

vl
th

is sufficiently small, the equivalent conversion from ANN to SNN
can be achieved. Moreover, the timesteps T in SNNs are equivalent to the quantization levels 2n in
ANNs.

Theorem 1 further explains why increasing inference timesteps in SNNs enhances perfor-
mance—because adding timesteps is analogous to increasing the activation quantization bit-width in
ANNs. Some early ANN-to-SNN conversion methods (Cao et al., 2015; Diehl et al., 2015; Rueck-
auer et al., 2016; Sengupta et al., 2019) typically required hundreds of timesteps. However, Theorem
1 indicates that many of these timesteps are redundant, given that low-bit quantized ANNs already
exhibit high precision Zhou et al. (2016); Jacob et al. (2018); Bai et al. (2020); Kim et al. (2022);
Li et al. (2022), only 2n timesteps are required to achieve comparable accuracy to the ANN, where
n is typically a small value, typically around 2 or 3. Additionally, in ANNs, n-bit activations are
multiplied by m-bit weights during forward inference. When converted to SNNs, this process sim-
plifies to summing 2n m-bit weights, which significantly reduces the memory and computational
costs associated with activations, particularly in hardware implementations.

Table 1: Comparison between our method and previous works on CIFAR-10 dataset.

Architecture Methods ANN(%) Time Steps SNN(%)

VGG-16

RMP (Han et al., 2020) 93.63 64 90.35
TSC (Han & Roy, 2020) 93.63 64 92.79
RTS (Deng & Gu, 2021) 95.72 64 90.64

SNNC-AP(Li et al., 2021a) 95.72 32 93.71
SNM (Wang et al., 2022) 94.09 32 93.43

OPI(Bu et al., 2022) 94.57 8, 16 90.96, 93.38
QCFS(Bu et al., 2023) 95.52 4, 8 93.96, 94.95

SlipReLU(Jiang et al., 2023) 93.02 4, 8 91.08, 92.26
SGDND(Oh & Lee, 2024) 95.96 16, 32 81.06, 95.53

ours 95.12 2.33 94.78

ResNet-18

RMP (Han et al., 2020) 91.47 128 87.60
TSC (Han & Roy, 2020) 91.47 128 88.57
RTS (Deng & Gu, 2021) 95.46 32, 64 84.06, 92.48

SNNC-AP(Li et al., 2021a) 95.46 32, 64 94.78, 95.30
SNM (Wang et al., 2022) 95.39 32 94.03

OPI(Bu et al., 2022) 96.04 16, 32 90.43, 94.82
SlipReLU(Jiang et al., 2023) 94.61 2, 4 93.97, 94.59

QCFS(Bu et al., 2023) 96.04 2, 4 91.75, 93.83
SGDND(Oh & Lee, 2024) 96.82 16, 32 80.74, 96.29

ours 95.90 2.76 95.29

ResNet-20

TSC (Han & Roy, 2020) 91.47 64 69.38
OPI(Bu et al., 2022) 92.74 16, 32 87.22, 91.88

SlipReLU(Jiang et al., 2023) 92.96 8, 16 86.66, 92.13
QCFS(Bu et al., 2023) 91.77 4, 8 83.75, 89.55

ours 91.52 3.74 91.13

4.2 MIXED-TIMESTEP SNNS

Motivation A key insight in spiking neural networks (SNNs) is that different layers exhibit varying
sensitivities to the number of timesteps. When all layers are constrained to use the same number
of timesteps, model performance is often suboptimal due to this uniform limitation. As a result,
attempting to enhance accuracy by uniformly increasing timesteps across layers can lead to substan-
tial inference delays on the order of O(NT ), where N is the number of layers and T is the timestep
count. To simultaneously improve performance and minimize inference latency, it is essential to
allocate different timesteps to different layers.

Theorem 1 establishes the relationship between quantization bit-width in ANNs and timesteps in
SNNs. Mixed-precision quantization assigns varying bit-widths across layers, denoted as {n1, n2,
..., nl}, to balance performance and efficiency: higher bit-widths are allocated to more sensitive
layers to mitigate performance loss, while lower bit-widths are used for less sensitive layers to
reduce storage and computational overhead. Based on Theorem 1 and the conversion framework

5
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in Section 3.3, ANNs trained with mixed-precision quantization can be efficiently converted into
SNNs with mixed timesteps {T1, T2, ..., Tl}.
Quantization Parameter: In QAT for the activations of ANNs, the goal is to optimize the quan-
tization parameter θ = [d, α, n]T , where d ∈ R represents the quantization step size, α ∈ R is
the maximum activation value, and n ∈ N denotes the bit-width of the quantization (Uhlich et al.,
2019). Since the relationship between these three variables is given by α = d · 2n, Only two of the
three variables are needed as parameters, while the third can be derived indirectly. To overcome the
challenge of non-differentiability in the rounding operation during backpropagation, we employ the
Straight-Through Estimator (STE) (Bengio et al., 2013) to approximate the gradients. The parameter
gradients are as follow:

Case 1: For θ = [n, d], then the activation value α is computed as α = d · 2n, and the quantization
levels T = 2n.

∇θQ(x;θ) =

[
∂nQ(x;θ)
∂dQ(x;θ)

]
=


[
0
1
d

]
(Q(x;θ)− x), 0 ≤ x ≤ α[

ln 2 · 2n · d
2n

]
, x > α

(7)

Case 2: For θ = [n, α], the step size d is derived as d = α
2n , and the quantization levels T remains

T = 2n.

∇θQ(x;θ) =

[
∂nQ(x;θ)
∂αQ(x;θ)

]
=


[
− ln 2

1
α

]
(Q(x;θ)− x), 0 ≤ x ≤ α[

0

1

]
, x > α

(8)

Case 3: For θ = [d, α], then the bit-width n can be determined by n = log2
(
α
d

)
, and the corre-

sponding T = α
d .

∇θQ(x;θ) =

[
∂dQ(x;θ)
∂αQ(x;θ)

]
=


[
1
d

0

]
(Q(x;θ)− x), 0 ≤ x ≤ α[

0

1

]
, x > α

(9)

Case 4: When θ = [t, α], the bit-width n is related to the number of time steps by n = log2(t), and
the quantization levels T = t.

∇θQ(x;θ) =

[
∂tQ(x;θ)
∂αQ(x;θ)

]
=


[
− 1

t
1
α

]
(Q(x;θ)− x), 0 ≤ x ≤ α[

0

1

]
, x > α

(10)

Using the four quantization schemes outlined, we can achieve activation quantization of ANNs. In
Case 1 and Case 2, n is chosen as the parameter, so according to Theorem 1 and the transformation
framework in Section 3.2, the SNN time step T corresponds to the quantization level 2n. In Case
3, the step size and threshold [d, α] are chosen as parameters, and the quantization bit-width needs
to be indirectly derived, with the SNN time step being α/d. For Case 4, the quantization level 2n is
treated as a whole parameter t, so the SNN time step T can be directly obtained through training.

