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Abstract

Rationales, snippets of extracted text that explain an inference, have emerged as a
popular framework for interpretable natural language processing (NLP). Rationale
models typically consist of two cooperating modules: a selector and a classifier
with the goal of maximizing the mutual information (MMI) between the "selected"
text and the document label. Despite their promises, MMI-based methods often
pick up on spurious text patterns and result in models with nonsensical behaviors.
In this work, we investigate whether counterfactual data augmentation (CDA),
without human assistance, can improve the performance of the selector by lowering
the mutual information between spurious signals and the document label. Our
counterfactuals are produced in an unsupervised fashion using class-dependent
generative models. From an information theoretic lens, we derive properties of
the unaugmented dataset for which our CDA approach would succeed. The effec-
tiveness of CDA is empirically evaluated by comparing against several baselines
including an improved MMI-based rationale schema [19] on two multi-aspect
datasets. Our results show that CDA produces rationales that better capture the
signal of interest.

1 Introduction

Research in neural model interpretability has been cast as important and received significant recent
attention [21]. Within the field of natural language processing (NLP), rationales have been a popular
method for providing interpretability in the form of extracted subsets of text [10]. Rationale models
typically consist of two cooperating modules where one module, the "rationale selector", selects the
rationale from a source document, and the other module, the "classifier", acts on only the selected
rationale without seeing the rest of the document. There is interpretability through sparsity and
exclusivity.

A common approach for training these rationale models is based on the maximum mutual information
criteria (MMI) [7]. With the MMI criteria, rationale selectors seek the subset of text that carries the
most information about the target label. Often, sparsity and coherency constraints are used to keep the
rationales interpretable. Within many datasets, however, spurious patterns and co-varying aspects can
cause the rationale selector to pick up on patterns that do not capture a desired relationship between
input text and target labels. As a result, the rationalized model can have undesirable behaviour like
predicting a hotel is very clean because it is in a convenient location. Nonsensical rationales or
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explanations might decrease trust in the model, and in some cases, suggest the model might generalize
poorly [26].

In this work, we propose a general counterfactual data augmentation (CDA) [22] approach to aid
rationale models trained with MMI. We show that theoretically our CDA approach can effectively
improve the performance of rationale selectors by lowering the mutual information between spurious
signals and aspects of interest. Empirically, we show that models trained on our CDA datasets learn
higher quality rationales than those trained on the original dataset when both use the same MMI
criteria. More importantly, the most significant advantage of our CDA approach is that it does not
require human intervention. We use rationales from an initial, noisy model and replace them with
new text that changes the target label using a generative neural model. In this way, our CDA approach
is completely hands off and does not need input from human experts or crowd workers.

We first show that in the extremely ideal scenario where the initial rationale selector is perfect, our
CDA approach can eliminate the mutual information between spurious signals and the target label.
Next, we show in the common, realistic scenario where the rationale selector is noisy and imperfect,
our CDA approach can still yield gains. Finally, the effectiveness of our CDA approach is compared
against several baselines including an improved MMI-based rationale schema [19] on two common
multi-aspect review datasets, TripAdvisor [29] and RateBeer [24]. Multi-aspect datasets are our
main focus as they are guaranteed to contain spurious patterns and co-varying aspects; we primarily
used MMI-based baselines because the fundamental goal our CDA approach is to reduce the mutual
information between spurious signals and aspects of interest.

2 Counterfactual Data Augmentation and Multi-Aspect Datasets

2.1 Definitions and Notations

We use upper-case letters to denote random variables, X and Y , and lower-case letters to denote
samples from these variables, x and y. I(X,Y ) marks the mutual information between X and Y .
Mutual information is defined as the reduction in uncertainty of a random variable due to knowledge
in another random variable, I(X,Y ) = H(Y ) − H(Y |X), where H(X) and H(Y |X) are the
Shannon entropy and conditional entropy respectively [8].

2.2 Problem Formulation

This work follows the same rationale concept introduced in [19]. Specifically, one neural module
extracts text from a document and another neural module classifies the extracted text. Later it has been
shown that the rationalization criteria aims "to maximize the mutual information between selected
features and the response variable" [7] defined as:

max
G

I(XM ;Y ) subject to M ∼ G(X) (1)

where M denotes a binary rationale mask over the input produced by a rationale selector G. That is,
the goal of the rationale selector is to select the subset of features in X that are most informative of
the label Y under some constraints defined by the selector G. In this work, our selector constraints
affect the size and coherency of the rationales.

