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ABSTRACT

While Transformers underpin modern large language models (LMs), a growing
list of alternative architectures with new capabilities, promises, and tradeoffs is
emerging. This makes choosing the right LM architecture challenging. Recently
proposed hybrid architectures seek a best-of-all-worlds approach that reaps the
benefits of all architectures. Hybrid design is difficult for two reasons: it requires
manual expert-driven search, and new hybrids must be trained from scratch. We
propose Manticore,1 a framework that addresses these challenges by automat-
ing the design of hybrid architectures while reusing pretrained models to create
pretrained hybrids. Our approach augments ideas from differentiable Neural Ar-
chitecture Search (NAS) by incorporating simple projectors that translate features
between pretrained blocks from different architectures. We then fine-tune hybrids
that combine pretrained models from different architecture families—such as the
GPT series and Mamba—end-to-end. With Manticore, we enable LM selection
without training multiple models, the construction of pretrained hybrids from ex-
isting pretrained models, and the ability to program pretrained hybrids to have
certain capabilities. Manticore hybrids match existing manually-designed hybrids,
achieve strong performance on the Long Range Arena benchmark, and improve on
pretrained transformers and state space models on various natural language tasks.

1 INTRODUCTION

Transformers are the workhorse architecture for large language models and beyond, powering a vast
collection of foundation models. While for years it appeared that the Transformers family would
remain the undisputed standard, a recent Cambrian explosion of proposed architectures has taken
place. Many of the new architectures achieve subquadratic complexity—in contrast to the quadratic
complexity of self-attention in Transformers—by using local or linear attention (De et al., 2024; Botev
et al., 2024; Arora et al., 2024; Zhang et al., 2024), resurrecting and scaling recurrent networks (Botev
et al., 2024; De et al., 2024; Peng et al., 2023), or by building on state-space modeling principles (Gu
and Dao, 2023; Poli et al., 2023b;a; Fu et al., 2023; Gu et al., 2022). These approaches potentially
promise to overturn the dominance of Transformers through more efficient training and inference.

However, no single new model is a clear overall winner when varying data modalities, tasks, and model
sizes. Comparing architectures on a fixed task is fraught with difficulties (Amos et al., 2024). Even if
these are overcome, practitioners would have to experiment with and evaluate every architecture for
each new task—an expensive proposition. Instead, seeking a best-of-all-worlds approach, researchers
have proposed the use of hybrid models that mix multiple architectures. These hybrids, such as the
MambaFormer (Park et al., 2024)—a mix of the popular SSM Mamba architecture with a standard
Transformer—have shown potential in maintaining the desirable properties of multiple model classes.

While promising, hybrids suffer from two main obstacles that stymie their adoption:

• Manual Design. Hybrid architectures are hand-crafted, either by manually exploring the
large search space of hybrids or by relying on often unreliable intuition and heuristics.

• Failure to Use Pretrained Models. It is unclear how to integrate pretrained model compo-
nents from models with different architectures. Pretrained models are a key advantage of
foundation models. However, due to compatibility issues, hybrids are often trained from
scratch, leading practitioners to resort to small hybrids in limited settings or incur high costs.

1The Manticore is a fearsome human/lion/scorpion hybrid from Persian mythology.
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A potential solution to the latter challenge is the use of model merging techniques (Yadav et al.,
2023; Yu et al., 2023; Wortsman et al., 2022; Ilharco et al., 2023; Davari and Belilovsky, 2023; Jang
et al., 2024), some of which can operate cross-architecture (Akiba et al., 2024; Goddard et al., 2024).
Unfortunately, such tools are embryonic–they are expensive and it is unclear how well they work
with the diverse types of architectures a user may seek to build a hybrid from.

We propose a framework for automatically designing hybrid architectures that overcomes these
obstacles. Our approach is inspired by principles from neural architecture search (NAS), but applies
these at the level of LM blocks rather than convolutional cells (Liu et al., 2019; Li et al., 2021) or
operations (Shen et al., 2022; Roberts et al., 2021). The resulting framework is simple and tractable.
It sidesteps merging different architectures by using simple linear projectors to translate between
the “languages” spoken by various architectures. This enables us to include blocks from many
different architectures with little to no changes required. In addition, inspired by the mechanistic
architecture design (MAD) framework (Poli et al., 2024), we show how our framework can learn
hybrid architectures via MAD that transfer to new tasks.

Concretely, with our proposed system, Manticore, we:

1. Automatically select language models, without training several models from scratch,
2. Automatically construct pretrained hybrids without evaluating the entire search space,
3. Explore when it is possible to program hybrids without full training.

Experimentally, our automatically designed hybrids compete with existing hybrids and models on the
MAD tasks (Poli et al., 2024) and Long Range Arena (LRA) (Tay et al., 2021), we produce pretrained
hybrids that can improve downstream fine-tuning performance on a variety of natural and synthetic
language tasks, and we show that our hybrids can be programmed using the MAD tasks.2

2 RELATED WORK

Language Model Architectures: Transfomers and Beyond. Transformers are currently the
dominant LM architecture. The success of the “vanilla” architecture introduced by Vaswani et. al.
(Vaswani et al., 2017) has led to many proposed variations. The quadratic complexity of the base
self-attention operation has inspired the search for alternative architectures that offer comparable
performance with subquadratic complexity. One line of work builds off state-space models, with
variations made to enable language modeling (Poli et al., 2023a;b; Gu and Dao, 2023; Arora et al.,
2024). Another line of work involves linear-complexity attention by formulating transformers as
RNNs and expressing self-attention as a kernel dot-product (Katharopoulos et al., 2020). Other
approaches increase the expressivity of this formulation with data-dependent gating (Yang et al.,
2024). Our work does not propose a new architecture. Instead, we focus on the idea that practitioners
should be able to take advantage of new architectures in a transparent way.

Neural Architecture Search & Mechanistic Search. Neural architecture search (NAS) techniques
are used to automatically search for optimal architectures. These techniques have produced state-of-
the-art models in several different architectures and data domains. Much of the challenge in NAS is
the complexity of the search procedures; in the most standard form, NAS involves a difficult bilevel
optimization over a large search space. Much effort has been aimed at reducing these costs, often
via continuous relaxations of the large search spaces, with efficient, end-to-end differentiable search
techniques like DARTS (Liu et al., 2019), GAEA (Li et al., 2021), and DASH (Shen et al., 2022).

Using NAS to discover architectures for language modeling—and especially those that may rival
Transformers—has thus far been hard. A promising approach is the MAD framework (Poli et al.,
2024) , which uses “mechanistic tasks” (synthetic tasks organized around simple principles) to search
for high-quality subquadratic architectures. While we do not seek to discover new architectures, we
are inspired by this approach in our effort to search for hybrid architectures.

