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Abstract

Recent breakthroughs in AI are poised to fundamentally enhance our study and
understanding of healthcare. Developing an integrated many-to-many framework
leveraging multimodal data for multiple tasks is essential to unifying modern
medicine. We introduce M3H, an explainable Multimodal Multitask Machine
Learning for Healthcare framework that consolidates learning from tabular, time-
series, language, and vision data for supervised binary/multiclass classification,
regression, and unsupervised clustering. M3H encompasses an unprecedented
range of medical tasks and problem domains and consistently outperforms tradi-
tional single-task models by on average 11.6% across 40 disease diagnoses from
16 medical departments, three hospital operation forecasts, and one patient phe-
notyping task. It offers explainability through a proposed TIM score, shedding
light on the dynamics of task learning interdependencies of the output space. The
modular design of the framework ensures its generalizable data processing, task
definition, and rapid model prototyping, applicable to both clinical and operational
healthcare settings. Specifically, the model design features a novel lightweight
attention mechanism balancing self-exploitation (learning source-task), and cross-
exploration (learning cross-tasks) to ensure learning quality without overburdening
computational resources. Its adaptable architecture supports easy customization
and integration of new data modalities and tasks, establishing it as a robust, scalable
solution for advancing AI-driven healthcare systems.

1 Introduction

The integration of Artificial Intelligence (AI) and Machine Learning (ML) has seen unprecedented
promise to advance healthcare services and to fundamentally improve our understanding of medicine
[1, 2]. Leveraging the increasingly accessible patient digital records, multimodal learning incor-
porates multiple modalities and sources of data input to provide holistic views of patient profiles
[2-7]. However, beyond the integration of diverse inputs, a combination of outcomes is often further
necessary to characterize patients comprehensively. Multitask learning, which leads to performance
breakthroughs in large language models such as GPT-2 [8], and computer vision [9-11], is a natural
extension under this premise to simultaneously learn multiple medical tasks to improve model perfor-
mance across cardiology [12], psychiatry and psychology [13, 14], oncology [15], radiology [16]
and other healthcare domains [17-19]. Specifically, in contrast with multiclass learning of mutually
exclusive targets, multitask learning can simultaneously process multiple targets and thus provide
better performance due to the sharing of common knowledge. Importantly, multimodal multitasking
emulates existing collaborative efforts in clinical settings, where physicians and administrators across
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multiple departments often integrate diverse sources of information to jointly navigate multiple
complex medical decisions simultaneously.

However, it remains challenging to develop an integrative multimodal multitask machine learning
framework that is consistently applicable across distinct healthcare domains and machine learning
problem classes while maintaining efficiency in handling increasingly large healthcare datasets [20].
In particular, existing multimodal multitask medical models often primarily focus on image and
vision tasks despite the majority of the medical knowledge still being encoded in tabular electronic
health records. This calls for the need for the design of architectures that integrate more prominently
studied machine learning problem classes on classification, regression, and clustering in these tabular
settings. In addition, there is a lack of a rigorous understanding of why certain medical tasks should
be combined into a single setting. Simply combining a set of tasks to achieve unified diagnostics,
though appealing in concept, could unknowingly introduce tasks with conflicting objectives. Lastly,
there is a lack of design of machine learning architectures that encourage simplicity and flexibility
of individual components for practical implementation or adoption in other studies. Most existing
frameworks are developed for specific studies, which exploit complex relationships between data
and outputs through elaborate connections and repeats of hundred-level-layer neural networks. Such
architectures are not feasible for many hospital’s data and computing infrastructures and are difficult
to adapt to environment-specific studies.

M3H addresses several challenges, including the difficulty of integration across multiple distinct
machine learning problem classes into a single framework and the lack of explainability metrics
to measure how and why combining certain tasks improves performance. In particular, the M3H
framework complements and extends previous literature on important key topics and provides new
perspectives on several topics.

• M3H represents the first integrated healthcare system to bridge beyond multi-disease diag-
nosis to hospital operations and patient phenotyping. In relation to this, it also represents the
first step towards integrating not only clinical but also operational and biological dynamics
of patient care, signaling a shift towards a holistic view across the healthcare continuum.

• M3H introduces the TIM score, an explainable metric measuring incremental performance
benefits from training additional tasks in conjunction with the source task. While previous
studies in this field rely on apriori assumptions about the quantitative and qualitative value
of multitask learning for the target domain or rely on medical observations,

• M3H is designed to be particularly modular and flexible to allow easy substitution of each
component with user-preferred model. It further develops a novel lightweight cross-task
attention mechanism that explicitly models the learning between medical tasks by balancing
self-exploitation (learning for the source task) and cross-exploration (learning from other
tasks).

The rest of this paper is structured as follows. Section 2 outlines previous works in addressing
multimodal multitask machine learning in healthcare settings. Section 3 details the architecture
and technical details of the M3H framework. Section 4 describes the experimental set up using a
large-scale intensive care unit (ICU) database. Section 5 demonstrates M3H’s performance across
a diverse set of medical and machine learning tasks. The explainability metric is characterized in
Section 6, and managerial implications, limitations, and future works are discussed in Section 7.

2 Related Literature

2.1 Integrated Healthcare System

Medicine is not a standalone domain of study. On the quite opposite, medical departments rely
heavily on the support and interactions of inter-departmental collaborations. Current studies in
healthcare management largely rely on a single-disease prediction for a single medical diagnosis,
treatment, or planning problem. These domain-specific models offer expert insights into a particular
domain of healthcare and could benefit significantly from sharing knowledge with each other if
jointly studied under a unifying framework. Some recent works on the integration of multiple clinical
tasks across cardiology [12], psychiatry and psychology [13, 14], oncology [15], radiology [16] and
other healthcare domains [17-19] all show promising potential for an integrated healthcare system for
improved performance.