Here we consider a multi-aspect dataset, D with features X and labels Y: X is a set of features, or a
sequence of words in NLP, and Y is a vector, possibly one dimensional, of numerical scores. In a
multi-aspect dataset, a single document can discuss multiple attributes of a single object. For example,
a single beverage review might discuss its appearance, taste, and smell. We assume some subset
of the features, X1, belong to the target aspect label, Y1, while other features, X2, are spurious or
non-causal. These features could belong to other aspects or be artifacts of the dataset. In the following,
for simplicity, we will use <X , Y1> or <X1, X2, Y1> interchangeably based on the context.

Our goal is to estimate or model the score for aspect Y1 by using the function f given only X1, as
follows: Y1 = f(X1). There is one such model corresponding to each < X1, Y1 > pair. In this work,
we use multi-aspect datasets, and model each aspect individually. This simulates the more common
case where a dataset has a single output label of interest and all signals in the dataset that do not
pertain to that label are considered spurious or belonging to other, not-estimated aspects.
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When predicting Y1, our ideal model would focus onX1 and ignore all other features,X2. Specifically,
for a given sample <x, y>, our selector would select a subset of x such that x1 = xM . A rationale
selector might fail to extract x1 effectively for two primary reasons: first, Chen et al. [7] showed it is
intractable to find a solution to Eqn 1 and thus they derive a variational approximation with Monte
Carlo based gradient estimates. Second, datasets can contain artifacts such that spurious patterns
might contain significant mutual information with the target label. Along the same lines but even
more concerning, other aspects in a dataset might be highly correlated with the target label. For
example, beers that smell good usually taste good as well.

Since the goal of the selector is to select features that maximize I(XM , Y1), we can assist the selector
in finding X1 by lowering the mutual information between the other spurious features and the desired
label, I(X2, Y1). Drawing on ideas from [22], we do this through a general counterfactual data
augmentation (CDA) scheme where, in the counterfactual dataset, superscript c, we flip the label
of the document from Y1 to Y c1 and replace the text selected by the rationale selector, X1, with an
inference, Xc

1 , generated by a class conditioned masked language model (MLM) using Y c1 and X2

described as:
Y c1 ← 1− Y1; Xc

1 ← arg max
X1

p(X1|1− Y1, X2) (2)

In our generated counterfactual dataset < Xc
1 , X2, Y

c
1 >, Xc

1 is the newly generated counterfactual,
X2 is the original spurious feature set, and we assign Y c = 1− Y1. We will show, in the augmented
dataset which is the concatenation of datasets < X1, X2, Y1 > and < Xc

1 , X2, 1 − Y1 >, we are
lowering the mutual information I(X2, Y1). We will use superscript a for the augmented dataset: Da

= <Xa
1 ,Xa

2 , Y a1 >.

2.3 Lowering I(X2, Y1), an idyllic case

Figure 1: Toy example to demonstrate our approach. In the
augmented dataset Da, the mutual information, I , between
the smell score and the smell text is preserved while the
mutual information between the smell score and the taste text
is eliminated.

Take a dataset of beer reviews where
each document contains a description
of the taste and smell of a beer as
well as a numerical score for only the
smell aspect. The task is to estimate
the smell score while using the smell
text as the rationale. Figure 1 demon-
strates our process. An example of
a concise document in this dataset
might be This beer smells great. It
tastes terrific. In this document x1
is the phrase smells great and x2 is
tastes terrific. Both have positive sen-
timent but our only label for this docu-
ment is y1 = 1 for the smell sentiment.
Our counterfactual document could be
This beer smells awful. It tastes ter-
rific and our label becomes y1 = 0. We can see that in the augmented dataset the phrase tastes terrific
maps to both positive and negative labels and therefore p(Y1|X2) = p(Y1). Finally, I(X2, Y1) is 0
and I(X1, Y1) is unchanged.

With perfect knowledge of the ground truth rationales and the process Xc
1 ← p(X1|1− Y1, X2), we

can craft counterfactual documents and therefore a counterfactual dataset that perfectly eliminates
I(X2, Y1) while preserving I(X1, Y1). However, the challenge is that ground truth rationales are
not provided in the training data. Therefore, it is important for us to show that even when rationales
selected by the initial rationale selector are noisy and imperfect, we can still lower I(X2, Y1) in the
augmented dataset and benefit subsequent models trained with MMI.