Hybrid Architectures. Perhaps unsurprisingly, there is no single dominant architecture among either
standards, like Transformers, or emerging subquadratic architectures. While there are some insights
that can be converted into heuristics for model selection, generally, to take advantage of new models,
practitioners must exhaustively evaluate all of them on each of their tasks. The cost of doing so has

2Our code is available at: https://anonymous.4open.science/r/manticore-anon
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Figure 1: Our proposed Manticore framework, which enables: (1) cross-architecture LM selection,
(2) the construction of pretrained hybrids, and (3) the ability to program hybrids to have certain skills.

inspired the idea of crafting hybrid architectures that mix components from different approaches,
with the goal being to obtain best-of-all-worlds behavior.

Unfortunately, the space of hybrid architectures is already large and only grows with each new
proposed approach. Manually crafting hybrids is costly; users must either brute-force the enormous
search space or alternatively hand-craft a small candidate set of hybrids in the hope that it includes a
reasonably performant choice. Our work provides an efficient alternative to this process.

Model Merging. A final prospective approach to using multiple models is merging. Merging
pretrained models (of the same architecture) has shown promising results (Yadav et al., 2023; Yu
et al., 2023; Wortsman et al., 2022; Ilharco et al., 2023; Davari and Belilovsky, 2023; Jang et al., 2024),
creating powerful large-scale merges such as SOLAR-10.7B (Kim et al., 2023) and Goliath-120B3

from two fine-tuned Llama2-70B (Touvron et al., 2023) models. The former two were produced
using a trial-and-error-based technique called ‘frankenmerging,’ introduced in MergeKit (Goddard
et al., 2024). Frankenmerging involves stitching together different fine-tuned versions of the same
model or, hypothetically, different models. This has inspired efforts to merge models of different
architectures using large-scale evolutionary search (Akiba et al., 2024). However, such efforts are
still embryonic, with substantial computational drawbacks, requiring many training runs. Manticore,
on the other hand, does not require training a large number of models.

3 METHODS

We now describe Manticore, our framework for automatically designing hybrid architectures by
mixing components of pretrained models. Manticore relies on projectors to align features across
architectures, then applies a convex combination to the aligned features, as summarized in Figure 1.

In Section 3.1, we discuss and formally define the structure of Manticore hybrids, including the
projectors and convex combination mixture weights, as well as how both of these components are
used within Manticore. In Section 3.2, we detail the search procedures (inspired by NAS) and training
routines involved in pretraining, fine-tuning, and programming hybrids. Finally, we provide the
synthetic and real data settings that we use in our experiments in Section 4.

3.1 THE STRUCTURE OF MANTICORE HYBRIDS

Our framework comprises three main parts: the individual LMs that we combine to produce our
overall hybrid, projectors that translate feature representations between LMs of different architectures,
and convex combination mixture weights that specify how much the hybrid will use the features of
each component architecture. We detail each of these in the following.

3.1.1 COMPONENT MODELS

We refer to a model that is used in Manticore as a component model. Any modern LM can be used as
a component model in our framework. In this section, we will formally define the general high-level

3https://huggingface.co/alpindale/goliath-120b
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structure of the component models that we support. For an LM M with model embedding dimension
dM on a sequence of t tokens from a set V , denoted x = (x1, ..., xt) ∈ Vt, a forward pass M(x) is
typically computed using the following recipe:

1. Apply an embedding function, Membed : Vt → Rt×dM to the tokens, resulting in a sequence of
embeddings denoted xembed = Membed(x).

2. Take forward passes through LM ‘blocks’–we denote the ℓth block as M (ℓ)
Block : Rt×dM → Rt×dM .

Specifically, for all ℓ ∈ [LM ], we obtain xℓ+1 = M
(ℓ)
Block(xℓ), where x1 := xembed.

3. Finally, we pass xLM+1 into a language modeling head, Mhead : Rt×dM → (∆|V|−1)t, where
∆|V|−1 is the probability simplex of dimension |V|.

This recipe applies to virtually all modern transformer-based LMs, recurrent models, and state-space
models. Our framework supports all of these, and any other architecture that follows this recipe.

3.1.2 PROJECTORS

MLP Block

Attn. Block

…
Mamba Block

Mamba Block

…

Transformer 
Embeddings

Transformer  
LM head

Mamba 
LM head

Mamba 
Embeddings

Figure 2: Examples of component mod-
els used in Manticore. Transformer and
Mamba component models are shown.
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Figure 3: The projectors with residual
connections used in Manticore, used for
translating features between pretrained
blocks of different component models.

Suppose we have two pretrained component models, M
and M ′. In general, even if the model dimensions are
the same for both models (dM = dM ′), blocks from M
and M ′ may not be directly compatible, as their input and
output features are likely to be very different. It is also
possible that dM ̸= dM ′ , in which case composing blocks
from M and M ′ is not even well-defined.

To overcome this issue, we apply projectors to both the
inputs and the outputs of a block (or a sequence of blocks,
discussed in Section 3.1.4) that we wish to combine in
Manticore hybrids. Overall, our goal in designing pro-
jectors is to enable the blocks of M and M ′ to speak a
common language, such that their features are compatible
and can be reused in the resulting hybrid model. This is
conceivably challenging—the mapping between feature
spaces could be highly nonlinear and might require a lot
of task-specific data to adequately learn the mapping. So
do projectors need to be heavyweight, data-hungry, highly
nonlinear objects? Fortunately, the answer is no—we find
that a simple linear transformation with a gated residual,
pretrained on general language data, is sufficient.

Suppose that we want to create a Manticore hybrid
from K different pretrained component models, denoted
M(1), ...,M(K) with model dimensions dM(1)

, ..., dM(K)
.

We define dmax := maxk∈[K] dM(k)
, then want input

and output projectors for the blocks of each model that
convert their features to a common feature space of di-
mension dmax. For any sequence of blocks of length
(n+ 1) < LdM(k)

from model M(k) and length-t input,(
M

(ℓ+n)
(k)Block ◦ ... ◦M

(ℓ)
(k)Block

)
: Rt×dM(k) → Rt×dM(k) ,

we want functions Proj-in(ℓ)
(k) : R

t×dmax → Rt×dM(k) and Proj-out(ℓ+n)
(k) : Rt×dM(k) → Rt×dmax , so(

Proj-out(ℓ+n)
(k) ◦M (ℓ+n)

(k)Block ◦ ... ◦M
(ℓ)
(k)Block ◦ Proj-in(ℓ)(k)

)
: Rt×dmax → Rt×dmax .