4.3 TEMPORAL ALIGNMENT

In mixed-timestep SNNs, each layer operates with different timesteps as they process information at
varying temporal resolutions. Assume that the input activation of the l+1-th layer is X l+1, with the
shape X l ∈ RTl×B×Cl×Hl×Wl , where, Tl is the timestep of the l-th layer, B is the batch size, Cl is
the number of channels, Hl and Wl represent the height and width of the feature map, respectively.
The expected timestep for the l + 1-th layer is Tl+1 and in mixed-timestep SNNs, usually Tl ̸=

6
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Figure 2: The average quantization bit-width, average time steps, and ANN accuracy under different
quantization parameter schemes.

Tl+1, which results in the temporal dimensional mismatch. Therefore, Xl must undergo a temporal
alignment operation to match the timestep Tl+1. Temporal alignment can be defined as follows:

Definition: Temporal alignment refers to the operation that ensures consistent time dimensions
between layers with different timesteps.

X̂ l+1 = f(X l+1, Tl+1) (11)

Here, X̂ l+1 is the expected input of the l + 1-th layer and f(·) represents the temporal alignment
function, responsible for adjusting the temporal dimension from Tl to Tl+1 to ensure consistency in
the temporal dimension across layers. Depending on the specific scenario, f(·) can involve Tem-
poral Expansion (e.g., Averaging or Replication) or Temporal Reduction (e.g., Averaging or
Truncation) to align the timesteps between successive layers. Specifically, equation 11 can be writ-
ten as : X̂ l+1[t] =

∑Tl

i=1 w(t, i)X l+1[i], t = 1, 2, . . . , Tl+1, where w(t, i) is the f(·) function
that adjusts the contribution of the i-th timestep of X l to the new timestep t in X̂ l+1. The specific
form of w(t, i) depends on the temporal alignment method: Replication: w(t, i) selects the near-
est corresponding timestep based on integer indexing. Averaging: w(t, i) = 1

Tl
evenly distributes

the influence of all timesteps from the previous layer. Truncation: w(t, i) = 1 if t ≤ Tl+1 and
i = t, otherwise w(t, i) = 0. Thus, truncation is effectively retaining the first Tl+1 time steps and
discarding the remaining ones from Tl.

Temporal Expansion: If T1 < Tl+1, timestep expansion must be used to increase the temporal
resolution. For example , given the input activation X l, with Tl = 4, and the next layer Tl+1 = 8,
each timestep can be repeated twice by using timesteps replication method, which simply repli-
cates timesteps to match the required timesteps of the subsequent layer. However, when (Tl+1

mod Tl) ̸= 0, simple timestep replication leads to uneven distribution of time information. For
instance, when Tl = 4 and Tl+1 = 5, it becomes impossible to evenly distribute the repeated time
steps across the new time dimension. In this case, some timesteps may be excessively duplicated,
while others may not receive the necessary expansion.

Temporal Reduction: If T1 > Tl+1, timestep reduction can be applied to decrease the temporal
dimension. For example, if Tl = 8 and the next layer requires Tl+1 = 3, the timesteps truncation
method will select Tl+1 timesteps of data and discard the rest, thus matching the required dimension.
However, this may lead to the loss of some information contained in the discarded time steps.

Temporal Averaging Expansion Alignment: To achieve temporal alignment for temporal expan-
sion and reduction, we propose using the temporal averaging expansion method to adjust the input
time dimensions. This method averages over the time dimension, and then replicates the result to
match the desired time step length, which allows both temporal expansion and reduction to be per-
formed using the same operation. Compared to temporal replication and truncation, the temporal
averaging expansion method integrates information from all timesteps and achieves the best accu-
racy. To perform averaging expansion temporal alignment, we compute X̄l by averaging over the
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time dimension Tl, obtaining a tensor of shape X̄l ∈ RB×Cl×Hl×Wl :

X̄ l =
1

Tl

Tl∑
t=1

X l[t] (12)

where, X l[t] represents the input activation at time step t, and X̄ l denotes the average result. Then,
replicate X̄ l along the time dimension to match the required timestep Tl+1, expanding X̄ l to the
required timesteps Tl+1, resulting in a tensor X̂l+1 ∈ RTl+1×B×Cl×Hl×Wl :

X̂l+1 = X̄ l ⊗ 1Tl+1,1 (13)

where, 1Tl+1,1 represents a tensor of length Tl+1, which replicates X̄ l across Tl+1 time steps. To
validate the effectiveness of the temporal averaging expansion method, we conducted ablation ex-
periments on temporal alignment. The results, as shown in Table 4, indicate the following: Repl
represents the use of replication for temporal expansion, Trunc represents the use of truncation
for temporal reduction, and Aver represents the use of averaging. The results demonstrate that us-
ing the averaging method achieves the highest accuracy for both temporal expansion and temporal
compression. Additionally, we also validated the temporal averaging expansion method on QCFS
(Bu et al., 2023), where only a few lines of code were modified, resulting in an impressive accuracy
improvement of over 10%. The experimental results can be found in the appendix Table 8 .

4.4 INITIAL MEMBRANE POTENTIAL AND THRESHOLD CALIBRATION

Several studies have explored the initial membrane potential and residual membrane potential, often
based on assumptions such as activations following a uniform distribution (Li et al., 2021a; Bu et al.,
2022; Hao et al., 2023a). For low-latency conversion, even if we set xl−1 = Φl−1(Tl), Equation 4
shows that the residual term error ϵ cannot be ignored.

Theorem 2. When the weight matrix W l are fixed, the residual membrane potential vl(Tl) is related
to the initial membrane potential vl

0 and threshold vl
th.

This suggests that by adjusting the initial membrane potential and threshold, the residual terms can
be optimized to minimize conversion errors, the proof is provided in Appendix.

vl(Tl) = vl(0) +

Tl∑
i=1

Ii −
Tl−1∑
i=0

H(vl(i) + Ii+1 − vl
th) · vl

th (14)

The weights obtained from the ANN should be frozen, and only the initial membrane potential vl(0)
and threshold vl

th should be trained. The loss function is defined as:

L =
1

2

(
1

TL

TL∑
t=1

oL
SNN(t)− oL

ANN

)2

(15)

where oL
SNN(t) represent the SNN output of the final layer at time t, and oL

ANN represent the output
of the ANN. The gradient of the loss function with respect to the initial membrane potential vl(0)
is:

∂L
∂vl(0)

=

TL∑
t=1

∂L
∂oL

SNN(t)
·H ′(vL(t)− vL

th) ·
L∏

k=l+1

(
H ′(vk(t)− vk

th) ·W kvk−1
th

)
(16)

where H ′(·) is the surrogate gradient (Wu et al., 2018b) of the Heaviside function. The gradients of
the loss function with respect to the threshold is as follows, with the proof provided in the Appendix.