2.4 Dealing with a Noisy Initial Selector

Here we are working on the augmented dataset: Da = <Xa
1 , Xa

2 , Y a>. To completely eliminate
I(Xa

2 , Y
a
1 ), our CDA approach requires a perfect rationale selector. We were originally motivated by

improving a poor rationale selector, so here we track what happens to both I(Xa
2 , Y

a
1 ) and I(Xa

1 , Y
a
1 )

when the rationale selector is not perfect. Our new goal is to reduce I(Xa
2 , Y

a
1 ) more than we reduce
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I(Xa
1 , Y

a
1 ). We analyze the procedure in the worst case scenario in order to determine a lower bound

on our algorithm’s benefits under some assumptions.

Figure 2: CDA benefits (y-axis) as func-
tion of error rate α. Each line represents
p(Y1|X2) = p(Y1|X1)± c.

In an extremely erroneous case, we say that for a given
<x1, x2, y1>, our initial rationale selector mistakenly
selects x2 when aiming for x1. When creating the
corresponding counterfactual document, we still have
yc1 = 1 − y1, but we modify the document according to
xc2 ← arg maxX2

p(x2|1− y1, x1) instead of the process
defined by Eqn 2. Going back to our concise example, this
would be the counterfactual document This beer tastes
good. It also smells bad. In this extremely erroneous
case, we have decreased I(X1, Y1) while I(X2, Y1) re-
mains unchanged. Thus, we define the worst case scenario
as reducing I(X1, Y1) at some error rate α and keeping
I(X2, Y1) constant at the same rate.

If we say that this error happens to all samples with a rate
α, we can analyze conditions that must be present in the
original dataset so that our CDA approach is beneficial.
Let’s first define ∆Ia as the change in mutual information
from the original to the augmented dataset.

∆IaXi,Yj
= I(Xi, Yj)− I(Xa

i , Y
a
j ) (3)

In order for our CDA approach to be beneficial, we need to decrease I(X2, Y1) more than I(X1, Y1).
That is:

∆IaX2,Y1
−∆IaX1,Y1

> 0 (4)

For samples in the original dataset where the initial selector results in an error, X1 would map to
1− Y1 for the corresponding counterfactuals. Furthermore, the augmented dataset would map X1

to both Y1 and 1− Y1 for these original erroneous samples and corresponding counterfactuals, and
thus, X1 is no longer informative of Y1 on such samples. That is, in the augmented dataset and
with proportion α, p(Y a1 |Xa

1 ) = p(Y a1 ). For the remaining 1 − α portion of non-error samples,
CDA can successfully capture p(Y1|X1) in the original dataset and p(Y c1 |Xc

1) in the counterfactual
dataset. To quantify the conditional distributions of the augmented dataset, we make two assumptions:
first, we assume that we can successfully generate the counterfactuals, and thus, we can assume
p(Y c1 |Xc

1) = p(Y1|X1); second, we assume that the erroneous samples happen randomly across the
original dataset, and the marginal distributions of the original and augmented datasets are the same.
Based on these two assumptions, we have:

p(Y a1 |Xa
1 ) = αp(Y1) + (1− α)p(Y1|X1) (5)

For X2, the success and failure cases are reversed.
p(Y a1 |Xa

2 ) = (1− α)p(Y1) + αp(Y1|X2) (6)
We can now expand Eqn 4 using the definition I(X,Y ) = H(Y )−H(Y |X).

0 < −H(Y1|X2) +H(Y a1 |Xa
2 ) +H(Y1|X1)−H(Y a1 |Xa

1 ) (7)
Using the definition, H(Y |X) = −E log p(Y |X), we can expand this further to

0 < −E log p(Y1|X1) + E log p(Y a1 |Xa
1 ) + E log p(Y1|X2)− E log p(Y a1 |Xa

2 ) (8)

Eqn 8 describes the conditions that must be met in our original dataset in order to yield gains from
our CDA procedure for some error rate α. It is impossible to calculate this relation directly because
it will require exact knowledge of our ground-truth rationales. In order to shed some light on this,
Figure 2 shows the efficacy of the CDA approach when we approximate X1 and X2 with binary
variables, p(Y1|X1) = 3

4 , p(X1) = p(X2) = p(Y1) = 1
2 . When X1 and X2 are equally informative

of Y1, the benefits of CDA decrease linearly with the error rate, and intuitively, our error rate must be
less than 50% to see gains. When X2 is more informative than X1, we have a higher error budget to
see any benefit, and when X1 is more informative than X2, our error budget is smaller. According to
this analysis, we have a higher error budget when spurious signals offer the same or more information
about the target label. When the spurious signals carry much less information, the initial selector
must have a low error rate in order to benefit from the CDA approach.
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Figure 3: CDA benefits when
approximating X1 and X2 as
the occurrence of bi-grams