For input x ∈ Rt×dM(k) we parameterize each projector as a linear transformation with gated residual:

Proj-in(ℓ)(k)(x;α) := (1− α) · Lineardmax→dM(k)
(x) + α · Trunc(x; dM(k)

)

4
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Proj-out(ℓ)(k)(x;α) := (1− α) · LineardM(k)
→dmax(x) + α · Pad(x; dmax).

Respectively, Trunc(·; d) and Pad(·; d) truncate and zero-pad input to dimension d, and Lineard→d′ :

Rd → Rd′
is a learnable linear transformation. Gating weights are parameterized as α ∈ [0, 1].

In total, where α ∈ ∆K−1 and Ik is a length-nk vector of block indices from component model k,
we define the output of the block sequence defined by Ik as

hk(x;αk, Ik) =
(

Proj-out
(Ik,nk

)

(k) ◦M (Ik,nk
)

(k)Block ◦ ... ◦M
(Ik,1)

(k)Block ◦ Proj-in(Ik,1)

(k)

)
(x;αk).

3.1.3 MIXTURE WEIGHTS
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Figure 4: Mixture weights used in Man-
ticore, which learn how much influence
component model blocks should have.

Next, we would like to mix the activations of different com-
ponent models’ block sequences, in a way that allows us to
learn how much influence the blocks from each component
model will have on the overall hybrid model. Learning the
amount of influence that each block sequence should have
on the overall hybrid is critical—if certain blocks produce
less helpful features, we need a way to down-weight them.
Conversely, we want to use the best blocks in our hybrid
as much as possible—we want to up-weight these helpful
blocks. Overall, a parameterization that allows us to learn
these weights should lead to better hybrids.

We do this by taking a convex combination of the projec-
tors’ outputs: given the projected features hk(x;αk, Ik)
for each component model k ∈ [K], we output a convex
combination of projected features

Mixα(x; I1, ..., IK) =
∑

k∈[K]

αkhk(x;αk, Ik).

We reuse the convex combination weights as the gating weights in the projectors. This choice
yields the convenient property that when the mixture weights α are set to one in index k and zero
everywhere else, the Mix function exactly computes a sequence of blocks from component model k
while completely ignoring the projectors and the blocks from other component models. We adopt
a popular parameterization for mixture weights from the NAS literature (Liu et al., 2019): we
parameterize α as a softmax of a parameter vector—that is, αk := exp(ak)∑

j∈[K] exp(aj)
for all k ∈ [K].

3.1.4 MANTICORE

We are now ready to define our overall hybrid architecture. We seek to create a hybrid from K
component models, M(1), ...,M(K), each with a potentially different number of blocks, denoted
LM(k)

for component model k. We fix L to be the number of Manticore blocks, where L is a common
factor of each of the depths LM(k)

, for all k ∈ [K]—we treat this choice of factor as a hyperparameter.
For each of the L Manticore blocks, we want to mix a sequence of blocks from each of the K
component models. We also want the number of blocks from each model k ∈ [K] that are allocated
to a single Manticore block to be evenly spread out throughout the L Manticore blocks—this is why
we require L to be a factor of LM(k)

.

For each component model k ∈ [K], divide the indices of the blocks [LM(k)
] evenly into L contiguous

parts, denoted as [LM(k)
] = (Ik,1, ..., Ik,L). Then, adopting the notation from our component models,

a Manticore block is defined as

Manticore(ℓ)Block(·) := Mixα(ℓ)(·; I1,ℓ, ..., IK,ℓ)

with Manticore(ℓ)Block : Rt×dmax → Rt×dmax , for each ℓ ∈ [L], and α(ℓ) being the mixture weights at ℓ.
Next, we initialize a new set of embedding weights and a new task specific (or language modeling)
head, and we can finally illustrate a forward pass with a Manticore hybrid model, denoted using the
shorthand notation Manticore(·) := Manticore[M(1), ...,M(K)](·). Let x = (x1, ..., xt) ∈ Vt be a
sequence of t tokens from a set V . The forward pass is computed as follows:

5
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1. Apply the new embedding function Manticoreembed : Vt → Rt×dmax to the tokens, resulting in a
sequence of embeddings denoted xembed = Manticoreembed(x).

2. Take forward passes through L Manticore blocks, each with dimension dmax, concretely, we
compute xℓ+1 := Manticore(ℓ)Block(xℓ), where x1 := xembed.

3. Pass xLM+1 into a new task-specific or language modeling head, Manticorehead : Rt×dM → T,
where T is the appropriate output space for the learning task.

In NAS terms, our search space is over the set of L ∋ ℓ mixture weights α(ℓ) ∈ ∆K−1. However, our
search space differs from typical gradient-based NAS techniques in the sense that we do not require
discretization to derive a final architecture after we obtain our mixture weights. Typically, NAS would
involve selecting a single sequence of component architecture blocks at each of the Manticore blocks,
usually by taking the argmax of the mixture weights. Instead, the mixtures themselves are what
characterize Manticore hybrids. Nonetheless, if we were to replace the mixture weights α(ℓ) with
discrete one-hot vectors, we could derive any of the following: the component model architectures
themselves, existing hybrid architectures, and ‘frankenmerged’ models (Goddard et al., 2024).

3.2 HOW TO USE MANTICORE

With Manticore, we can automatically select language models without training every model in the
search space, automatically construct pretrained hybrid architectures without significant trial-and-
error, and also program pretrained hybrids without full training. In this section, we will discuss the
details of how Manticore can be used in each of these three usage scenarios.

Training hybrids from scratch. Manticore can be used to automatically select LMs without training
all of the LMs in the search space. Our selection technique is simple: inspired by gradient-based
NAS techniques (Liu et al., 2019) and treating the mixture weights as our ‘architecture parameters,’
we proceed in two steps: 1. train mixture weights along with all other parameters, and 2. freeze the
mixture weights and retrain the rest of the parameters from scratch. Unlike NAS, we found that in
many pretraining settings, it was sufficient to stop at 1. and forgo retraining. In our pretraining
experiments, we primarily use randomly-initialized GPT-Neo (Black et al., 2021) and Mamba (Gu
and Dao, 2023) as component models without projectors, and separately experiment with a subset of
the blocks from MAD (Poli et al., 2024).