∂L
∂vl

th

=

TL∑
t=1

∂L
∂oL

SNN(t)

L−1∏
k=l

H ′(vk(t)− vk
th) ·W kvk−1

th · sl(t− 1) (17)
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5 EXPERIMENTS

To demonstrate the effectiveness and efficiency of the proposed algorithm, we conducted experi-
ments on the CIFAR-10 (LeCun et al., 1998), CIFAR-100 (Krizhevsky et al., 2009), and ImageNet
(Deng et al., 2009) datasets. For ease of comparison with other state-of-the-art methods, we selected
basic network architectures, including ResNet-18, ResNet-20, ResNet-34, and VGG-16, more con-
figuration information for the experiments is provided in the Appendix.

5.1 ACCURACY AND LATENCY OF ANNS WITH FOUR PARAMETER CONFIGURATIONS

We first evaluated the performance of activation quantized ANNs using four different parameter
configurations, including the average quantization bit-width of activations and their corresponding
timesteps when converted to SNNs. Figure 11 illustrates the average quantization bit-width and
corresponding timesteps for all layers of ResNet-20 and VGG-16 under four different quantiza-
tion parameter schemes on the CIFAR-10 and CIFAR-100 datasets. The gray curve represents the
accuracy of the ANN after activation quantization for each scheme. As shown in the figure 11,
the accuracy differences between the four parameter schemes are within 1%, while the number of
timesteps varies significantly.

In Case 1 and Case 2, the variable n is used as the parameter. As shown in Figure 11, the number
of timesteps in these two cases ranges from 10 to over 20, indicating relatively large timesteps. In
Case 3: (d, α), the average quantization bit-width and timesteps are not shown because the bit-
width is derived as n = log2(α/d) and t = α/d, and both yielded INF values in the experimental
results. From Figure 11, it is clear that Case 4: (t, α) provides the optimal quantization bit-width and
timesteps, with performance nearly identical to the original ANN. Therefore, we selected Case 4 as
the quantization scheme for ANN-to-SNN conversion. Figure 1 illustrates the quantization bit-width
for each layer in VGG-16 for ANNs and the corresponding timesteps for SNNs on the CIFAR-10
dataset, ResNet-18 and ResNet-20 on CIFAR-100 and ImageNet provided in the Appendix.

Table 2: Comparison between the proposed method and previous works on ImageNet dataset.

Architecture Methods ANN(%) Time Steps SNN(%)

VGG-16

SNNC-AP(Li et al., 2021a) 75.36 32, 64 63.64, 70.69
SNM (Wang et al., 2022) 73.18 32, 64 64.78, 71.50

OPI(Bu et al., 2022) 74.85 32, 64 64.70, 72.47
SlipReLU(Jiang et al., 2023) 71.99 32, 64 67.48, 71.25

QCFS(Bu et al., 2023) 74.29 32, 64 68.47, 72.85
SGDND(Oh & Lee, 2024) 75.35 32, 64 69.16, 75.32

ours 72.12 3.47 66.38

5.2 COMPARISON WITH EXISTING CONVERSION METHODS

Table 1 presents a comparison between our method and the state-of-the-art conversion methods on
the CIFAR-10 and ImageNet datasets, including TSC (Han & Roy, 2020), RTS Deng & Gu (2021),
RMP (Han et al., 2020), SNM(Wang et al., 2022), SNNC-AP(Li et al., 2021a), OPI(Bu et al., 2022),
SlipReLU (Jiang et al., 2023), QCFS(Bu et al., 2023) and SGDND(Oh & Lee, 2024). Since our
model uses mixed-timesteps and has converged to nearly optimal timesteps, we only compare it
with other works that operate under similar timestep settings. The experimental results in Table 1
are based on the Case 4 after calibration: (t, α) configuration, as it offers the fewest timesteps while
maintaining accuracy close to the original ANN.

CIFAR-10:For VGG-16, our method with 2.33 timesteps outperforms the performance of RMP(Han
et al., 2020), TSC(Han & Roy, 2020), RTS(Deng & Gu, 2021), which all use 64 timesteps, as well as
SNM(Wang et al., 2022) and SGDND(Oh & Lee, 2024) with 32 timesteps. Compared to QCFS(Bu
et al., 2023), which achieves 93.96% accuracy with 4 timesteps, we reached 94.78% top-1 accuracy
with an average of 2.33 timesteps. For ResNet-18, our method achieved 95.29% top-1 accuracy
with 2.76 timesteps, whereas SNNC-AP(Li et al., 2021a) required 64 timesteps to reach 95.30%,
and SGDND(Oh & Lee, 2024) needed 32 timesteps. Compared to SlipReLU (Jiang et al., 2023),
which achieved 93.97% accuracy with 2 timesteps, our method outperformed SlipReLU by 1.32%.
For ResNet-20, our method achieved 91.13% accuracy with 3.74 timesteps, surpassing QCFS’s
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(Bu et al., 2023) 83.75% accuracy with 4 timesteps. Detailed comparison data for CIFAR-100 is
provided in the Appendix.

ImageNet:We evaluated the performance of VGG-16 on large-scale datasets, and the results demon-
strate that our method significantly reduces the latency compared to previous works (Wang et al.,
2022; Jiang et al., 2023; Oh & Lee, 2024; Bu et al., 2023). While prior approaches typically require
over 30 timesteps to achieve around 60% accuracy, our method reaches 66.38% accuracy with an
average of just 3.47 timesteps.
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Figure 3: Temporal Scalability Analysis.

Calibration CIFAR-10 / CIFAR-100 / ImageNet
ResNet-18 (%) ResNet-20 (%) VGG-16 (%)

QAC (Base) 95.31 / 76.56 / - 90.29 / 65.80 / - 94.45 / 76.24 / 63.21
QAC (Base+CAL) 95.29 / 77.81 / - 91.13 / 65.39 / - 94.78 / 76.37 / 66.38

Table 3: Calibration Ablation Study.