With the datasets used in this work, we can gain insight by approx-
imating X1 and X2 with guessable bigrams. Here is another concise
example: X1 is a binary variable that indicates the occurrence of the
phrase no lacing and X2 is a binary variable for the phrase light bod-
ied. For a beer’s appearance aspect, no lacing is a strong indicator
for a negative score, and for its palate aspect, light bodied is a strong
negative indicator. As beer’s appearance is highly correlated with its
palatability, both phrases indicate a low appearance score. Taking
Y1 as the appearance score, X1 as the occurrence of no lacing, and
light bodied as X2, we can numerically use Eqn 8 to examine how
CDA helps us for varying error rates in Figure 3. CDA is beneficial
whenever the curve is above zero. In the fully correlated dataset,
"Correlated", described in section 4.1, the information carried by
light bodied is closer to that of no lacing than it is in the decorre-
lated dataset. As a consequence, in the correlated dataset, we have
a higher error budget and more opportunities for our CDA.

3 Architecture and Implementation

3.1 Rationale Framework

The original rationale framework, as viewed in this work, was introduced by [19]. It was not our goal
to change the core rationalization algorithm, so we re-implemented the algorithm and updated some
details. At a high level, our rationale framework is the same in that we use one network to select the
rationale and another network to classify the text. The rationale framework can be visualized by the
blue portion of Figure 4.

The original implementation [19] used RNNs for both networks, REINFORCE [30] for dealing with
the discontinuity introduced by the binary rationale mask, and variable percentage rationales. In this
work, we use transformers for both networks because of their effectiveness over RNNs in NLP [28],
the simpler straight-through method [3] [5] instead of REINFORCE, and we use fixed percentage
rationales because it eliminates sparsity related hyperparameters. Our fixed percentage rationales
differ from Chen et al. [7] in that we use the top-K tokens during training and inference whereas
Chen et al. [7] use an iterative re-sampling approach with Gumbel-softmax reparameterization [15].

The classifier is trained only to make quality predictions against the labels while using the rationale.
This is the cross-entropy between the labels and the classifier’s prediction, Ly. We follow [19] by
using a coherency regularizer for the rationale selector: Lr = λr

T

∑
1...T |mt −mt−1| where T is

the total number of tokens in a document, m is the rationale mask, and λr is the hyper-parameter
used to tune coherency. This encourages the rationales to be contiguous. For the datasets evaluated
in this work, coherency is a useful inductive bias. The loss for the rationale selector Ls is the
coherency regularizer and the cross-entropy between the labels and the classifier’s prediction. This is
Ls = Lr + Ly .

3.2 Counterfactual Predictor

Figure 4: CF Predictor training flow.

The CDA process described earlier, Eqn 2, requires us to
generate new documents with the text and label flipped
for just one aspect. That is, we are sampling a new doc-
ument from p(X1|X2, 1− Y1). The key challenge is that
we are not provided with ground truth rationales or coun-
terfactuals with which to learn how this data generation
process works. This can be viewed under the lens of unsu-
pervised style transfer for which there is significant prior
work in the NLP domain [20] [23]. Our method for gener-
ating counterfactual documents leverages many ideas from
these works, and our main contribution here is connecting
these ideas to the rationale framework. We incorporate the

rationale framework in the counterfactual generation process because our goal is to lower the mutual
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information between the spurious signals and the target label. An off-the-shelf style transfer method
might focus on signals other than that selected by our initial rationale selector.

Figure 4 shows the CF Predictor’s training flow. At its core, the CF Predictor leverages class-
dependent Masked-language models (MLM) [9]. We replace the original document’s rationale with
an inference from a MLM and leave the rest of the document unchanged. The MLMs are trained to
produce documents with the desired class through reinforcement learning (RL) [12], and they are
trained to produce realistic documents through adversarial learning [11]. We use straight-through [3]
to propagate gradients through token selection during training. For a dataset with binary labels, we
train two separate MLMs: one for generating class-0 documents and another for generating class-1
documents [31]. The loss for the counterfactual predictor, LCFP is defined as:

LCFP = λRLLRL − λALA (9)

where LRL is the classifier loss after passing the counterfactual through the rationale selector and the
classifier. It is the cross-entropy between the desired label, all ones or zeros, and the predicted label.
LA is the loss component from adversarial training. Following [11] and [32], our discriminator, D,
seeks to distinguish generated documents from the originals, so the discriminator’s loss, LD, is 1