2



A further testimony to this critical direction towards integration is the rising interest in the medical
field on the study of multi-disease [21], or multi-morbidity diagnosis [22]. Such approaches make
heavy use of the underlining assumption that patient characteristics, as well as medical conditions,
when studied holistically, provides a better understanding, and thus improves both performance
as well as clinical understanding. Beyond providing insightful medical knowledge, these studies
imply significant managerial benefits for the patients, caregivers, and even payers [23, 24]. A
concrete illustration was demonstrated by the prediction of patient flow in a large hospital system
[25-27], where predictions of multiple operational targets, including length of stay, mortality, and
ICU admissions, are all studied to characterize the patient’s condition. If integrated into a single
framework, hospital systems could benefit from performance improvements, directly contributing to
operational efficiency, and profits for the organization.

2.2 Medical Foundation Models

Our work is in line with recent literature on the development of medical foundation models [28-30],
or in some cases referred to as the “generalist” models, in comparison to traditional “specialist”
single-modality, single-task models. These methods were first extensively studied in computer vision,
control, and natural language processing, which primarily aimed to combine machine learning tasks
such as image segmentation, image detection, language translations into a single, cohesive framework.
Our work differs from this line of work in two ways: 1) majority of these works primarily focus on
vision and language task integrations, we instead heavily rely on electronic health records (EHR),
which until remains the most used medical data, as an integral part of our analysis and base majority
of our architecture design on these data. 2) Mere integration of all tasks into a single system, although
appealing in concept, is not applicable in the medical practice. Instead, a more feasible approach is
to offer a flexible framework where users can decide tasks to be integrated by leveraging their own
expert knowledge of the healthcare system.

2.3 Explainability on the Outcome Space

Existing explainable multitask frameworks for learning biomedical tasks focus on explaining the
contribution of input features on its corresponding outcome task [18]. However, multitask learning
offers a unique perspective that lies in the interactions among the jointly learned tasks interact. With
the introduction of several techniques on the integration of machine learning tasks, such as cross-stitch
networks [31], and cross-task attention mechanism [32], we can effectively extract learned attention
weights or cross-stitch tensors to map out the interactions between how tasks borrow other tasks’
learned feature embeddings to improve its own learning process. However, these approaches are
designed to measure the learning process contribution, not the end effect of model performance
changes by specific combinations of tasks.

3 M3H Architecture

3.1 Overview of the M3H framework

The M3H (Fig 1) framework is an end-to-end framework for integrating multimodal data feature
extraction and multitask outcome learnings. To leverage the strong performance of existing state-
of-the-art (SOTA) models, M3H first obtains fixed modality-specific embeddings through publicly
available, pre-trained models, including ClincalBERT [33] for natural language and Densenet121-
res224-chex [34] for images. These task-agnostic, not-trainable multimodal embeddings are then
passed through further modality-specific learnable feedforward networks and then integrated into a
shared-task learning module. In this module, we conduct (i) contrastive learning and (ii) shared-task
learning, where the first aims to project embeddings from different modalities into a consistent
embedding space, and the second serves as an over-arching tunnel that all tasks must contribute
to learning and a proxy for a universal embedding that is relevant for all tasks. We then feed the
shared-learned embedding to task-specific networks, which focuses on the learning of each individual
task. Finally, these task-specific embeddings integrate knowledge from other task embeddings before
making their final predictions via the cross-task attention mechanism. In multimodal multitask
machine learning problems, it remains challenging to unify a diverse pool of outcomes due to the
presence of different output spaces (continuous numeric, discrete categories). M3H integrates tasks
of different medical domains and machine learning problem classes by unifying losses from each
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Figure 1: Multimodal Multitask Machine Learning for Healthcare (M3H) system.

sub-problem into a single objective function. Specifically, the overall loss is a combination of
contrastive loss between multimodal inputs and aggregated problem class loss of jointly learned
outcomes. During training, network updates by optimizing each individual loss sequentially.

3.2 Machine Learning Problem Class Architectures

The M3H framework assigns a pre-defined modality-specific feedforward network for each input
modality and a task-specific network for each outcome task, which can be seen in Supplemental
Figures A2-1 and A2-2. Specifically, as an unsupervised problem with unlabeled samples, clustering
is uniquely challenging to incorporate into the M3H framework. Unlike the use of output layers
to predict a predefined label, to effectively group patients into different phenotypes, we train an
autoencoder that learns accurate low-dimensional latent space that can be then clustered into groups
via traditional methods such as K-means clustering. We first concatenate all embeddings from all
modalities into an aggregated embedding, this embedding is then fed during training into an autoen-
coder to compress the original feature space into low-dimension latent space and then re-expanded
back to the original dimensions. A good quality latent space aims to achieve low reconstruction loss.
The learned latent space is then clustered into 15 patient subgroups and evaluated for quality.

3.3 Cross-Task Attention for Knowledge Sharing

Integrating the learning of multiple tasks is of crucial importance for a successful M3H framework.
Previous studies on related efforts include but not limited to multi-head attention mechanism, cross-
stitch, and multilinear relationship network (MRN). Preliminary analyses in online Supplemental
Materials show that these methods do not satisfy the quantitative or qualitative design requirements
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for a high-performing, scalable objective of M3H, seen in Supplemental Materials Section A6. We
thus develop below a novel cross-task attention mechanism to facilitate knowledge sharing among
tasks. At its core, attention is constructed by variations of the key, query, and value vectors to capture
interactions between its inputs. Attention mechanism is well-positioned to exploit dependencies
between tasks: by projecting each task’s embeddings as a token, we can leverage the attention
mechanism to enable explicit task knowledge sharing. The overall architecture is demonstrated in
Fig 2.
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Figure 2: Architecture Design of the Clustering and Cross-Task Attention Mechanism.