Fine-tuning pretrained hybrids. Manticore can be used to create and fine-tune pretrained hybrids.
We create pretrained hybrids as follows: begin with a set of pretrained models, replace their LM
heads and embeddings with a single randomly initialized LM head and embedding layer, and pretrain
the projectors on a small amount of general language data such as FineWeb (Penedo et al., 2024)
while keeping the original component model weights frozen.4 To fine-tune the pretrained hybrids
on downstream task data, we first search for mixture weights by training all of the parameters
simultaneously, we freeze the mixture weights, rewind the component models and projectors to their
pretrained state, and fine-tune. This procedure completely sidesteps large-scale pretraining of
new hybrids. In our synthetic experiments, we create pretrained Manticore hybrids from pretrained
GPT-Neo-125M (Black et al., 2021) and Mamba-130M (Gu and Dao, 2023) models, while for our
experiments on real natural language data, we opt for pretrained Pythia-410M (Biderman et al., 2023)
and Mamba-370M (Gu and Dao, 2023) as component models.

Programming hybrids. Excitingly, there are cases in which we can program Manticore mixture
weights by using external information to predict them. We consider two scenarios. If we know that a
component model has blocks that are incompatible with the target task—e.g. resulting from sequence
length constraints—we can omit these blocks by setting their mixture weights to 0. Otherwise,
we can predict good mixture weights by searching on a fixed set of proxy tasks—for this, we use
the MAD tasks (Poli et al., 2024). The MAD tasks are synthetic unit tests that are predictive of
hybrid LM scaling laws, but within our framework, we find that they can also be useful for finding
pretrained hybrids. We use the following procedure for programming mixture weights using the
MAD tasks. First, run search on the MAD tasks using a smaller, randomly initialized version of our
pretrained hybrid. For each MAD task, our search procedure returns a set of mixture weights—we
simply average the resulting mixture weights, freeze them, and fine-tune on downstream task data.

4We found 100M tokens to be sufficient for projector pretraining.
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Figure 5: Mixture weight sweeps on Penn Treebank completions using pretrained GPT-Neo-125M
and Mamba-130M as our component models. (Left) When we create one Manticore block, there
is a region of the search space where we improve over Mamba. (Right) The same holds for two
Manticore blocks, and our technique for hybrid programming using MAD discovers this region.

4 EXPERIMENTAL RESULTS

We provide experimental evidence that validates the following claims about Manticore:

• C1. Pretrained hybrids can outperform their component models on fine-tuning tasks,
• C2. Trained from scratch, Manticore hybrids are competitive with existing hybrids and LMs, and
• C3. In certain cases, we can program mixture weights without search on the task data.

4.1 FINE-TUNING PRETRAINED HYBRIDS

We evaluate C1, first on a synthetic fine-tuning task, and then on natural language fine-tuning tasks.

Setup. We consider a synthetic LM dataset comprising GPT-Neo and Mamba generated completions
of text from Penn Treebank (Marcus et al., 1993b). Naturally, we also use pretrained GPT-Neo-125M
and Mamba-130M models as component models, creating a single Manticore block with projectors
that were pretrained on 100M tokens from FineWeb (Penedo et al., 2024). We search using DARTS,
and afterward, we rewind the model weights and projectors to their pretrained states for retraining.

Results. Our results are shown in Figure 5 (left). We compare our search results to a sweep over a
range of possible mixture weights, and find that our search procedure returns the optimal mixture
weights, outperforming both Mamba and GPT-Neo. This confirms our claim that Manticore
hybrids can outperform their component models on synthetic fine-tuning tasks. Given that this
task comprises two slices that each of our component models should be good at—GPT-Neo should
be good at predicting GPT-Neo outputs, and vice versa—we hypothesize that Manticore hybrids are
especially well suited to the component models having complementary ‘skills’ (Chen et al., 2023).

Setup. We evaluate on three natural language fine-tuning datasets: Penn Treebank (Marcus et al.,
1993b), the Alpaca instructions dataset (Taori et al., 2023), and ELI5 (Fan et al., 2019). We use
Pythia-410M and Mamba-370M as our component models, and create a single Manticore block from
the blocks of the two models with projectors that were pretrained on 100M tokens from FineWeb
(Penedo et al., 2024). As before, we first search for mixture weights, and then we retrain with the
fixed mixture weights found by search.

Results. Our results are shown in Table 1. Manticore outperforms its component models on Alpaca
and ELI5, while it achieves performance between its two component models on Penn Treebank.
This confirms our claim that Manticore can outperform component models on real natural
language tasks. The fact that Mamba-370M outperforms Manticore in this setting is not a failure of
our framework, as Mamba-370M is included as part of our search space.

Setup. Building on the previous setup for natural language tasks, we perform a sweep over the α
parameter corresponding to Mamba in our search space, and compare the results of the sweep to
off-the-shelf NAS algorithms: DARTS (Liu et al., 2019) (Manticore’s default search procedure),
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Table 1: Manticore on natural language tasks using Pythia-410m and Mamba-370m as component
models. The best test losses are bolded and the second-best are underlined.

Task Pythia-410M (A) Mamba-370M (B) Manticore [A, B]
Penn Treebank 0.9099 0.8397 0.8600

Alpaca 2.5011 2.2999 2.1779
ELI5 4.1260 3.9414 3.9331
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Figure 6: Mixture weight sweeps using Pythia-410M and Mamba-370M component models. NAS
algorithms are often able to locate regions of the search space that outperform component models.

GAEA (Li et al., 2021), and DASH (Shen et al., 2022). For three of these datasets, 50% of the
documents are drawn from the Alpaca (Taori et al., 2023) dataset in order to artificially induce
heterogeneity—we hypothesize that hybrids are well-suited to such settings.

Results. Our results are shown in Figure 6. We find that in all but one setting (NI Chinese QA +
Alpaca), at least two of the NAS algorithms that we evaluate recover a model that outperforms its
component models. Furthermore, on five of the datasets, at least one NAS algorithm outperforms
or matches the best model found during the sweep. This is further evidence for our claim that
Manticore outperforms component models on natural language, and demonstrates that NAS
algorithms can find performant pretrained hybrids in our search space. It is clear, however, that
there is room for improvement—in one case, NAS did not find a model that outperforms the Mamba
or Pythia component models. Additionally the fact that a single NAS algorithm is not dominant—
DARTS is the best on NI Spanish QA + Alpaca and XQuAD Arabic, GAEA is the best on MLQA
Vietnamese + Alpaca and NI all non-English QA, and DASH is the best on OpenOrcha—suggest that
the choice of NAS algorithm itself should be tuned as a hyperparameter. We hypothesize that this
is because our search space is sufficiently different from existing NAS search spaces that it could
benefit from tailor-made NAS algorithms.