Temporal Alignment CIFAR-10 / CIFAR-100
ResNet-18 (%) ResNet-20 (%) VGG-16 (%)

Repl + Aver 95.31 / 75.50 89.52 / 64.86 94.45 / 75.70
Repl + Trunc 94.16 / 71.21 87.67 / 55.24 91.23 / 60.65
Aver + Trunc 94.16 / 75.93 89.20 / 62.91 91.23 / 74.06
Aver + Aver 95.84 / 77.93 91.71 / 67.20 95.09 / 77.01

Table 4: Temporal Alignment Ablation Study.

5.3 TEMPORAL SCALABILITY ANALYSIS

We analyzed how the accuracy of our method changes with increasing time steps to determine if
performance improves or degrades over a broader temporal scale and whether the time steps from
the QAC method are optimal. Experiments were conducted on ResNet-18, ResNet-20, and VGG-
16 using CIFAR-10 and CIFAR-100. By doubling the time steps for each model layer, we tracked
accuracy changes. As shown in Figure 3, accuracy incrementally improved with more time steps,
even surpassing baseline quantized ANNs. However, beyond four times the original time steps,
accuracy saturated and no longer improved.

5.4 CALIBRATION ABLATION STUDIES

We conducted ablation experiments to validate the effectiveness of initial membrane potential and
threshold calibration. As shown in Table 3, the calibrated models (Base+CAL) achieve an approx-
imately 1% accuracy improvement compared to pre-calibration models (Base) in CIFAR-10 and
CIFAR-100, and 3% improvement on ImageNet using VGG-16 bringing their accuracy closer to
that of the quantized ANN 147. The calibration module fine-tunes the initial membrane potential
and threshold parameters using the output of the original ANN’s final layer as labels. Notably, the
calibration process does not require the training dataset and can be completed in just a few dozen
epochs. Considering that the pre-calibrated SNN already delivers excellent performance under low
time steps, the calibration module can be treated as an optional component in practical applications.

6 CONCLUSIONS

In this paper, we propose a mixed-timestep SNNs conversion method Quantization-Aware Conver-
sion (QAC) that enables low-timestep, high-accuracy SNNs. We first demonstrate that the power of
the quantization bit-width of ANN activations is equivalent to the timesteps in SNNs, showing that
SNNs act as activation quantizers. Following this, we propose using mixed-precision quantization to
train activation-quantized ANNs, where each layer of the network is assigned an optimal bit-width,
and the converted SNNs achieve the best possible timesteps and accuracy, resulting in near-lossless
conversion from ANNs. To explore the initialization of membrane potentials, we introduce a cali-
bration method in which the final layer output of the quantized ANN serves as the target to calibrate
the initial membrane potential and thresholds of the SNNs. Experimental results on CIFAR-10,
CIFAR-100, and ImageNet demonstrate the effectiveness of our proposed methods.
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7 APPENDIX

7.1 PROOF OF THEOREM

Proof of Equation 4: To derive the relationship between ANNs and SNNs, we begin by combining
Equation 1 and 2, yielding the following expression:

vl(t)− vl(t− 1) = W lvl−1
th sl−1(t)− vl

ths
l(t) (18)

Next, by summing both sides of the Equation over Tl timesteps, we obtain the following equation:

vl(Tl)− vl(0) =

Tl∑
t=1

W lvl−1
th sl−1(t)−

Tl∑
t=1

vl
ths

l(t) (19)

Dividing both sides by Tl, the Equation becomes:

vl(Tl)− vl(0)

Tl
=

∑Tl

t=1 W
lvl−1

th sl−1(t)

Tl
−
∑Tl

t=1 v
l
ths

l(t)

Tl
(20)

Introducing Φl(T ) to represent
∑Tl

t=1 vl
ths

l(t)
Tl

, equation 20 can be rewritten as:

Φl(Tl) = W lΦl−1(Tl)−
vl(Tl)− vl(0)

Tl
(21)

Here, vl(0) represents the initial membrane potential. The sum
∑Tl

t=1 s
l−1(t) = λl−1, where λl ∈

{1, ..., Tl}. Further manipulating the equation, we obtain:

vl(Tl)− vl(0) = W lΦl−1(Tl) · Tl − λlv
l
th (22)

Solving for λl, we derive:

λl =

⌊
W lΦl−1(Tl) · Tl − vl(Tl) + vl(0)

vl
th

⌉
(23)

To ensure that λl remains within a valid range, we apply the clipping operation:

λl = clip
(⌊

W lΦl−1(Tl) · Tl − vl(Tl) + vl(0)

vl
th

⌉
, 0, Tl

)
(24)

Finally, the Equation for Φl(Tl) becomes:

Φl(Tl) =
vl
th

Tl
clip

(⌊
W lΦl−1(Tl) · Tl − vl(Tl) + vl(0)

vl
th

⌉
, 0, Tl

)
(25)

Proof of Theorem 2: Proof by Mathematical Induction:

We aim to prove the following recurrence relation for the membrane potential vl(Tl) at any time
step t:

vl(Tl) = vl(0) +

Tl∑
i=1

Ii −
Tl−1∑
i=0

H(vl(i) + Ii+1 − vl
th)v

l
th (26)

where Ii =
W lvl−1

th sl−1(t)

Tl
represents the input current at time step i, vl

th is the threshold potential,
and H(·) is the Heaviside step function, which represents the occurrence of a spike (i.e., H(x) = 1
if x > 0 and H(x) = 0 otherwise).

Base Case: t = 0 At time step t = 0, the membrane potential is simply the initial value, as specified
by the boundary condition:

vl(0) = vl(0) (27)

This clearly holds true since vl(0) is the membrane potential at t = 0 by definition.
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Inductive Hypothesis:Assume that the formula holds for an arbitrary time step t, that is,

vl(Tl) = vl(0) +

t∑
i=1

Ii −
t−1∑
i=0

H(vl(i) + Ii+1 − vl
th)v

l
th (28)

Inductive Step: Prove that the formula holds for t+ 1

To prove the formula for t + 1, we use the recurrence relation that defines the membrane potential
at time t+ 1 as:

vl(t+ 1) = vl(Tl) + It+1 −H(vl(Tl) + It+1 − vl
th)v

l
th (29)

Substitute the expression for vl(Tl) from the inductive hypothesis:

vl(t+ 1) =

(
vl(0) +

t∑
i=1

Ii −
t−1∑
i=0

H(vl(i) + Ii+1 − vl
th)v

l
th

)
+ It+1 −H(vl(Tl) + It+1 − vl

th)v
l
th

(30)

Now, simplifying this expression:

vl(t+ 1) = vl(0) +

t+1∑
i=1

Ii −
t∑

i=0

H(vl(i) + Ii+1 − vl
th)v

l
th (31)