Following traditional practice, input to obtain the key and value vectors is the original task embedding
xs ∈ Rnbatch×ntasks×nfeature from joint learning of a specified set of task s, where nbatch refers to
the number of samples passed through each learning iteration (batch size), nfeature refers to the
number of features generated to encode knowledge for each task, and ntasks refers to the number of
tasks in s. However, we aim to find a universal mapping between task tokens indicating the index of a
task, with the embedding that best represents a task. This calls for a query vector that is independent
of the batch update. To do so, we generate the query embedding via mapping of the task tokens
vector Ts to task embeddings via a linear projection Qs = f(Ts) : Nntasks → Rntasks×nfeature .
Finally, we apply linear projections to all embeddings to improve representation quality and obtain
query vector Qs ∈ Rntasks×nfeature , key vector Ks ∈ Rnbatch×ntasks×nfeature , and value vector
Vs ∈ Rnbatch×ntasks×nfeature . The product of the computed query and key vectors, referred to as
attention weight, indicates the relevance or emphasis put on a specific token in the value vector. We
aim to find a balance between exploiting self-learning (reusing knowledge from the original task)
while exploring cross-learning (incorporating knowledge from other unrelated tasks) in a controlled
manner. This balance is achieved by adapting the initial attention weight Ms ∈ Rnbatch×ntasks×ntasks

through the projection Ws = softmax(Is + αMs/max(Ms)) where Is ∈ Rnbatch×ntasks×ntasks

is the identity matrix encouraging self-learning, and α is the strength of exploration encouraging
cross task learning. This attention weight is then applied to the values vector to obtain the final
cross-learned task embeddings. The completed algorithm can be found in Algorithm ??.

3.4 Model Loss

The aggregated loss used to train to network is defined as a weighted average across all losses:
ℓtotal = wcℓconstrative +

∑
t∈Bs

wtℓbinary,s +
∑

t∈Ms
wtℓmulticlass +

∑
t∈Rs

wtℓregression +∑
t∈Cs

wtℓcluster where wc, wt refers to the weight assigned for contrastive loss and task t,
Bs,Ms, Rs, Cs refers to the sets of tasks that are in the binary, multiclass, regression and clus-
ter problem classes. Specifically, binary classification loss refers to binary cross entropy loss;
multiclass classification loss refers to negative log-likelihood loss; regression loss refers to mean
absolute error loss; cluster reconstruction loss refers to the mean squared error between encoder input
and decoder output. The detailed definitions of each loss function can be found in Supplemental
Materials Section A7. All weights have been initialized to 1.
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Algorithm 1 Cross-task Learning Algorithm
Input:

s: Set of tasks to be jointly learned
N : Number of batches
α: Exploration strength parameter for cross-task learning
xi
s ∈ Rnbatch×ntasks×nfeature : Task embedding tensor from batch i

Ts ∈ R1×ntasks : Task tokens tensor of form [0, 1, 2, . . . , ntasks − 1]
Is ∈ Rnbatch×ntasks×ntasks : Identity tensor to encourage self-learning

Output:
Os ∈ Rnbatch×ntasks×nfeature : Cross-learned embedding output.

Initialize Linear Transformations: Initialize linear transformations for queries, keys, and values:
WQ,WK ,WV ∈ Rnfeature×nfeature , and task token linear transformation WT ∈ Rnfeature×ntasks .
for i ≤ N do

Qs ←WT · Ts ▷ Convert task tokens vector Ts into task embeddings
Qs ←WQ ·Qs ▷ Compute query vectors from task embeddings
Ks ←WK · xi

s ▷ Compute key vectors from task embeddings
Vs ←WV · xi

s ▷ Compute value vectors from task embeddings
Ms ← Qs ·K⊤

s ▷ Compute attention weight
Ws ← softmax

(
Is +

αMs
max(Ms)

)
▷ Normalize by maximum weight entry, scale by exploration strength,

and encourage self-learning
Os ←Ws · Vs ▷ Output the cross-learned embeddings

end for

4 Experiment Setup on Large-scale Medical Database

4.1 Dataset and Patient Representation

HAIM-MIMIC-MM [3] is a patient-centric dataset derived from Medical Information Mart for
Intensive Care IV (MIMIC-IV) [35], a public electronic health record database from Beth Israel
Deaconess Medical Center containing de-identified records of all patients admitted to the intensive
care unit (ICU) between 2008-2019. HAIM-MIMIC-MM offers access to contemporary, large-scale
patient cohorts with modular constituent data organization, and most importantly, integrates multiple
modalities of data inputs into a single database, ranging from demographics, chart events, laboratory
events, procedure events, radiological notes, electrocardiogram notes, echo-cardiogram notes, as well
as chest X-ray images. Specifically, HAIM-MIMIC-MM aggregates all available medical information
of a patient’s hospital admission-stay gathered before their expiration or discharge time. Fixed-size
vector representation of data from four modalities: tabular (dimension of 6), time-series (dimension of
451), vision (dimension of 2084), and language (dimension of 2304), are extracted using pre-trained,
state-of-the-arts models and combined into a comprehensive multimodal patient representation. Each
sample within the HAIM-MIMIC-MM dataset corresponds to all prior patient information from the
time of admission until an inference event, including the time of imaging procedure for pathology
diagnosis, the 48-hour window for mortality prediction, or the end of hospital stay. Additional detailed
discussions of the limitations and other characteristics of the dataset can be found in Supplemental
Materials Section A5.

4.2 Model Training Pipeline

We initially explored various feedforward architectures for each modality-specific and task-specific
network including different activation functions (ReLU, Sigmoid, Tanh), dropout layers, normaliza-
tion layers, different optimizers (RMSprop, SGD, Momentum, Adam), and gradient clipping. The
canonical architecture used in all following experiments was selected to support GPU optimization
for computational efficiency (i.e., the number of filters in layers mostly are multiples of 64) and was
shown to have a consistently superior performance during preliminary investigations. The rescaling
coefficient in the cross-task attention mechanism α is set to be 0.1 as it is explored to be a stable
point between performance stability and efficient learning. We first split the dataset into 80% training
(n=10025) and 20% testing (n=2561) by stratifying on a patient level to ensure no data leakage
between training and testing for all model training or validation processes. We then apply a 5-fold
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cross-validation on the training set to select the best combinations of batch size (256, 512) and
learning rate (0.0001, 0.0003). Specifically, within each run of 15 epochs, 4 of the 5 folds are used for
model training, and the remaining one is used for validation. The average of all 5 validation scores
across all tasks is computed for each hyperparameter combination, and a final model is trained on the
entire training set with the hyperparameter with the highest average validation score. As the number
of tasks included in joint learning grows, there is an exponentially growing number of potential
possible task pair combinations. We consider the following task selection procedure to optimize
our likelihood of locating the best-performing multitask model: given a set of tasks s ∪ i and its
performance on i, we conduct experiments on all possible s ∪ i ∪ j where j is a task not previously
included. We only keep the best-performing top 3 pairs and repeat until no further improvements are
observed. For computational efficiency, we restrict pairs experiments up to pairs of 3. A detailed
step-by-step guide can be found in Supplemental Materials Section A3.