4.2 TRAINING HYBRIDS FROM SCRATCH

For C2, we compare to prior hybrids on MAD and non-hybrid component models on LRA and MAD.
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Setup. We compare training Manticore from scratch to training existing hybrid architectures on MAD
tasks. We begin with two hybrid architectures from the literature: Mambaformer (Park et al., 2024),
which combines Mamba and attention blocks, and the striped multi-head Hyena + Mixture-of-Experts
(MoE) MLP architecture that was shown to perform well on the MAD tasks (Poli et al., 2024). We
compare these two baselines to a Manticore hybrid combining three component models: striped
multi-head Hyena + MoE-MLP, a transformer, and Mamba. We use two blocks for each of these
architectures, creating two Manticore blocks. Again, we search for mixture weights and then retrain.

Results. The results of this experiment are shown in Table 2. We outperform the striped multi-head
Hyena + MoE model from the MAD paper, and we approach the performance of Mambaformer on
all but one task. This validates the claim that Manticore hybrids, trained from scratch, compete
with existing hybrids. Despite Mambaformer not being a component model, it is in our search space,
and we again speculate that improvements in search would lead to its recovery.

Table 2: Trained from scratch on MAD tasks, Manticore beats or matches the performance of existing
hybrids on all but one task. The best test losses are bolded and the second best are underlined.

Task Striped MH Hyena Mambaformer Manticore+ MoE-MLP
In-context Recall 3.7153 0.0020 0.0048

Fuzzy In-context Recall 4.1714 4.1712 4.1750
Noisy In-context Recall 4.1643 4.1646 4.1607

Selective Copying 1.8021 0.0005 0.0171
Memorization 8.8353 5.2179 8.9254

Setup. We compare Manticore hybrids to their component models on LRA, when trained from
scratch. We use GPT-Neo and Mamba component models of similar sizes to those in Tay et al. (2021)
to create Manticore hybrids. As a simplified pipeline, we do not retrain model weights after search.

Results. Our results are shown in Table 3. We outperform the component models on all tasks except
for IMDb, in which case Manticore was between GPT-Neo and Mamba. This validates the claim
that Manticore hybrids, trained from scratch, compete with existing LMs.

Table 3: Manticore hybrids trained from scratch on LRA using GPT-Neo and Mamba component
models. The best test accuracies are bolded. ∗GPT-Neo does not support the Pathfinder-X sequence
length requirement, so we set its mixture weight to 0 and Manticore reduces to Mamba.

Task GPT-Neo (A) Mamba (B) Manticore [A, B]
ListOps 37.90 20.65 38.70

IMDb 59.62 87.74 72.44
CIFAR10 39.37 20.81 43.15

Pathfinder32 89.41 85.76 91.45
Pathfinder-X N/A∗ 75.50∗ 75.50∗

Setup. Next, we compare Manticore to non-hybrid architectures trained from scratch on the MAD
tasks. We compare two-block GPT-Neo and Mamba models to a Manticore hybrid using a single
Manticore block. Again, we report the performance of the search procedure itself without retraining.

Results. Our results are shown in Table 4. Manticore outperforms GPT-Neo and Mamba on all
of the MAD tasks in this setting. This provides further evidence for our claim that Manticore
hybrids compete with existing LMs when trained from scratch. It is conceivable that our larger
Manticore hybrids simply perform better than component models due to their size—however, we find
that post-search discretization and retraining tends to result in similar performance, but reduces the
model size by roughly half. We include an ablation of post-search discretization in the Appendix.
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Table 4: Trained from scratch on the MAD tasks, Manticore improves over small two-block
component models combined into a single Manticore block. The best test losses are shown in bold.

Task GPT-Neo (A) Mamba (B) Manticore [A, B]
In-context Recall 4.0771 4.1858 4.0768

Fuzzy In-context Recall 4.4384 4.8097 4.2797
Noisy In-context Recall 4.1843 4.2605 4.1823

Selective Copying 1.0470 3.7765 0.9478
Memorization 4.6110 5.2281 4.1367

4.3 PROGRAMMING HYBRIDS

We evaluate C3 with two types of external data: access to task metadata such as sequence length
requirements, and the use of the MAD tasks as a proxy for search on downstream task data.

Setup. As in many of our previous experiments, we used the GPT-Neo and Mamba architectures
as component models to our Manticore hybrid. However, this time, we set out to train from scratch
on the extremely long-range Pathfinder-X task from LRA, which requires sequence length support
greater than that of GPT-Neo. Using this external information about the task, we set the mixture
weights for GPT-Neo to 0, which in this case, means that Manticore reduces to Mamba. 5

Results. The results of this experiment are shown in the last row of Table 3. In the simple case of
having access to task metadata, this validates the claim that we can program mixture weights
to exclude incompatible blocks. At the time of writing, we are not aware of prior published Mamba
results on LRA despite community interest, which would make our evaluation in Table 3 the first such
result. Note that we did not thoroughly tune hyperparameters, so we view this result as a preliminary
starting point for the community to build off of, rather than a final answer.

Setup. Finally, in the case in which we can actually run all of our component models on our learning
task, we explore when we can program the mixture weights using the MAD tasks as a proxy for search,
which are intended to be predictive of scaling laws on The Pile (Poli et al., 2024; Gao et al., 2020).
We set out to fine-tune a pretrained hybrid comprising GPT-Neo-125M and Mamba-130M, which
were both pretrained on The Pile, with two Manticore blocks on our Penn Treebank completions
synthetic. We train a scaled-down version of this Manticore hybrid with randomly initialized weights
and two blocks per component model on the MAD tasks. This yields mixture weights for each of the
MAD tasks—we average them across the tasks, and then fine-tune our pretrained hybrid on Penn
Treebank completions using the predicted mixture weights.

Results. Our results are shown in Figure 5 (right). We superimpose the predicted mixture weights and
mean search trajectory from MAD onto the architecture loss landscape computed on Penn Treebank
completions. We find that this procedure recovers a hybrid that outperforms the component models
(Mamba, lower right; GPT-Neo, upper left) and substantially outperforms the naive frankenmerges in
our search space (upper right and lower left) (Goddard et al., 2024). This is a scenario in which it is
possible to program mixture weights using external sources without performing search on the
task data. Intriguingly, search on the MAD tasks appears to follow the architecture gradient on the
different downstream fine-tuning task, even though the architecture is scaled-down and trained from
scratch on MAD. We hypothesize that programming Manticore hybrids becomes more difficult as
the fine-tuning distribution is further from the pretraining distribution, and that the architecture loss
landscapes become less similar. This evaluation was carried out on our synthetic PTB completions
task, so the fine-tuning dataset should be fairly similar to the pretraining distribution. In our evaluation
in Table 1, we find that Mamba outperforms the Pythia component model on English natural language
tasks that are further from the pretraining distribution than our synthetic (while both models were
trained on The Pile (Gao et al., 2020) which is largely in English, we are not training on completions
produced by the models themselves). Finally, our evaluations in Figure 6 use non-English text, which
is further from the pretraining data distribution, and we observe no discernible pattern between their
loss landscapes—programming α parameters in this scenario is likely challenging.