To reformulate the given Equation and demonstrate how the membrane potential vl(Tl) depends
on the initial potential vl(0) when the input Ii and threshold vl

th , we start by expanding vl(i)
recursively based on the Equation 31. Expanding vl(i) Recursively: for vl(i), according to the
same equation, it can be expressed as:

vl(i) = vl(0) +

i∑
j=1

Ij −
i−1∑
j=0

H(V l(j) + Ij+1 − vl
th)v

l
th (32)

Substituting this expression for vl(i) back into the original Equation results in the following ex-
panded form:

vl(Tl) = vl(0) +

t∑
i=1

Ii −
t−1∑
i=0

H

vl(0) +

i∑
j=1

Ij −
i−1∑
j=0

H(V l(j) + Ij+1 − vl
th)v

l
th + Ii+1 − vl

th

vl
th

(33)

Although this expression becomes complex, it highlights that vl(Tl) can be represented in terms of
the initial membrane potential vl(0), the accumulated inputs I , and the reset values vl

th triggered by
the threshold exceeding events governed by the Heaviside function H(·).

7.2 GRADIENT CALCULATION FOR EQUATION 16 AND 17

In SNNs, the membrane potential and spike function are updated according to the following equa-
tions:

Membrane Potential Update Equation:

vl(t) = vl(t− 1) +W lvl−1
th sl−1(t) (34)

where vl(t) represents the membrane potential of the neurons in layer l at time t, W l is the synaptic
weight matrix, vl−1

th is the threshold voltage of layer l−1, and sl−1(t) is the spike output from layer
l − 1 at time t.

Spike Function:

sl(t) = H(vl(t)− vl
th) (35)

where H is the Heaviside step function, and vl
th is the threshold voltage for layer l.
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Soft Reset Mechanism:

vl(t) = vl(t)− vl
ths

l(t) (36)

In the context of training SNNs, the initial membrane potential vm(0) is treated as an optimizable
parameter. The backpropagation of gradients is essential for adjusting these parameters. Below, we
derive the gradient of the spike function sl(t) with respect to the initial membrane potential vm(0)
for both cases where l = m and l ̸= m.

1. Gradient Calculation for l = m

When l = m, the gradient is confined within the same layer, with no inter-layer propagation re-
quired.

First, the gradient of the spike function with respect to the membrane potential vl(t) is given by:

∂sl(t)

∂vl(t)
= H ′(vl(t)− vl

th) (37)

where H ′(v) is the surrogate gradient of the Heaviside function. Since the Heaviside function is not
differentiable, a smooth approximation (e.g., tanh or piecewise linear function (Wu et al., 2018b)) is
typically used to compute its derivative during backpropagation.

Next, we consider the dependency of vl(t) on the initial membrane potential vl(0). According to
the membrane potential update equation:

vl(t) = vl(t− 1) +W lvl−1
th sl−1(t) (38)

we observe the recurrence relation:

∂vl(t)

∂vl(t− 1)
= 1 (39)

Thus, the gradient of vl(t) with respect to vl(0) is:

∂vl(t)

∂vl(0)
= 1 (40)

Finally, the gradient of the spike function with respect to the initial membrane potential vl(0) is:

∂sl(t)

∂vl(0)
= H ′(vl(t)− vl

th) (41)

The direct gradient of the spike function sl(t) with respect to the threshold vl
th is given by:

∂sl(t)

∂vl
th

= −H ′(vl(t)− vl
th) (42)

Since the membrane potential vl(t− 1) depends on the spike function sl(t− 1) at the previous time
step, we need to compute the gradient with respect to vl

th through the membrane potential at time
t− 1:

∂vl(t− 1)

∂vl
th

= −sl(t− 1) (43)

Therefore, combining the direct and indirect gradients, the total gradient of sl(t) with respect to vl
th

when l = m is:

∂sl(t)

∂vl
th

= −H ′(vl(t)− vl
th)(1 + sl(t− 1)) (44)

2. Gradient Calculation for l ̸= m
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When l ̸= m, the gradient must propagate through multiple layers from layer l back to layer m. In
this case, we apply the chain rule for backpropagation across layers.

The gradient of the spike function sl(t) in layer l with respect to the spike function sl−1(t) in the
previous layer is given by:

∂sl(t)

∂sl−1(t)
=

∂sl(t)

∂vl(t)
· ∂vl(t)

∂sl−1(t)
(45)

Substituting the known terms:

∂sl(t)

∂vl(t)
= H ′(vl(t)− vl

th) (46)

and

∂vl(t)

∂sl−1(t)
= W lvl−1

th (47)

we obtain:

∂sl(t)

∂sl−1(t)
= H ′(vl(t)− vl

th) ·W lvl−1
th (48)

Multi-Layer Gradient Propagation:

By recursively applying the chain rule across layers, we derive the following:

∂sl(t)

∂vm(0)
=

l∏
k=m+1

(
∂sk(t)

∂sk−1(t)

)
· ∂s

m(t)

∂vm(0)
(49)

For the same layer m, the gradient of the spike function with respect to the initial membrane potential
is:

∂sm(t)

∂vm(0)
= H ′(vm(t)− vm

th) (50)

Thus, the complete recursive gradient for layers l > m is:

∂sl(t)

∂vm(0)
=

l∏
k=m+1

(
H ′(vk(t)− vk

th) ·W kvk−1
th

)
·H ′(vm(t)− vm

th) (51)

By recursively expanding this gradient expression down to layer m, we obtain the following gradi-
ent:

∂sl(t)

∂vm
th

=

l−1∏
k=m

H ′(vk(t)− vk
th)W

kvk−1
th · (−sm(t− 1)) (52)

3. Gradient of the Loss with Respect to Initial Membrane Potential and threshold

The loss function of the SNN is based on the mean squared error (MSE) between the average output
of the final layer over T time steps and the corresponding output of ANN. Let oL

SNN(t) represent the
SNN output of the final layer at time t, and oL

ANN represent the output of the ANN. The loss function
is defined as:

L =
1

2

(
1

T

T∑
t=1

oL
SNN(t)− oL

ANN

)2

(53)
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The gradient of the loss function L with respect to the SNN output oL
SNN(t) is:

∂L
∂oL

SNN(t)
=

1

T

(
1

T

T∑
t=1

oL
SNN(t)− oL

ANN

)
(54)

Since the SNN output oL
SNN(t) depends on the membrane potential vL(t), the gradient of the loss

function with respect to vL(t) is:

∂L
∂vL(t)

=
∂L

∂oL
SNN(t)

· ∂o
L
SNN(t)

∂vL(t)
(55)

Here, ∂oL
SNN(t)

∂vL(t)
= H ′(vL(t) − vL

th), where H ′(v) is the surrogate gradient of the Heaviside step
function. Therefore, the gradient becomes:

∂L
∂vL(t)

=
1

T

(
1

T

T∑
t=1

oL
SNN(t)− oL

ANN

)
·H ′(vL(t)− vL

th) (56)

To compute the gradient with respect to vl(0) for each layer l ̸= L, we propagate the gradient
backwards from the final layer. Using the chain rule, we obtain:

∂L
∂vl(0)

=

T∑
t=1

∂L
∂vL(t)

· ∂vL(t)

∂sL−1(t)
· ∂s

L−1(t)

∂vl(0)
(57)

Where ∂vL(t)
∂sL−1(t)

= WLV L−1
th , and ∂sL−1(t)

∂vl(0)
can be computed using the chain rule for cross-layer

backpropagation.