5 Experimental Results

5.1 Quantitative Performance Improvements Across Medical Tasks

We demonstrate the feasibility of the proposed M3H framework through its application to a pre-
established and validated multimodal dataset. Across 16 disease groupings with 40 disease diagnoses,
3 hospital operations tasks (length of stay, general mortality, and hospital-acquired infection), and 1
patient phenotyping task, the M3H framework demonstrates consistent performance improvement
over single-task models in Fig. 4. We report the percentage of improvement and its lower and upper
bound accounting for standard deviation after applying bootstrapping on the out-of-sample test scores
between the best-performing single-task models and best-performing multi-task models. The M3H
framework improves performance scores in diagnosis (1% – 41.2%), in hospital operations (3.3% –
12.4%), and in patient phenotyping (62.7%). Specifically, the improvement across disease groupings
or hospital functionalities include hospital operations (∆AUROC = 4.7 – 12.4%, ∆R-squared = 3.3%),
thoracic testing (∆Average AUROC = 2.4%), blood disorder (∆AUROC = 2.9%), cardiology (∆AUROC =
1.4 – 5.3%), critical care (∆AUROC = 1.6 – 4.3%), dermatology (∆AUROC = 36.2%), endocrinology
(∆AUROC = 1 – 14.1%), gastroenterology and hepatology (∆AUROC = 3.8 –25.7%), infectious diseases
(∆AUROC = 1.8 – 26.9%), internal medicine (∆AUROC = 4.4 – 4.8%), nephrology (∆AUROC = 3.2%),
neurology (∆AUROC = 2.7 – 41.2%), oncology (∆AUROC = 1.7 – 15.0%), ophthalmology (∆AUROC =
9.9 – 24.9%), psychiatry and psychology (∆AUROC = 2.1 – 22.7%), pulmonology (∆AUROC = 2.4 –
7.4%), rheumatology (∆AUROC = 16.4%), and urology (∆AUROC = 30.1%). Multi-task models are also
shown to have reduced variability with more narrow confidence intervals, implying their potential to
generate more robust solutions on unseen datasets, as can be seen in Supplemental Figure A1.

5.2 Generalizability across Machine Learning Problem Classes

Supervised and unsupervised machine learning (ML) have unique modeling techniques tailored
for each corresponding outcome and objectives. However, these distinctions of machine learning
problem class should not pose barriers to integrating relevant tasks that can benefit from learning
simultaneously. For binary classification, predicted major depressive disorder risk scores quantile,
when compared against observed event rate, shows more consistency between female and male
subgroups under the multitask setting, especially for low-risk patients (Fig. 3a); for multiclass
classification, we observe reduced variability of ROC curve across different thorax conditions with
higher averaged AUROC measure (Fig. 3b); for regression, multitask captures tail-predictions
(extended length of stay) more closely than single-task (Fig. 3c); for clustering, post-UMAP
(Uniform Manifold Approximation and Projection) processing demonstrates significantly more
distinct boundaries between clusters and structural patterns in the multitask setting (Fig. 3d). Together,
joint learning across machine learning problem classes improves both quantitative performance as
well as qualitative understanding of the source tasks.
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Figure 3: MultiTask outperforms SingleTask across the four machine learning problem classes.

6 Explainability

6.1 Task Interaction Measurement (TIM) Score Formulation

Explainability of how the input contributes to the output can be done through established methods
such as SHAP, which is demonstrated in Supplemental Materials Section A4. The M3H framework
also provides explainability of task-dependency by computing a task interaction measurement (TIM)
score, which measures how joint training of additional tasks affects the performance of the source
task. It helps identify tasks that should be trained together to improve performance and provide
qualitative medical insights into how different medical domains interacts and potentially connects.
The score is computed as the difference in performance scores between joint learning of task pairs
and source-task learning. Given M as the number of all possible tasks, S as a set of tasks that do not
contain either task i or task j, and f̃x(S ∪ i) as a function of the performance score of task i given
features x and joint learning all tasks belonging to S and task i, we define TIM as:

δij =
1

2M−2

∑
S⊆\{i,j}

f̃x(S ∪ {i, j})− f̃x(S ∪ {i}))

As the number of all possible tasks grows, this score requires an exponentially increasing number
of all potential task combinations of S. In practice, to avoid computational hurdles, we can either
sample a subset of potential S to obtain an approximation of the true TIM score or restrict the number
of task pair sizes to be small (i.e., smaller than 5).

6.2 Task Interdependency Understanding

We show in Fig. 4 that using the proposed task interaction measurement (TIM) score, we can quantify
both the positive and negative contribution of additional tasks on a source task. Notably, consistent
with previous findings, the additional joint learning of infectious diseases helps improve the forecast of
length of stay, and inflammatory bowel disease learning contributing to bipolar disorder risk prediction.
We compare multitask models of all pairwise task combinations of size 2 (restricted to a small number
to ensure computational efficiency) against single-task models using only the source task across
various medical domains. We remark that the heatmap is not symmetric, showing that the direction
of task interdependencies matters, as the effect of task A on task B may differ from the effect of task
B on task A. This asymmetry highlights the complex nature of task relationships and their varying
impacts depending on the direction of the interdependency and suggests that when designing multi-
task models, it is important to clarify the rank of objectives when multiple tasks are jointly learned.
Overall, the TIM score helps understand whether a particular task combination improves individual
learning by sharing knowledge, impairs learning by competing between conflictive objectives, and
can provide qualitative insights to better understand under-investigated medical outcome connections.
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Figure 4: Heatmap of TIM Scores Across Medical Tasks to Illustrate Task Interactions.