5Mamba on the LRA is open: https://github.com/state-spaces/mamba/issues/282.
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APPENDIX

A ABLATIONS

Choice of search algorithm. By default, we use a form of the single-level DARTS (Liu et al., 2019)
search algorithm in all of our experiments requiring search. We optionally evaluate whether or not
to take alternating update, that is, we alternately take gradient steps in the architecture and model
parameters—we treat this choice as a task-dependent hyperparameter. However, there are many
alternative NAS algorithms that we could have used for search. In our ablation of the choice of
search algorithm, we also evaluate DASH (Shen et al., 2022) on our Penn Treebank completions
synthetic—the results of which are shown in Table 5. In general, we found that using DASH was
unable to recover strong architectures in our search space. We postulate that this is because DASH
simply aims to solve a different problem, and is not suited to our search space: namely, DASH is
used to search for lower-level operations, rather than LM blocks. We also found that alternating
DARTS updates was somewhat helpful, compared to simultaneously updating all of the parameters at
once—for our experiments, we treated this choice as a hyperparameter.

Table 5: Comparison of NAS search methods on our Penn Treebank completions synthetic.
Alternating? DARTS DASH

Yes 1.2854 2.5899
No 1.3635 2.5968

Whether or not to discretize after search. We perform an ablation of whether or not to perform
discretization on our MAD task experiments in which we compare to existing hybrids. We find
that while discretization can sometimes improve performance, the performance differences are often
marginal. If final parameter count is a concern, then discretization is beneficial.

Table 6: A comparison of non-discretized vs. discretized Manticore.

Task Manticore Manticore
(non-discretized) (discretized)

In-context Recall 0.0068 0.0081
Fuzzy In-context Recall 4.1764 4.1729
Noisy In-context Recall 4.1628 4.1614

Selective Copying 0.0849 0.0006
Memorization 8.9416 8.9402

Amount of projector pretraining. Finally, we ablate over the amount of projector pretraining. We
re-ran our α sweep on our PTB completions synthetic with different amounts of projector pretraining,
ranging from 0 to 100M tokens sampled from FineWeb Penedo et al. (2024). The results of this
ablation are shown in Figure 7. We found that the optimal value of the α parameter stabilizes around
70M tokens used to pretrain the projectors.

B ADDITIONAL MAD RESULTS

In the main text of the paper, we presented results comparing Manticore hybrids trained from scratch
to existing hybrids from the literature—namely Mambaformer and the Striped MH Hyena + MOE
architecture from MAD. Notably, the Striped MH Hyena + MOE architecture was only the second
best architecture presented in the MAD paper. We found that their best architecture, the Striped
Hyena Experts + MOE model, performed slightly worse on the harder versions of the MAD tasks
that we evaluated. We present these results in Table 7.
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Figure 7: As evaluated on our PTB completions synthetic with Mamba-130M and GPT-Neo-125M,
we find that the optimum stabilizes at around 70M tokens of projector pretraining.

Table 7: Trained from scratch on MAD tasks, Manticore beats or matches the performance of existing
hybrids on all but one task. The best test losses are bolded and the second best are underlined.

Task Striped Hyena Experts Striped MH Hyena Mambaformer Manticore+ MoE-MLP + MoE-MLP
In-context Recall 4.0315 3.7153 0.0020 0.0048

Fuzzy In-context Recall 4.1749 4.1714 4.1712 4.1750
Noisy In-context Recall 4.1640 4.1643 4.1646 4.1607

Selective Copying 2.1731 1.8021 0.0005 0.0171
Memorization 8.8537 8.8353 5.2179 8.9254

C ADDITIONAL PATHFINDER RESULTS

We ran several additional variants of the pathfinder task for which the required sequence length
exceeded the maximum supported sequence length of GPT-Neo. We report these results in Table 8.

Table 8: Additional Pathfinder results. Note that since these variants of Pathfinder exceed the
maximum sequence length of GPT-Neo, we set its mixture weight to be 0 and evaluate using Mamba.

Pathfinder task GPT-Neo Mamba Manticore
(A) (B) [A, B]

64× 64, 6 paddles N/A 80.40 80.40
64× 64, 9 paddles N/A 90.01 90.01

64× 64, 14 paddles N/A 86.87 86.87
128× 128, 6 paddles N/A 75.50 75.50

D ON BASELINES

The correct set of baselines for Manticore is an interesting and somewhat tricky question. In the
main text, we compare to the set of component models used to construct a Manticore hybrid—in
other words, in order for Manticore to be at least as performant as its component models on
a task, it must match or beat the performance of the best component model, which implies
that both component models need to be fine-tuned. This would roughly match the total amount
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of fine-tuning FLOPs used to train the corresponding Manticore hybrid. However, there are other
potential ways to make a comparison; in this section, we will discuss the fairness and availability
of baselines corresponding to different metrics of comparison, and provide a new set of baselines
involving ensembles of component models. Specifically, we will address the question of whether the
correct comparison is one involving parameter count, training FLOPs, or inference FLOPs.

D.1 PARAMETER COUNT

One proposal is to compare a Manticore hybrid of size N to a pretrained model that is also of
size N . Manticore combines the weights of existing pretrained models to produce a hybrid that
is drastically cheaper to generate compared to pretraining a hybrid of the same size from scratch.
Off-the-shelf pretrained models of size N are often pretrained up to D tokens corresponding to its
Chinchilla optimum (Hoffmann et al., 2022), but information about the amount, mixture, or quality
of pretraining data is often unavailable. This makes comparison along the axis of the parameter count
alone somewhat challenging—a larger model may well have been trained on more total data than
the two smaller component models making up Manticore. In other words, Manticore should not
be expected to follow the same pretraining scaling laws as models that were trained from scratch.
Therefore, comparing a Manticore hybrid and a pretrained model of the same size is not
necessarily a fair comparison, when considering model size alone. Furthermore, pretrained
models of a specific predefined size N are not even guaranteed to exist.