λA
LA

where LA is the cross-entropy between real-fake labels and the prediction given by the discriminator.
λA and λRL balance the adversarial and classification losses. We include 1

λA
when training the

discriminator to hamstring it relative to the predictor. We found that this generally helped us avoid
mode collapse commonly seen when adversarially training generative models. For LA, we mask the
contribution of original documents without the desired label. When training the class-1 counterfactual
predictor, we show the discriminator real documents X with Y1 = 1 and counterfactual documents,
Xc, where the original documents’ labels were Y1 = 0.

During training, the counterfactual is produced in one step. All words not included in the selected
rationale from the original document, XM , are kept in the counterfactual document. The kept tokens
are X\XM . All words in the selected rationale are replaced by the CF Predictor using one prediction
from the MLMs in a greedy fashion. After training, when producing the counterfactual dataset, the
counterfactual documents still keep all non-rationale tokens. We now replace the rationale tokens
from left to right using the output of the CF Predictor MLMs. A counterfactual token at position t is
decoded according to the following process.

xc1,t = arg max
x1,t

p(x1,t|x2, 1− y1, xc1,0...t) (10)

We found this to be a good trade-off between greedy decoding and a more expensive beam search.
Greedy decoding could generate frequent, repeated tokens while beam search could be an unnecessary
expense for generating documents that reflect the target distribution, but do not necessarily need to
pass the bar of human readers.

Figure 5 illustrates an original document and its counterfactual generated by our CF predictor. Notice
here the initial selector was successful in identifying the smell aspect. The inclusion of the original and
its counterfactual document in the augmented dataset successfully decreases the mutual information
between the non-smell text and the smell label.

4 Experiments

4.1 Datasets

We conduct experiments using datasets from two sources. This first source contains reviews compiled
by Wang et al. [29] from TripAdvisor.com. We use the training, dev, and test sets curated by Bao et al.
[2] and used for rationalization by Chang et al. [5]. The label is binary, and we focus on the location
aspect. There are 198 test samples with human-annotated rationales.

The second source consists of reviews collected by McAuley et al. [24] from RateBeer. Each review
is a paragraph of text with five numerical scores in the range of 1 to 5 for the appearance, smell,
palate, taste, and overall aspects of the beer. We focus on the appearance, smell, and palate aspects.
We created training and dev datasets for each aspect that follow the source distribution. Following
[5], we binarize this data so that all reviews with a score ≥ 3 are class 1 and all reviews with a score
≤ 2 are class 0. We then balance the dataset between classes. Additionally, we use procedurally
decorrelated datasets created by Lei et al. [19], and binarize these datasets as well. We now have two
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Label Document

negative presentation : 12 oz clear bottle , label is metallic with an emblem of a buck . inkjetted on
the neck i ’m not sure if this is out of date , or was produced then . appearance : pours clear ,
somewhere between an amber and a brown color . average head , but it fades pretty quickly to
leave just a hint of lace . smell : a bit of grain , fairly mild . this is sort of a generic
beer aroma , without much to pick out specifically . taste : a little bit of sweetness and malt this
tastes a bit like a light marzen . overall impression : it is n’t bad it is sort of a generic beer with
a bit more flavor than your average macro sort of like a yuengling . nothing to write home about
, but it ’s drinkable enough .

positive presentation : 12 oz clear bottle , label is metallic with an emblem of a buck . inkjetted on
the neck i ’m not sure if this is out of date , or was produced then . appearance : pours clear ,
somewhere between an amber and a brown color . average head , but it fades pretty quickly to
leave just a hint of lace . smell : caramel malt and toffee dominate the nose with a
bit of raisin and generic beer aroma , without much to pick out specifically . taste : a little
bit of sweetness and malt this tastes a bit like a light marzen . overall impression : it is n’t bad it
is sort of a generic beer with a bit more flavor than your average macro sort of like a yuengling .
nothing to write home about , but it ’s drinkable enough .

Figure 5: A subset of the augmented dataset for beer smell. The rationale is bold in the original
document (top). The replaced words are bold in the counterfactual document (bottom). x1 and y1
have changed from original to counterfactual. Ground truth rationales and counterfactuals are not
provided in any training data.

datasets for each RateBeer aspect: a "correlated" set and a "decorrelated" set. Appendix Section A.2
shows correlation matrices before and after decorrelating the data as well as additional dataset details.
In the correlated datasets, the correlations and presumably the mutual information between aspects
are much higher than in the decorrelated datasets. This makes the rationalization task more difficult.
Additionally, McAuley et al. [24] provides about 1,000 holdout samples where the aspect specific
text is annotated by human experts.