7 Conclusions and Limitations

7.1 Implications to Practice

M3H can be readily adopted in production for hospital systems, especially in resource-constrained
settings. By leveraging a modular architecture, M3H is adaptable to each system’s specific patient
cohorts, available data modalities, and targeted medical tasks of interest by retraining the network on
these new cohorts. This versatility facilitates user-defined modifications, replacements, and extensions,
ensuring a tailored application in diverse hospital environments. M3H is also developed to be easily
implementable with standard data storage or computational infrastructures available in most hospital
settings, but rigorous validation must be conducted to avoid potential model instability and negative
predictions that could contribute worsen patient care. It has been packaged and tested on standard PCs
as an executable software, and preliminary testing showed its feasibility in these local systems across
both the Linux and Mac operating systems. Particularly in resource-constrained hospital systems,
where information technology (IT) departments lack the capacity to manage huge-scale models,
M3H offers a scalable alternative to democratize the use of such AI systems. Once validated, these
prototypes can be implemented both in the clinical care delivery and the administrative operation
management routines.

7.2 Limitations and Discussions

M3H could benefit from the use of additional data modalities and medical tasks such as omics and
wearable device signals. Other well-studied medical tasks, such as image segmentation, and language
understanding can also be included to the framework. M3H framework should further investigate
robustness towards data perturbation, as well as numerical instability inherited by most deep learning
architectures via the use of methods such as distributionally robust optimization. Furthermore,
designing multidisease is a nonlinear, combinatorial problem that can be challenged by the curse of
dimensionality as the number of possible combinations explode. Some recent works have been done
to explore Pareto optimal disease-combinations, which is a promising direction to explore. Lastly, an
interesting usage of the M3H framework is in connection with the predict-then-optimization literature.
With more accurate performance in the prediction phase, it is possible that we can simultaneously
improve multiple downstream optimization problems for better operational efficiency and recover
analytical insights across medical departments.
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A Appendix / supplemental material

A.1 Computational Results

Supplemental Figure A1 Comparison of the Performance of Single-task and Multi-task Models
Across Important Healthcare Tasks.
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A.2 Architecture Details
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Supplemental Figure A2-1. Modality-specific and task-specific network architectures.
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Supplemental Figure A2-2. Overall Pipeline of the M3H Architecture.
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A.3 Step-by-Step Data Integration and Modeling Procedure

Algorithm A3 End-to-End Data Integration and Modeling Pipeline

Input: Tabular data Xtabular , Time-series data Xtime−series, Image data Xvision, Language data
Xlanguage, Feature extractor fi of modality i, Outcome vector yk for task k ∈ K, k̂ ∈ K̂ indicates a
set of task combinations. Lk̂ as the aggregated loss function of each task combination k̂. p ∈ P is the set of
hyperparameter combinations. ϵ = 10−6 to avoid numerical precision error during computation,
Output: Trained model and evaluation scores

Step 0 – Data pre-processing and cleaning
• Impute missing values for all modalities, where here x is a generic data entry:

x =

{
0 if x is numerical or image data
"" (empty string) if x is text data

• Rescale image size:
Xvision ← resize(Xvision, 224× 224)

Step 1 – Embedding generation of each modality, an example of difference sources with the same
modality is EKG notes vs. radiology notes:

Ei
j = fi(X

i
j) ∀i ∈ {tabular, time-series, vision, language},
∀j ∈ {different sources in each modality}

Step 2 – Concatenate embeddings of all sources of the same modality into a single flattened vector:

Ei = vec(Ei
1, E

i
2, · · · , Ei

n) ∀i ∈ {tabular, time-series, vision, language}

Step 3 – Data Normalization

Ei =
Ei −mean(Ei)

STD(Ei) + ϵ
∀i ∈ {tabular, time-series, vision, language}

Step 4 – Structure input data with outcomes for a task combination

Ek̂ = vec(Etabular, E time-series, Evision, Elanguage, y1, y2, · · · , yk)

Step 5 – Model Training, Validation and Evaluation
For task combination k̂ in the set of all prediction tasks K̂:

• Split data into train and test datasets with fixed seed.

Etrain
k̂ , Etest

k̂ , ytrain
k̂ , ytest

k̂ ← train_test_split(Ek̂)

• Perform 5-fold cross-validation with grid search to select the best parameter combination p∗ ∈ P on the
training data that has the best cumulative performance across all tasks inside the task combination k̂.

M3H∗
k̂ ← argmin

M3Hp∀p∈P
Lk̂(M3Hp(E

train
k̂ ), ytrain

k̂ )

• Evaluate the optimal M3H model on the test set data:

test_set_score = M3H∗
k̂ (E

test
k̂ , ytest

k̂ )

For each potential number of task combinations (i.e., single task = 1, 3-combined multitask = 3) and each task
k, report the best model performance for each task.
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A.4 Explainability of Input Space: by SHAP

We demonstrate below that by using SHAP values, we can effectively understand the magnitude
and directionality of each input clinical variable’s contribution to the outcome prediction and thus
provide actionable insights for the physicians. Specifically, we analyze an M3H-framework- trained
multi-task model between diabetes and heart failure and study the effects of tabular features on
diabetes outcomes. We sampled 100 patients and studied their mean-standard deviation normalized
tabular features using two types of analysis: feature importance and feature interaction. We observe
that patients with lower age are less likely to have diabetes (blue dots for age have mostly negative
SHAP values).

Supplemental Figure A4-1. SHAP feature importance plot: each dot indicates a single sample
among the 100 test set samples. Higher values of the feature are indicated in red, and lower values in
blue. The most important feature is ranked at the top, followed by other features. A higher SHAP
value (right-hand side of the axis) indicates a higher likelihood of a positive outcome (has diabetes),
and a lower SHAP value indicates a negative outcome (does not have diabetes).