D.2 TRAINING FLOPS

Another option is to make a comparison along the axis of total training FLOPs, which would include
pretraining FLOPs, fine-tuning FLOPs, and any additional FLOPs incurred when generating a
Manticore hybrid. Suppose we create a Manticore hybrid from two component models of sizes N1

and N2, which have been pretrained using T1 and T2 tokens, incurring roughly 6N1T1 and 6N2T2

FLOPs, respectively (Kaplan et al., 2020). With Manticore, we incur FLOPs from two sources:
projector pretraining and fine-tuning. In our experiments, we use Tproj = 100M tokens of general data
for projector pretraining, and saw in Figure 7 that we likely didn’t even need this much. Nonetheless,
100M tokens is substantially smaller than the typical amount of pretraining data, so we can assume
that Tproj = 100M << min {T1, T2}, and since the pretrained projectors can be reused, this cost can
be amortized over many future fine-tuning runs. Manticore then involves fine-tuning on some small
amount of downstream tasks-specific data comprising Tft << min {T1, T2} tokens. So then, the total
amount of training FLOPs involved end-to-end in producing a Manticore hybrid is

6N1T1 + 6N2T2 + (6N1 + 6N2)Tproj + (6N1 + 6N2)Tft = O(6N1T1 + 6N2T2),

meaning that the total training FLOPs is dominated by the pretraining of the component models. Our
experiments in the main text compare Manticore to the better of the two component models,
which means that both component models need to be fine-tuned (i.e., the baseline comprises
‘both’ component models). Therefore, if the projector pretraining FLOPs are amortized over
many fine-tuning runs, Manticore roughly matches the baseline in terms of training FLOPs.
That is, this baseline and Manticore effectively requires 6N1T1 + 6N2T2 + (6N1 + 6N2)Tft FLOPs.

D.3 INFERENCE FLOPS

It is true that our baselines in the main text (which are pairs of component models) are cheaper
in terms of inference FLOPs compared to Manticore. In fact, Manticore effectively doubles the
inference FLOPs by requiring forward passes through both component models. Here, we include
an analysis of inference FLOPs showing that the contribution of the projectors is negligible, and we
present an additional baseline—combining the component models into an ensemble that is fine-tuned
simultaneously using the same fine-tuning budget as Manticore.

Inference FLOPs analysis. First, we will compute the general form of the inference FLOPs
requirement for a component model. Let d be the embedding dimension, let t be the sequence length,
let L be the number of blocks, let v = |V| be the size of the vocabulary set for our downstream task,
and let B(d, t) be the inference FLOPs requirement for the blocks in the component model. Then
the inference requirement for a single token prediction from the component model is computed by
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Table 9: Comparison between Manticore, its component models, and an ensemble of its component
models on the tasks from Figure 6. For Manticore, we show the best performance achieved across
our sweep from Figure 6. Ensembling the component models does not improve performance, but
creating a Manticore hybrid does lead to improved performance.

Task Pythia-410M (A) Mamba-370M (B) Ensemble [A, B] Manticore [A, B]
Es. + Alpaca 1.819 1.704 2.172 1.664
Ch. + Alpaca 3.729 3.447 3.854 3.369
Vi. + Alpaca 2.130 2.004 2.173 1.980
NI non-En. 1.764 1.560 1.652 1.530
OpenOrcha 1.570 1.576 1.756 1.553
XQuAD Ar. 0.205 0.207 0.533 0.201

summing the FLOPs requirements from looking up an embedding, computing forward passes through
a sequence of blocks, and generating the final logits. That is, we obtain the following:

O(1 + LB(d, t) + dv) = O(LB(d, t) + dv).

For a Manticore hybrid, assume that we have K = 2 component models, M1 and M2, as well as their
projectors. Without loss of generality, assume that the embedding dimensions, d, and the number
of blocks, LM , in the component models are the same. Let L << LM be the number of Manticore
blocks, which is typically constant with respect to the number of blocks in each of the component
models LM (in our experiments, L was set to 1 or 2). Let BM1(d, t) and BM2(d, t) be the FLOPs
requirements of individual blocks from M1 and M2 respectively, and let Bproj(d, t) = O(td2) be the
FLOPs requirement of projector usage. Note that typically, Bproj(d, t) = O(td2) ≤ BM∗(d, t), as
many types of blocks involve a dimension-mixing operation such as an MLP, which has a larger
FLOPs requirement than O(td2), or a sequence mixer that has quadratic or log-linear dependence
on t, rather than the linear dependence of Bproj(d). Then the FLOPs requirement of each Manticore
block is as follows:

O

(
LM

L
(BM1

(d, t) +BM2
(d, t)) + 4Bproj(d, t)

)
,

and along with the token embedding and the logits output, we have

O(1) + L ∗O
(
LM

L
(BM1

(d, t) +BM2
(d, t)) + 4tBproj(d, t)

)
+O(dv)

=O (LMBM1(d, t) + LMBM2(d, t) + LBproj(d, t) + dv)

=O
(
LMBM1

(d, t) + LMBM2
(d, t) + td2L+ dv

)
=O (LMBM1(d, t) + LMBM2(d, t) + dv) ,

where the final step comes from L << LM and the assumption that Bproj(d, t) = O(td2) ≤
BM∗(d, t). This inference cost is the same as inference with both component models. This
motivates another baseline: ensembles of component models, which we evaluate next.

Comparison to ensembles. We compare the fine-tuning performance of Manticore to ensembles
of component models on the six tasks shown in Figure 6. Starting with pretrained Pythia-410M
and Mamba-370M models, we construct our ensemble as follows: for each token prediction, we
mix the output probabilities from Pythia-410M and Mamba-370M with equal weighting of 0.5, and
then we fine-tune the entire mixture end-to-end on the downstream task. We present the results in
Table 9. The ensemble baseline underperforms Manticore and the best component model on all
tasks—we suspect that this could be related to overfitting.

E HYPERPARAMETERS

In this section, we discuss our hyperparameters and our experimental setup. Code im-
plementing our experiments can be found at https://anonymous.4open.science/r/
manticore-anon.
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E.1 FINE-TUNING PRETRAINED HYBRIDS

Penn Treebank completions synthetic. For model weights, we use the AdamW (Loshchilov and
Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate of 5e− 5. For
mixture weights, we use the AdamW (Loshchilov and Hutter, 2019) optimizer with a linear learning
rate schedule with an initial learning rate of 0.005 and use alternating updates.

Fine-tuning on language tasks. For model weights, we use the AdamW (Loshchilov and Hutter,
2019) optimizer with a linear learning rate schedule with an initial learning rate of 5e−5. For mixture
weights, we use the AdamW (Loshchilov and Hutter, 2019) optimizer with a linear learning rate
schedule with an initial learning rate of 0.005 and use simultaneous updates.

E.2 TRAINING HYBRIDS FROM SCRATCH

Comparison to existing hybrids on MAD.