4.2 Baselines

Three MMI-based baselines are used. First, "MMI" is the original Rationalization scheme [19] that
has been updated and re-implemented to use the most recent NLP models as described in section 3.1.
This model is trained on the original, unaugmented dataset.

Second, Factual Data Augmentation (FDA) is used to verify that our gains are not only due to data
augmentation but due to the CDA procedure. FDA augments the original dataset with new samples
generated by the CF predictor models, but instead of flipping the label and passing it to the 1− y1
component, we pass the sample to the component of the CF predictor with the same label as the
original document during inference. The new samples are produced using the following process:

yc1 ← y1; xc1 ← arg max
x1

p(X1|y1, x2) (11)

The third baseline, simple substitution using antonyms (ANT), does not use neural models to augment
counterfactual data. The counterfactual is generated by replacing words in the rationale with antonyms
from WordNet [25] [4]. Note that we only accept antonyms that are in the vocabulary used by the
models and antonyms that have the same part of speech as labeled by NLTK [4].

4.3 Experiment Settings and Assumptions

We train the rationale selector and the classifier together, early stop based on the selector cost, freeze
the selector, and finally fine-tune the classifier on the original dataset. For all of the data sets and
models, we use the dev set for early stopping (more details in Appendix Section A.3). Our MLM
transformers [28] were pretrained on unlabeled data from the TripAdvisor and RateBeer datasets
separately. For the TripAdvisor dataset, we pretrain on all data that does not appear in the location
aspect’s train, dev, or annotated dataset from [5]. For the RateBeer datasets, we pretrain on all data
that does not appear in any train, dev, or annotated dataset from [19] and the correlated datasets. We
used a masking rate of 10% and masked tokens were treated as described in [9]. For the rationale
models, the transformers are initialized from models pre-trained with random masking. We found
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Hotel - Location
we only stayed one night . the location was great and the premises was beautiful . the room was a
typical hotel room but was decent , clean and spacious enough for our needs . we were given a first
floor room next to the pool . it was relatively quiet . the staff were informative and friendly . the daily
parking was a total rip - off at $ 20/day but i would think that the rates are similar anywhere else you stay
on the island . all in all , it was a good enough stay .
Correlated - Smell
pours two thick fingers of tan froth on a dark brown body . good nose

, with caramel and brown sugar sweetness arising to greet it . the taste blends the sweetness
with a dash of hopped bitterness well . well carbonated , this is a sturdy , very drinkable beer that has
joined me for much leisure time . i wo n’t apologize for that ; nor will you after a couple brown ales .

Figure 6: Examples from the annotated sets. Hotel-Location (top) and Correlated-Smell (bottom).
Human annotations are underlined. CDA rationales are in blue. MMI rationales are in red. Overlaps
between CDA and MMI are in magenta.

that contiguous masking was better for pre-training the CF predictor. This contiguous masking
is similar to that from Joshi et al. [16], but masked tokens are treated the same as in Devlin et al.
[9] and there is only one contiguous span. The rationale selector and classifier are initialized from
the random-masking transformers. For the rationale selectors, following [5], we set the rationale
percentage to 10% for all datasets. The CF predictor components and the GAN discriminator are
initialized from the contiguous-masking transformers. These models all have a vocabulary with 215

tokens, 8 layers, 8 attention heads, and a hidden dimension of 256. Appendix Section A.4 shows our
server configurations and more details on our experiment setup.

Models are selected and reported based on the best performance on the dev set across a grid search.
All methods are evaluated using the same grid search when training the rationale model. The model
is selected before fine-tuning the classifier with a frozen rationale selector. The initial selector used
to train the counterfactual predictors was the selected MMI model with a fine-tuned classifier. The
parameters and checkpoints for the CF Predictor models are tuned and chosen to maximize the
accuracy of the training documents’ predicted label as compared to the target label (measured by the
original rationale model) and to maximize the entropy in the inserted counterfactual tokens. The CF
Predictor model is chosen from a grid search, using only the training dataset, across λA and λRL.