Supplemental Figure A4-2. The SHAP interaction plot demonstrates the nonlinear interactions
between features on the outcome prediction captured by the M3H model. Age impacts the risk of
diabetes differently depending on the patient’s gender.
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A.5 Characteristics of HAIM-MIMIC-MM

A.5.1 Limitations:
HAIM-MIMIC-IV was developed from the MIMIC-IV database, and several inherent biases and
limitations should be addressed. The cohort is collected from a single-care hospital in Boston and
focuses on intensive-care unit patients. This could potentially restrict the demographics and clinical
conditions of the patients to this specific geographical location and hospital setting. We also note that
MIMIC-IV has recording errors, missing values, and other inconsistencies that are universal to all
medical datasets and could pose a challenge for model development.

A.5.2 Embedding Dimensionality and Corresponding Clinical Variables:
The embeddings used as input data for M3H come from the multimodal database HAIM-MIMIC-
MM, where the dimensionality of the features is explained and summarized in the paper’s original
supplemental tables 1 and 2, which are included below for reference. The size of time-series
embedding is computed as the number of raw features multiplied by 11 unique features extracted:
maximum, minimum, mean, variance, average piece-wise change over time, average absolute piece-
wise change over time, maximum absolute piece-wise change over time, sum of absolute piece-wise
change over time, change from end-beginning magnitude, number of peaks, and slope of the original
time series sequence. There are three categories: chart event (9 × 11 = 99 features), lab event (22 ×
11 = 242 features), and procedure event (10 × 11 = 110 features). The size of note embedding comes
from the output shape of the pre-trained model ClinicalBERT, which is 768. Similarly, the size of
vision embeddings comes from the output shape of the pre-trained model Densenet121-res224-chex,
which is 1024 (the dimension of the second to last layer of the model), and 18 (the output/last layer
dimension).

A.5.3 Missing Data:
We also include here a table of the missing value distribution of the HAIM-MIMIC-MM dataset
reported in the original paper (originally Supplemental Table 3) and how it was handled in that
integration procedure.

# Chart events Laboratory events Procedure events
1 Heart rate Glucose Foley Catheter
2 Non-invasive systolic blood pressure Potassium PICC Line
3 Non-invasive blood diastolic pressure Sodium Intubation
4 Non-invasive nominal blood pressure Chloride Peritoneal dialysis
5 Respiratory rate Creatinine Bronchoscopy
6 O2 saturation by pulse oximetry Urea nitrogen EEG
7 Verbal GCS response Bicarbonate Dialysis CRRT
8 Eye opening GCS response Anion gap Dialysis catheter
9 Motor GCS response Hemoglobin Chest tube removed
10 Hematocrit Hemodialysis
11 Magnesium
12 Platelet count
13 Phosphate
14 White Blood Cells
15 Total calcium
16 MCH
17 Red Blood Cells
18 MCHC
19 MCV
20 RDW
21 Platelet count
22 Neutrophils
23 Vancomycin
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Supplemental Table A5-1. Patient signals in MIMIC-IV-MM by type of event used as time-series
for embedding extraction. Nine time-dependent signals were derived from procedures, twenty-three
were derived from laboratories, and eight were derived from information included in the patient chart.
CRRT=Continuous renal replacement therapy, EEG=Electroencephalogram, GCS=Glasgow Coma
Scale, MCH=Mean corpuscular hemoglobin, MCHC=Mean corpuscular hemoglobin concentration,
PICC=Peripherally inserted central catheter, RDW=Red blood cell distribution width.

# Data Modalities # Data Sources
1 Tabular 1 Demographics (Ede)
2 Time-series 2 Chart events (Ece)

3 Laboratory events (Ele)
4 Procedure events (Epe)

3 Text 5 Radiological notes (Eradn)
6 Electrocardiogram notes (Eecgn)
7 Echocardiogram notes (Eecon)

4 Images 8 Visual probabilities (Evp)
9 Visual dense-layer feature (Evd)
10 Aggregated visual probabilities (Evmp)
11 Aggregated visual dense-layer features (Evmd)

Supplemental Table A5-2. List of different data modalities and data sources used to test the HAIM
framework based on the MIMIC-IV-MM database. There are a total of four data modalities and
eleven data sources. All data sources correspond to only one data modality. Thus, a model trained
on a single data modality can have as little as 1 data source and many as 4 different data sources (of
the same kind) as inputs. Double, triple and quadruple modality models can have a number of data
sources ranging from [2 to 7], [3 to 9] and [4 to 11], respectively.

Feature Name Missing % Source Handling
anchor_age 0.0 Demographics N/A
gender_int 0.0 Demographics N/A
ethnicity_int 0.0 Demographics N/A
marital_status_int 0.0 Demographics N/A
language_int 0.0 Demographics N/A
insurance_int 0.0 Demographics N/A
Foley Catheter 82.6 Procedure Fill with 0
PICC Line 63.7 Procedure Fill with 0
Intubation 75.3 Procedure Fill with 0
Peritoneal Dialysis 99.7 Procedure Fill with 0
Bronchoscopy 81.5 Procedure Fill with 0
EEG 91.5 Procedure Fill with 0
Dialysis - CRRT 93.1 Procedure Fill with 0
Dialysis Catheter 88.9 Procedure Fill with 0
Chest Tube Removed 93.1 Procedure Fill with 0
Hemodialysis 92.9 Procedure Fill with 0
Glucose 4.4 Lab Fill with 0
Sodium 4.7 Lab Fill with 0
Potassium 4.7 Lab Fill with 0
Chloride 4.7 Lab Fill with 0
Creatinine 4.7 Lab Fill with 0
Urea Nitrogen 4.7 Lab Fill with 0
Bicarbonate 4.7 Lab Fill with 0
Anion Gap 4.7 Lab Fill with 0
Hemoglobin 4.7 Lab Fill with 0
Hematocrit 4.8 Lab Fill with 0
Magnesium 5.4 Lab Fill with 0
Platelet Count 9.8 Lab Fill with 0
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Feature Name Missing % Source Handling
Phosphate 6.0 Lab Fill with 0
White Blood Cells 4.9 Lab Fill with 0
Calcium, Total 6.0 Lab Fill with 0
MCH 4.9 Lab Fill with 0
Red Blood Cells 4.9 Lab Fill with 0
MCHC 4.9 Lab Fill with 0
MCV 4.9 Lab Fill with 0
RDW 4.9 Lab Fill with 0
Neutrophils 36.9 Lab Fill with 0
Vancomycin 60.0 Lab Fill with 0
Heart Rate 19.5 Chart Fill with 0
Non-Invasive Blood Pressure systolic 23.4 Chart Fill with 0
Non-Invasive Blood Pressure diastolic 23.4 Chart Fill with 0
Non-Invasive Blood Pressure mean 23.3 Chart Fill with 0
Respiratory Rate 19.5 Chart Fill with 0
O2 saturation pulse oximetry 19.6 Chart Fill with 0
GCS - Verbal Response 20.8 Chart Fill with 0
GCS - Eye Opening 20.7 Chart Fill with 0
GCS - Motor Response 20.8 Chart Fill with 0
Electrocardiogram Notes 11.2 Notes Empty String
Echocardiogram Notes 30.5 Notes Empty String
Radiology Notes 0.1 Notes Empty String