The cross-layer gradient is propagated recursively as:

∂sl(t)

∂vm(0)
=

l∏
k=m+1

(
H ′(vk(t)− vk

th) ·W kvk−1
th

)
·H ′(vm(t)− vm

th) (58)

Therefore, the gradient of the loss function with respect to the initial membrane potential vl(0) is:

∂L
∂vl(0)

=

T∑
t=1

1

T

(
1

T

T∑
t=1

oL
SNN(t)− oL

ANN

)
·H ′(vL(t)− vL

th) ·
L∏

k=l+1

(
H ′(vk(t)− vk

th) ·W kvk−1
th

)
(59)

The gradient of the loss function with respect to vl
th is:

∂L
∂vl

th

=

T∑
t=1

∂L
∂ySNN(t)

· ∂y
SNN(t)

∂sL(t)
·

L∏
k=l

∂sk(t)

∂vl
th

(60)

From the previous derivation, the recursive relation for the gradient of the spike function with respect
to the threshold vl

th is:

∂sL(t)

∂vl
th

=

L−1∏
k=l

H ′(vk(t)− vk
th)W

kvk−1
th · (−sl(t− 1)) (61)
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Therefore, the complete gradient is:

∂L
∂vl

th

= −
T∑

t=1

1

T

(
1

T

T∑
t=1

ySNN(t)− yANN

)
L−1∏
k=l

H ′(vk(t)− vk
th)W

kvk−1
th · (−sl(t− 1)) (62)

Algorithm 1 Algorithm for ANN-to-SNN conversion.

Require: ANN model MANN (x;W ) without pretrained weight W ; Dataset D; Quantization pa-
rameters θ = [α, d, n]T ;

Ensure: MSNN (x; W̃ )
1: for l = 1 to MANN .layers do
2: if ReLU activation then
3: Replace ReLU(x) by QAC(x;θ)
4: end if
5: if MaxPooling layer then
6: Replace MaxPooling layer by AvgPooling layer
7: end if
8: end for
9: for e = 1 to epochs do

10: for length of Dataset D do
11: Sample minibatch (x0,y) from D
12: for l = 1 to MANN .layers do
13: xl = QAC(W lxl−1;θ)
14: end for
15: Loss = CrossEntropy(xl,y)
16: for l = 1 to MANN .layers do
17: W l ←W l − ϵ∂Loss

∂W l

18: θl ← θl − ϵ∂Loss
∂θl

19: end for
20: end for
21: end for
22: for l = 1 to MANN .layers do
23: MSNN .W̃ l ←MANN .W l

24: MSNN .θl ←MANN .θl

25: end for
26: for e = 1 to epochs do
27: Loss = MSE(ySNN ,yANN )
28: for l = 1 to MSNN .layers do
29: vl(0)← vl(0)− ϵ ∂Loss

∂vl(0)

30: vl
th ← vl

th − ϵ∂Loss
∂vl

th

31: end for
32: end for
33: return MSNN

7.3 TEMPORAL SCALABILITY ANALYSIS.

To verify whether the QAC method can achieve better performance with more time steps, we con-
ducted temporal expansion experiments. The results, shown in Table 5, detail the base time steps
T for various models on different datasets. For example, on CIFAR-100, the base time steps T for
ResNet-18, ResNet-20, and VGG-16 are 3.52, 4.58, and 3.67, respectively, which are consistent
with the data in Table 7. Similar experiments for time step expansion were conducted on CIFAR-10
and ImageNet. The results indicate that our method converges to near-optimal accuracy within a
short time. As the time steps double, the accuracy increases slightly. However, when the time steps
are increased to 3–4 times the original, the accuracy saturates and no longer changes significantly.
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Table 5: Temporal Scalability Analysis.

Datasets Architecture T 2T 3T 4T 5T 6T

CIFAR-10
ResNet-18 95.31% 95.84% 95.99% 96.11% 96.11% 96.11%
ResNet-20 90.29% 91.71% 91.76% 91.99% 91.99% 91.99%
VGG-16 94.45% 95.09% 95.25% 95.36% 95.36% 95.36%

CIFAR-100
ResNet-18 76.56% 77.93% 78.21% 78.26% 78.26% 78.26%
ResNet-20 65.80 % 67.20% 67.01% 67.29% 67.29% 67.29%
VGG-16 76.24% 77.01% 77.18% 77.08% 77.08% 77.08%

7.4 COMPARISON WITH OTHER DIRECTLY TRAINING METHODS.

Table 6 compares the performance of QAC (our method) with other directly trained methods using
surrogate gradients across three datasets: CIFAR-10, CIFAR-100, and ImageNet-1k. QAC demon-
strates competitive accuracy with significantly fewer time steps compared to other methods. For
CIFAR-10, QAC achieves 91.13% accuracy on ResNet-20 with just 3.74 time steps, and 94.78%
accuracy on VGG-16 with 2.33 time steps, outperforming most surrogate gradient methods in effi-
ciency. On CIFAR-100, QAC achieves 77.81% on ResNet-18 with 3.52 time steps and 76.37% on
VGG-16 with 3.67 time steps, showing strong performance relative to surrogate gradient methods.
For ImageNet-1k, QAC achieves 66.38% on VGG-16 with 3.47 time steps, demonstrating a balance
of accuracy and efficiency. Overall, QAC achieves near-optimal accuracy with fewer time steps,
highlighting its computational efficiency and scalability across datasets and architectures.

Table 6: Comparison with other directly training methods.