For the TripAdvisor dataset, we repeat the experiment three times: training an initial rationale selector,
training a counterfactual predictor, generating a counterfactual dataset, and training a new rationale
model. Additionally, we train two additional rationale models with different random seeds and the
selected hyperparameters. Consequently, there are nine rationale models for each of the four methods,
and we report the mean and standard deviation across those nine models. In the RateBeer datasets,
we repeated the same experiments two times and then trained two additional models with different
random seeds and the selected hyperparameters for each rationale model. As a result, we have a total
of six runs for each method for the RateBeer datasets. All models are in Tensorflow [1]. Our software
is publicly released 1.

4.4 Results

We evaluate the rationale models by the precision (Rat. Prec.) as compared to human annotations.
This token-level metric is taken as the mean across samples in the annotated set. We also report the
accuracy of the classifier on the development set (Dev. Acc.).

As shown in Tables 1, 2, and 3, our CDA approach outperforms all baselines on 6
7 experiments. As

expected, CDA’s performance over other methods is most pronounced on the correlated RateBeer
datasets compared to on the decorrelated ones. Only on the decorrelated appearance dataset, CDA
performs second to MMI. This may be because on the decorrelated appearance dataset the spurious
aspects have very low mutual information with the target label, appearance, and therefore the error
margin for the initial selector is very tight and CDA is expected to yield low gains as discussed in
Section 2.4.

1github.com/mlplyler/CFs_for_Rationales
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The baseline augmentation schemes (FDA, ANT) produced mixed results. The FDA scheme should
not have changed the mutual information between the spurious aspects and the target label. Whenever
it performed worse than MMI alone, it most likely introduced noise into the dataset. While the ANT
scheme might be effective in lowering the mutual information between the spurious aspects and the
target label, the generated counterfactual does not likely model p(x1|1− y1, x2), so we expect it to
also reduce I(X1, Y1).

Table 1: TripAdvisor - Location
Dev. Acc. Rat. Prec.

MMI 78.16 ± 5.83 26.14 ± 13.25
FDA 80.61 ± 4.38 31.36 ± 10.38
ANT 69.79 ± 2.90 12.25 ± 3.64
CDA 78.11 ± 6.77 39.76 ± 10.48

Empirically, we have demonstrated that models trained
on the CDA augmented data tend to outperform models
trained on the original datasets. This lends credence to
the idea that our scheme is indeed lowering the mutual
information between the spurious aspects and the target la-
bel. The dataset and method pairs with very high variance
are dragged down by degenerated runs where the rationale
selector has little or no skill. These runs were seen when
varying the random seed with the selected hyperparame-
ters. Removing the degenerate runs can bring the mean
rationale precision of the high variance experiments closer to CDA, but we believe these degenerate
models seen primarily in the baselines align well with our theory that CDA allows the rationale
selector to more easily identify X1.

Case Study: Figure 6 presents a case study comparing the rationales selected by MMI and our
proposed CDA approach in the TripAdvisor and Correlated Beer datasets respectively. As shown
in Figure 6, our CDA models can select the text that aligns better with human annotations and they
successfully avoid selecting sentiment-carrying text that is not relevant to the aspect of interest.

Table 2: Correlated RateBeer Results

Appearance Smell Palate

Dev. Acc. Rat. Prec. Dev. Acc. Rat. Prec. Dev. Acc. Rat. Prec.

MMI 76.37 ± 3.05 56.28 ± 17.22 79.49 ± 4.53 45.39 ± 16.45 82.67 ± 0.99 34.98 ± 8.79
FDA 75.73 ± 3.64 41.02 ± 5.09 76.43 ± 5.08 41.67 ± 23.73 77.60 ± 6.06 32.35 ± 14.41
ANT 62.09 ± 8.76 43.25 ± 16.51 57.70 ± 9.87 11.72 ± 7.16 61.93 ± 7.59 8.62 ± 12.31
CDA 73.30 ± 2.93 67.79 ± 10.63 81.82 ± 0.69 61.84 ± 6.76 80.65 ± 0.64 41.24 ± 1.72

Table 3: Decorrelated RateBeer Results

Appearance Smell Palate

Dev. Acc. Rat. Prec. Dev. Acc. Rat. Prec. Dev. Acc. Rat. Prec.