Supplemental Table A5-3. List of missing data percentages by individual variables and handling
strategy. Individual variables (i.e., feature name) within key MIMIC-IV-MM data source groups are
shown. The strategy for missing value handling used in our tests is as follows: 1) We exclude patients
with no available X-rays from our selection cohort; 2) Time-series features are imputed with 0 if
there is no measurement at any timestamp; 3) Text embeddings are generated from an empty string if
there is no note available; 4) There were no missing values for demographics data.
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A.6 Multitask Comparison

We implemented three methods using a universal problem setting of N tasks with feature dimension
of d, with input features X = {xj}Nj=1 where xj ∈ Rd. We do not include reshaping operations
or the batch size dimension in the description to capture only the mathematical essence of the
implementations.
Multi-head attention:

• Initialize linear transformation matrices:
– WQ,WK ,WV ∈ Rd×d as query, key, value transformations
– WO ∈ Rd×d as the output transformation
– H = 4 as the number of heads
– dH = d/H as the dimension per head

• Apply linear transformation and projection on input features:
– Q = XWQ,K = XWK , V = XWV

• Scaled dot-product to obtain attention weight (
√
dh is used to stabilize gradient):

– A = softmax
(

QK⊤
√
dh

)
• Apply attention weights to obtain output:

– O = (AV )WO

Cross-stitch:

• Initialize task interaction matrix:
– {Tij}1:Ni ̸=j where Tij ∈ R2×2

• Apply interaction matrix:
– zij = Tij · [xi, xj ] ∀(i, j)

• Aggregation:

– zi =
∑N

j=1 zij ∀ i = 1, . . . , N

• Output learned features:
– {zi}Ni=1 ∀ i = 1, . . . , N

For n tasks, this requires n(n−1)
2 weight matrices of size 2× 2.

Multilinear relationship network (MRN):

• Initialize linear transformation matrices:
– {Tij}Ni,j=1 where Tij ∈ Rd×d

• Apply linear transformation and projection on input features:
– zij = Tij · [xi, xj ] ∀(i, j)

• Aggregation:

– zi =
∑N

j=1 zij ∀ i = 1, . . . , N

• Output learned features:
– {zi}Ni=1 ∀ i = 1, . . . , N

For n tasks, this requires n2

2 weight matrices of size d× d.

Specifically, we conduct experiments in the original dataset on 10 different combinations of multi-
tasks that comprehensively evaluate multitask strategies across all four types of machine learning
problem classes. The choice of diabetes and heart failure is arbitrary.

• Length of stay (regression), patient phenotyping (clustering)
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• Length of stay (regression), thoracic testing (multiclass classification)
• Thoracic testing (multiclass classification), patient phenotyping (clustering)
• Diabetes (binary classification), length of stay (regression)
• Diabetes (binary classification), patient phenotyping (clustering)
• Diabetes (binary classification), thoracic testing (multiclass classification)
• Heart failure (binary classification), length of stay (regression)
• Heart failure (binary classification), patient phenotyping (clustering)
• Heart failure (binary classification), thoracic testing (multiclass classification)
• Diabetes (binary classification), Heart failure (binary classification)

We observe that cross-task attention has a clear advantage in the majority of the cases across all three
strategies, with cross-stitch being a close competitor in these 2-tasks experiments (but with qualitative
disadvantages discussed below).

Machine Learning Cross-task Multi-Head Multilinear Cross
Problem Class (M3H) Attention Relationship Network Stitch
Regression 0.567 0.562 (-0.88%) 0.431 (-23.99%) 0.565 (-0.35%)
Clustering 0.405 0.521 (+28.64%) 0.176 (-56.54%) 0.487 (+20.25%)
Multiclass 0.755 0.715 (-5.30%) 0.595 (-21.19%) 0.755 (+0%)
Binary (diabetes) 0.873 0.824 (-5.61%) 0.873 (+0%) 0.869 (-0.46%)
Binary (heart failure) 0.881 0.864 (-1.93%) 0.896 (+1.7%) 0.888 (+0.79%)

Supplemental Table A6. Comparison of machine learning problem classes across different models.
The values represent performance metrics and percentage differences from the baseline (Cross-task
M3H).

Beyond the quantitative advantage of the proposed cross-task framework, we would also like to
emphasize the qualitative advantage of the chosen framework over existing methods:

• Interpretability: Available multimodal multi-task foundation models heavily rely on com-
plex architectures, for example, with repeated use of multi-head attention mechanisms tens or
hundreds of times to achieve good performance guarantees. Even with known visualization
efforts to interpret these architectures, in practice, these attention weights are almost very
often not interpretable and non-sensible. This is why we opted for such a model structure
design. As reviewer 2 later correctly pointed out, the existing style of complex architecture
makes it very difficult to obtain clinician trust in hospital settings precisely because of such
lack of interpretability. Instead, in our case, we apply a single cross-task attention with one
single channel and a clean 2D attention weight to explicitly model how self-attention and
cross-attention interact. Such design allows for future analysis of interpretability a lot more
easily.