Dataset Method Type Architecture Time-steps Accuracy (%)

CIFAR-10

tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-18 4 92.92
Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18 4 93.66
TET (Deng et al., 2022) Surrogate Gradient ResNet-19 4 94.44
GLIF (Yao et al., 2022) Surrogate Gradient ResNet-19 2, 4, 6 94.15, 94.67, 94.88

RMP-Loss (Guo et al., 2023) Surrogate Gradient ResNet-20 4 91.89
PSN (Fang et al., 2024) Surrogate Gradient Modified PLIF Net 4 95.32

TAB (Jiang et al., 2024a) Surrogate Gradient VGG-9 4 93.41

ResNet-19 2, 4, 6 94.73, 94.76, 94.81

QAC(Ours) ANN-to-SNN

ResNet-18 2.76 95.29

ResNet-20 3.74 91.13

VGG-16 2.33 94.78

CIFAR-100

Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18 4 73.35
TET (Deng et al., 2022) Surrogate Gradient ResNet-19 4 74.47
GLIF (Yao et al., 2022) Surrogate Gradient ResNet-19 2, 4, 6 75.48, 77.05, 77.35

RMP-Loss (Guo et al., 2023) Surrogate Gradient ResNet-19 2, 4, 6 74.66, 78.28, 78.98

TAB (Jiang et al., 2024a) Surrogate Gradient VGG-9 4 75.89

ResNet-19 2, 4, 6 76.31, 76.81, 76.82

QAC(Ours) ANN-to-SNN

ResNet-18 3.52 77.81

ResNet-20 4.58 65.39

VGG-16 3.67 76.37

ImageNet-1k

tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-34 6 63.72
SEW ResNet (Fang et al., 2021) Surrogate Gradient SEW ResNet-34 6 67.04

TET (Deng et al., 2022) Surrogate Gradient SEW ResNet-34 4 68.00
GLIF (Yao et al., 2022) Surrogate Gradient ResNet-34 6 67.52

RMP-Loss (Guo et al., 2023) Surrogate Gradient ResNet-34 4 65.17
TAB (Jiang et al., 2024a) Surrogate Gradient ResNet-34 2,4 65.94, 67.78
PSN (Fang et al., 2024) Surrogate Gradient SEW Resnet-34 4 70.54
PSN (Fang et al., 2024) Surrogate Gradient SEW Resnet-34 4 70.54

QAC(Ours) ANN-to-SNN VGG-16 3.47 66.38

7.5 EXPERIMENT RESULTS ON CIFAR-100 DATASET

Table 7 shows that our method achieves competitive or superior SNN accuracy with significantly
fewer time steps across VGG-16, ResNet-18, and ResNet-20 on CIFAR-100. For VGG-16, it

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

achieves the highest accuracy 76.37% with just 3.67 time steps, outperforming methods like RTS
and SNNC-AP, which require up to 256 and 32 steps. Similarly, for ResNet-18 and ResNet-20, it
achieves strong accuracy 75.51% and 65.39% with only 3.52 and 4.58 steps. These results highlight
our method’s efficiency and rapid convergence to near-optimal accuracy.

Table 7: Comparison between our method and previous works on CIFAR-100 dataset.

Architecture Methods ANN Time Steps SNN

VGG-16

RMP (Han et al., 2020) 71.22 128 63.76
TSC (Han & Roy, 2020) 71.22 128 69.86
RTS (Deng & Gu, 2021) 77.89 256 73.54

SNNC-AP(Li et al., 2021a) 77.89 32 73.55
SNM (Wang et al., 2022) 74.13 32 71.8

OPI(Bu et al., 2022) 76.31 16, 32 70.72, 74.82
SlipReLU(Jiang et al., 2023) 68.46 4, 8 67.97, 69.31

QCFS(Bu et al., 2023) 76.28 4, 8 69.62, 73.96
SGDND(Oh & Lee, 2024) 78.28 16, 32 39.42, 76.33

ours 76.53 3.67 76.37

ResNet-18

RTS* (Deng & Gu, 2021) 77.16 64 70.12
SNNC-AP*(Li et al., 2021a) 77.16 32, 64 76.32, 77.29
SlipReLU(Jiang et al., 2023) 74.01 4, 8 74.89, 75.40

QCFS(Bu et al., 2023) 78.80 2, 4 70.79, 75.67
ours 78.26 3.52 77.81

ResNet-20

RMP (Han et al., 2020) 68.72 128 57.69
TSC (Han & Roy, 2020) 68.72 128 58.42

RTS* (Deng & Gu, 2021) 77.16 64, 128 70.12, 75.81
SNNC-AP* (Li et al., 2021a) 77.16 32, 64 76.32, 77.29

SNM* (Wang et al., 2022) 78.26 32, 64 74.48, 77.59
OPI(Bu et al., 2022) 70.43 32 67.18

SlipReLU(Jiang et al., 2023) 68.40 8, 16 57.20, 66.61
QCFS(Bu et al., 2023) 69.94 4, 8 34.14, 55.37

SGDND(Oh & Lee, 2024) 81.19 16, 32 36.78, 79.13
ours 66.32 4.58 65.39

* is not standard ResNet-18.

7.6 TEMPORAL AVERAGING EXPANSION ALIGNMENT

Table 8 demonstrates that QCFS with temporal averaging (QCFS+aver) consistently outperforms
standard QCFS across all architectures, datasets, and quantization levels, particularly in low time-
step settings and at higher quantization levels (L = 4, 8, 16). Temporal averaging significantly
enhances accuracy, especially when time steps T are limited, achieving comparable or higher per-
formance with fewer steps. For example, in ResNet-20 on CIFAR-10, QCFS+aver maintains over
90% accuracy across higher T values even at L = 16, while QCFS shows substantial accuracy
drops. Similarly, in VGG-16 on CIFAR-100, QCFS+aver shows strong improvements under chal-
lenging settings, particularly at high quantization levels. These results highlight the effectiveness of
temporal averaging in boosting performance and computational efficiency.

7.7 HARDWARE EFFICIENCY ANALYSIS

Using QAC to build mixed timestep SNNs allows them to run on SNN hardware while preserv-
ing the asynchronous nature of SNNs. SNN hardware has two mainstream implementation ap-
proaches: ANN accelerator variants and non-Von Neumann distributed multi-core architectures
(e.g., TrueNorth Akopyan et al. (2015), Loihi Davies et al. (2018)) Li et al. (2024).

ANN accelerator variants primarily achieve asynchronous computation by sending non-zero inputs
to processing element PE arrays and performing spike-based matrix calculations. These accelerators
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Table 8: Comparison of QCFS Results with and without Temporal Averaging Expansion Alignment.