MMI 81.33 ± 0.93 86.92 ± 7.35 77.99 ± 5.46 79.71 ± 10.56 68.64 ± 10.09 46.39 ± 29.21
FDA 80.67 ± 1.32 81.97 ± 6.00 79.66 ± 1.23 83.62 ± 3.52 77.26 ± 1.90 66.03 ± 3.76
ANT 71.41 ± 9.97 67.67 ± 27.68 58.81 ± 6.31 9.32 ± 10.76 57.75 ± 7.98 10.83 ± 11.15
CDA 80.24 ± 1.07 82.82 ± 8.60 79.18 ± 1.43 86.66 ± 2.92 76.81 ± 0.85 67.79 ± 3.20

5 Related Work

The rationale framework used in this work was introduced in [19] and connected to the MMI criteria
by Chen et al. [7]. Much of the follow-up work introduced modifications to the learning algorithm
to overcome spurious signals picked up by MMI. Yu et al. [33] sought to limit the signal left in the
complement of the rationales. The concept of class-wise rationalization was introduced in Chang
et al. [5], and Chang et al. [6] introduced a rationale algorithm that seeks invariant rationales across
environments. These works modify the rationale framework and the MMI criteria to help the rationale
selector find desirable signals. In our work, we keep the MMI criteria unchanged, but instead seek to
diminish the undesirable signals through counterfactual data augmentation.

Data augmentation generally and counterfactual data augmentation (CDA) specifically has been
a popular technique in recent natural language processing (NLP) work. Lu et al. [22] introduced
counterfactual data augmentation as a general methodology and showed their rule-based scheme
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could mitigate gender biases commonly seen in word embeddings and NLP models. Other works
used CDA to train better named entity recognition (NER) models in the medical text domain [34].
More work [17] continued the ideas of CDA by working with sentiment analysis and natural language
inference tasks. They constructed their CDA datasets using crowd workers and showed models
trained on the augmented datasets generalized better out-of-domain. Follow-up work [18] showed
how their crowd worker interventions reduce spurious signals when viewed through a simplified
causal modeling lens. The causal lens and generative counterfactual data augmentation have also
shown recent, positive results in the computer vision domain [27].

6 Conclusions

This work presents a counterfactual data augmentation method for lowering the mutual information
between spurious signals and a target label in a dataset. We derive theoretical conditions that indicate
when our approach will be beneficial to the dataset. Empirically, we show rationale models trained
with MMI on our counterfactually augmented datasets result in rationale selectors with improved
behaviours. Furthermore, our analysis shows that the benefits of our scheme are proportional to
the error rate of the original rationale selector. This suggests we could perform counterfactual data
augmentation iteratively where we achieve better rationale selectors after each iteration that could be
used as the initial selector in the next round of data augmentation.

Our method does not make any changes to the core rationale algorithm. There has been more work
in the literature on rationale algorithms since Lei et al. [19] and Chen et al. [7], but they were not
included in this study because they do not necessarily follow the maximum mutual information
criteria on which our theory is based. From a practical standpoint, it is likely our CDA method
could connect with other rationalization strategies because the CF Predictor is trained using a frozen
rationale model. This could be an important area for future study.

7 Broader Impact

This work focuses on methods for training interpretable NLP models. While interpretability is
typically a desired trait, defining exactly what is interpretable is not always clear [21]. Rationale
models have been shown to not always be faithful [14] [13], and in the worst case, they can degenerate
in such a way where the rationale selector makes the decision instead of the classifier [33]. The
degenerated case is likely to produce rationales that are nonsensical to human interpretation.

Section 2.4 presents some theoretical proof on how CDA affects the mutual information between
text and the target label with different initial selector error rates. Some conclusions drawn in Section
2.4 rely on a simplified model with binary variables. Furthermore, the simplified model makes the
assumption that the generated text follows the same distribution as the original dataset. While this is
the goal of the adversarial learning strategy that we implemented, we found that the generated text
had lower entropy than the rationales they replaced. This is likely due to both the arg max in Eqn 2
and LRL.

We have demonstrated positive results for improving rationales for sentiment analysis sentiment
classifiers. Generalizing the approach to other NLP tasks is less straightforward. First, the naive
approach to generalizing to K classes in the classification setting suggests having K CF Predictor
models and generating K − 1 counterfactual documents per data sample. This would be a significant
increase in computation and resources. Second, for the task of natural language inference, CDA has
been successful with human annotators [17]. It might be possible to train a CF Predictor for each
type of hypothesis. It is less clear how to train a CF Predictor to modify a premise.

Our method uses data augmentation to lower the mutual information between some signals in
documents and a label of interest. When the initial rationale selector aligns with human judgment,
models trained on the augmented data tend to better align with human judgement. The method can be
thought of as amplifying signals relative to others. We are changing the properties of the dataset. For
sensitive tasks, one should check for undesired biases and fairness concerns before and after CDA.
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