• Lightweight design for deployment: Existing architectures, such as Google’s Med-PaLM
2 (released March 2023), contain 540 billion parameters and can be estimated usually
to need months to train with commercial-grade GPUs (such as Nvidia Volta V100) with
heavy RAM memory requirements (at least 1000GB if not parallelized). Although lighter-
weight versions of these models exist, they remain in the billion-level parameters and pose a
significant implementation challenge for hospitals if they wish to host in-house models for
data privacy reasons. M3H, on the other hand, can be offered as a much lighter solution to
avoid these issues.

Similarly, all three of the compared multiclass methods require significantly more complex network
structures. Multi-head model (in our case with 4 heads) requires 4 additional channels to integrate
the data from separate heads; cross-stitch models would require significantly more weight matrices as
the number of co-learned tasks increases, MRN models will require even more parameters, as they
require a linear transformation of each combination of task pairs.
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A.7 Loss Function Definition

Binary cross entropy loss (Binary classification):
Given x ∈ Rd as an input feature of dimension d, y ∈ {0, 1}d as the binary outcomes, ŷ =
σ(wTx + b) is the predicted outcome from the M3H framework. Here σ(z) = 1

1+e−z is the
sigmoid function, w is the weight matrix, b is the bias vector, the loss function is defined as:
lbinary(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)).

Negative log-likelihood loss (Multiclass classification):
Given x ∈ Rd as an input feature of dimension d, y ∈ {1, 2, ...,K}d as the multiclass outcomes
from K classes, ŷ = σ(wTx + b) is the predicted outcome from the M3H framework. Here:
σ(z) = z − log

(∑K
k=1 e

zk
)

is the log-softmax function, w is the weight matrix, b is the bias vector,
the loss function is defined as: lmulticlass(y, ŷ) = − log(ŷ).

Mean absolute error (Regression):
Given x ∈ Rd as an input feature of dimension d, y ∈ Rd as the regression outcomes, ŷ = wTx+ b
is the predicted outcome from the M3H framework. Here w is the weight matrix, b is the bias vector,
the loss function is defined as: lregression(y, ŷ) =

1
N

∑N
i=1 |ŷi − yi|.

Mean squared error (Clustering):
Given x ∈ Rd as an encoder input of dimension d, x̂ ∈ Rd as the decoder output of the same
dimension, here w is the weight matrix, b is the bias vector, the loss function is defined as:
lclustering(x, x̂) =

1
d

∑d
i=1(x̂i − xi)

2.

Contrastive Learning:
This learning aims to project embeddings of different modalities into the same embedding space by
contrasting positive pairs (modalities from the same samples) and negative pairs (modalities from
dissimilar samples). In the M3H framework, because of the small dimension of the tabular features
(6) in comparison to the rest of the three modalities, we only apply contrastive learning among time
series, vision, and language data inputs. The formulation is as follows:

Given N̂ as the number of permutations between the N samples’ three modalities (or N choose
2), and given Ei and Ej as pairs of embedding vectors from different modalities, yi as the la-
bel for the pair of (i, j), where they are either from the same sample (1) or different samples
(0). We define a positive margin p = 0, and a negative margin n = 1. Specifically, for
positive pairs, the loss is only computed if |Ei − Ej | > p, which aims to decrease positive
pairs’ distance to 0, and for negative pairs, we only compute the loss when |Ei − Ej | < n,
which aims to push the distance to be close to 1. The contrastive loss is computed as follows:
L = 1

N

∑N
i=1

(
yi max (0, |Ei − Ej | − p)

2
+ (1− yi)max (0, n− |Ei − Ej |)2

)
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have provided detailed outline of how experiments are conducted and the
improvements of our model in comparison to the nominal single-task models both in the
introduction and abstract. We have also highlighted key findings and technical novelties
introduced in the later sections as well.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitation section at the end of the paper detailing the several
possibilities for limitations, ranging from data, to inclusion of other tasks. We have also
provided a practical implication section to reflect rigorously how the framework should be
adopted in new data and system settings, and what are the potential remedies to deal of
potential challenges.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: Our paper is focused on model architecture design and thus does not have
theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper clearly outlined the architectures, parameters, data cohort availability,
processing steps to ensure that all necessary data is needed for the reproduction of the
computational results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Unfortuantely due to privacy reasons we are unable to release the code. But
readers are encouraged to contact the authors to its access.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper outlined all the necessary details for where to obtain the data
cohort, how to preprocess the dataset, how to split the train, validation, and test sets, the
hyperparameters chosen in the paper in order to reproduce all the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars and confidence intervals are provided for the main computational
results in the supplemental figure. Details on how these results are computed are also
included in the methods.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] ,
Justification: The paper’s section on practical implementation details the computational
resources needed to run the model, as well as an estimated time to run on a local computer.
This is also accompanied by the operating system details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] ,
Justification: The content of this paper complies with NeuRIPS code of ethics, and was
conducted with the hopes to advance our understanding of medicine to better patient care.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the implication to practice section, we discuss thoroughly both the negative
and positive implications of the introduced model and its impact if applied to hospital
systems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: In the practical implementation section, we discuss how the model should
be validated and evaluated prior to its implementation. This includes safeguards against
for example data perturbations to ensure that the model does not negatively impact patient
outcome predictions.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: The data and models used for this paper are properly introduced, elaborated,
and cited by the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: The provided new model has been thoroughly outlined by the paper with
detailed instructions on its training parameters and architectures, data used, as well as
evaluations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes] .
Justification: This study is conducted using a licensed, but publicly available dataset of
human subjects. The details of this cohort has been thoroughly discussed in the patient
cohort section.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: IRB approval was not needed due to the use of a public national database.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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