Method T=1 T=2 T=3 T=4 T=8 T=16 T=32 T=64
ResNet-20 on CIFAR-10

L=2 QCFS 78.85% 83.94% 86.43% 87.9% 89.69% 90.06% 89.97% 89.8%
QCFS+(aver) 78.85% 88.58% 89.25% 89.31% 89.57% 88.96% 88.27% 89.77%

L=4 QCFS 62.32% 71.67% 78.21% 82.5% 89.48% 91.83% 92.5% 92.59%
QCFS+(aver) 62.32% 87.30% 90.78% 91.90% 92.39% 92.54% 92.62% 92.61%

L=8 QCFS 52.68% 65.58% 73.48% 78.64% 88.31% 92.32% 93.21% 93.50%
QCFS+(aver) 52.69% 83.47% 89.67% 91.54% 93.21% 93.54% 93.64% 93.70%

L=16 QCFS 36.45% 47.72% 56.95% 65.9% 84.12% 91.71% 93.22% 93.48%
QCFS+(aver) 36.45% 75.29% 87.59% 91.13% 93.05% 93.59% 93.58% 93.57%

VGG-16 on CIFAR-10

L=2 QCFS 61.45% 71.38% 74.57% 75.92% 77.38% 77.79% 77.79% 77.87%
QCFS+(aver) 61.45% 77.61% 77.5% 77.91% 77.89% 77.98% 77.84% 77.88%

L=4 QCFS 10.89% 77.20% 84.35% 88.49% 93.33% 95.08% 95.76% 95.90%
QCFS+(aver) 10.89% 91.02% 94.44% 95.33% 95.75% 95.94% 96.01% 95.99%

L=8 QCFS 72.03% 86.62% 92.03% 93.46% 95.07% 95.70% 95.74% 95.77%
QCFS+(aver) 72.03% 93.32% 95.22% 95.64% 95.77% 95.83% 95.83% 95.84%

L=16 QCFS 29.02% 86.02% 89.38% 91.91% 94.65% 95.77% 96.03% 96.07%
QCFS+(aver) 29.02% 92.84% 94.66% 95.39% 95.85% 96.04% 96.03% 96.04%

ResNet-20 on CIFAR-100

L=2 QCFS 43.71% 44.68% 55.64% 58.17% 61.18% 62.09% 61.93% 61.56%
QCFS+(aver) 43.71% 58.97% 60.34% 61.17% 60.92% 61.32% 61.14% 61.14%

L=4 QCFS 25.64% 36.00% 44.10% 50.36% 62.02% 66.33% 67.26% 67.05%
QCFS+(aver) 25.64% 56.56% 63.66% 64.67% 66.11% 66.55% 66.76% 66.50%

L=8 QCFS 11.48% 17.11% 23.46% 29.94% 51.29% 64.65% 68.03% 68.62%
QCFS+(aver) 11.48% 43.82% 59.06% 64.47% 67.96% 68.06% 68.52% 68.62%

L=16 QCFS 7.26% 11.15% 15.47% 20.54% 41.95% 61.81% 68.07% 69.02%
QCFS+(aver) 7.26% 32.49% 53.15% 61.61% 68.28% 69.13% 69.23% 69.32%

VGG-16 on CIFAR-100

L=2 QCFS 65.06% 68.97% 71.13% 72.3% 74.34% 75.13% 75.43% 75.60%
QCFS+(aver) 65.06% 73.85% 74.34% 74.96% 75.56% 75.39% 75.54% 75.54%

L=4 QCFS 57.57% 64.33% 67.93% 70.13% 74.75% 76.33% 77.01% 77.15%
QCFS+(aver) 57.57% 73.01% 75.53% 76.30% 76.90% 77.03% 77.08% 77.24%

L=8 QCFS 45.47% 55.55% 60.53% 64.93% 72.42% 76.02% 77.22% 77.44%
QCFS+(aver) 45.47% 69.88% 74.58% 75.7% 75.58% 77.15% 77.14% 77.11%

L=16 QCFS 28.98% 41.11% 48.66% 54.41% 67.02% 74.39% 76.87% 77.56%
QCFS+(aver) 28.98% 66.23% 73.58% 75.48% 76.86% 77.71% 77.68% 77.69%

L is the quantization step in QCFS.

Figure 4: Neuromorphic Hardware Pipeline.

only compute one part of the neural network at a time, iterating to cover the entire network. Algo-
rithm 2 shows the data flow, where the timestep for each layer is T . For mixed-timestep SNNs, we
modify the timestep Tl for each layer and average the outputs of each layer along the time dimen-
sion. These two operations do not change the original data flow, allowing the model to run on this
type of hardware.

In contrast, multi-core neuromorphic hardware deploys the neurons of all layers across different
cores. When neurons receive spike events, they immediately perform spike-based computations,
achieving asynchronous execution. The network runs on hardware in a pipelined manner. As shown
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in Figure 4, at time T1, Layer 1 processes the data from Sample 1. At T2, Layer 2 processes the data
from Sample 1 (i.e., the output of Layer 1 at T1), while Layer 1 processes the data from Sample 2.
For mixed timestep SNNs, a time alignment strategy must be used to handle the different timesteps
of each layer. During pipeline execution, Layer 2 must wait until Layer 1 completes Tl1 timesteps
before it can start computation. Although mixed timestep SNNs can run on this type of hardware,
pipeline stalling may occur, introducing computational delays and preventing the hardware from
achieving optimal performance.

Algorithm 2 Neuron and Temporal Loops

1: for o← 0 to Co/M do ▷ Neuron Loops
2: for h← 0 to Ho do
3: for w ← 0 to Wo/N do
4: for t← 0 to T/S do ▷ Temporal Loop
5: for kh ← 0 to Kh do ▷ Spatial Loops
6: for kw ← 0 to Kw do
7: for i← 0 to Ci/V do
8: Psum += W × Ispikes ▷ Unrolled computation
9: end for

10: end for
11: end for
12: VNext, Ospikes ← Node(Psum, VPre)
13: end for
14: end for
15: end for
16: end for
17: return VNext, Ospikes

7.8 TIME STEP VS. BIT WIDTH

The following image shows the quantization bit-width and timesteps corresponding to different
training parameters used during quantization-aware training (QAT) of ResNet-18, ResNet-20, and
VGG-16 on CIFAR-10, CIFAR-100, and ImageNet.
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Figure 5: CIFAR-10, ResNet-18.
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Figure 6: CIFAR-100, ResNet-18.
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Figure 7: CIFAR-10, ResNet-20.
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Figure 8: CIFAR-100, ResNet-20.
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Figure 9: CIFAR-100, VGG-16.
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Figure 10: ImageNet, VGG-16.
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Figure 11: The average quantization bit-width, average time steps, and ANN accuracy under differ-
ent quantization parameter schemes.
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