We provide the hyperparameters and training details for our MAD evaluations from Section 4.2

Existing hybrids were trained with a hyperparameter grid search over the space [1e−4, 5e−4, 1e−3]
for learning rate and [0.0, 0.1] for weight decay, similar to the procedure in MAD (Poli et al., 2024).

Manticore is trained in two stages. In the first stage, we train the model and architecture weights in the
alternating schedule utilized in DARTS (Liu et al., 2019). In this stage, we perform a hyperparameter
grid search of the space [1e− 4, 5e− 4, 1e− 3] for model weight learning rate, [1e− 4, 1e− 4] for
architecture weight learning rate, and [0.1] for weight decay. In the second stage, the architecture
weights are frozen and we train only the model weights using the best learning rate found in the first
stage.

Evaluation on LRA. We provide the hyperparameters and training details for our LRA evaluations.

• ListOps. We trained all models with 5000 steps. The hyperparameter for GPT-Neo is 8 heads, 6
layers, 512 as the embedding dimension, and 2048 as FFN dimension. The hyperparameter for
Mamba is 12 layers, with 512 as the model dimension. The vocab size is 18.

• IMDb. We trained all models with 25 epochs and batch size 32.The hyperparameter for GPT-
Neo is 8 heads, 6 layers, 512 as the embedding dimension, and 2048 as FFN dimension. The
hyperparameter for Mamba is 12 layers, with 512 as the model dimension. The vocab size is 129.

• CIFAR10. We trained all models with 10 epochs. The hyperparameter for GPT-Neo is 4 heads,
3 layers, 64 as the embedding dimension, and 128 as FFN dimension. The hyperparameter for
Mamba is 6 layers, with 64 as the model dimension. The vocab size is 256, which is the pixel value
range of the grayscale image.

• Pathfinder32. We trained all models with 10 epochs. The hyperparameter for GPT-Neo is 8 heads,
4 layers, 128 as the embedding dimension, and 128 as FFN dimension. The hyperparameter for
Mamba is 8 layers, with 128 as the model dimension. The vocab size is 256, which is the pixel
value range of the grayscale image.

Comparison to non-hybrids on MAD.

We use two blocks each from GPT-Neo and Mamba, each with a model dimension of 128. We train
for 200 epochs and select the best performance during training, as all of the models overfit across
the board. We use the AdamW (Loshchilov and Hutter, 2019) optimizer with a linear learning rate
schedule with an initial learning rate of 5e− 5.

E.3 PROGRAMMING HYBRIDS

Mamba evaluation on long Pathfinder tasks. Due to our limited computation resources, we did
not conduct a hyperparameter sweep for the result we presented. We used Mamba with models of a
similar size as Pathfinder32, which has 8 layers, 128 as the hidden dimension size, and 256 as the
vocab size. The 64× 64, 6 paddles version is trained by 10 Epoch with default HP. The result for
other versions is trained with 200 epochs with default HP in Huggingface trainer.

MAD tasks as a search proxy. For model weights, we use the AdamW (Loshchilov and Hutter,
2019) optimizer with a linear learning rate schedule with an initial learning rate of 5e − 5. For
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mixture weights, we use the AdamW (Loshchilov and Hutter, 2019) optimizer with a linear learning
rate schedule with an initial learning rate of 0.01 and use simultaneous updates. For search on the
MAD tasks, we train scaled-down versions of GPT-Neo and Mamba each with four blocks, model
dimensions of 128, and no projectors.

E.4 PRETRAINING PROJECTORS

For all non-frozen weights (i.e., projectors, mixture weights, embeddings, and the LM head), we use
the AdamW (Loshchilov and Hutter, 2019) optimizer with a linear learning rate schedule with an
initial learning rate of 5e− 5.

F DATA AND MAD TASK PARAMETERS

We provide a more detailed description of the datasets that we use in our experiments. We perform
our experiments on a range of synthetic and real tasks that measure various aspects of modern LM
capabilities. We discuss the specific datasets that we use in our experiments below. MAD synthetics.
The MAD synthetic datasets are a set of tasks introduced by Poli et al. (2024) to systematically
evaluate the design space of LMs. These tasks are designed to serve as proxy unit tests for rapidly
prototyping of new hybrid LM architectures. In our experiments, we use harder variants of the MAD
tasks, in which we use a larger vocabulary size of 128 instead of the default 16 for most of the tasks,
along with fewer training examples. For simplicity, we omit the compression task as it requires the
use of encoder-decoder architectures.

• In-context recall. MAD utilizes a multi-query associative recall task, challenging models to
retrieve values linked to keys within input sequences, testing their in-context learning ability across
randomly shuffled mappings. We use a vocab size of 128 and 800 training examples.

• Fuzzy in-context recall. This is a variant of in-context recall to assess a model’s ability to
semantically group adjacent tokens. Variable-length keys and values are randomly paired, testing
the model’s capacity for fuzzy recall. We use a vocab size of 128 and 800 training examples.

• Noisy in-context recall. This is an adaptation of in-context recall to evaluate a model’s capacity
to disregard irrelevant information. This involves inserting tokens from a separate vocabulary
randomly among key-value pairs, enhancing the memorization challenge. We use a vocab size of
128, a noise vocab size of 16 with 80% noise, and 800 training examples.

• Selective Copying. MAD employs a selective copying task to evaluate a model’s ability to
remember and replicate specific tokens from an input sequence while disregarding randomly
inserted noise tokens, emphasizing the preservation of token order. We use a vocab size of 128
with 96 tokens to copy, and 800 training examples.

• Memorization. MAD assesses language models’ factual knowledge retention through a memoriza-
tion task, where models learn fixed key-value mappings without in-context computation, testing
pure memorization ability. For this task, we use a vocab size of 8192.

Long Range Arena. Long Range Arena (LRA) (Tay et al., 2021) is a benchmark consisting of
various tasks of different modalities that evaluate how well models can learn long-context data. For
simplicity, we omit byte-level document retrieval as it requires two forward passes per example.

• Long ListOps. This task is designed to understand whether the architecture is able to model
hierarchically structured data in a long-context (Nangia and Bowman, 2018).

• Byte-level text classification. This task attempts to test the model’s ability to deal with com-
positionality as in the real world, the model needs to compose characters into words and words
into higher-phrases in not so well defined boundaries making it a challenging task, we use IMDB
dataset(Maas et al., 2011) in the LRA paper (Tay et al., 2021).

• Image classification on a sequence of pixels. This task aims to understand whether a model is
able to capture the 2D spatial structure when presented with a flattened 1D version of an image to
classify, we use pixel information from CIFAR10(Krizhevsky, 2009) dataset.

• Pathfinder. This task helps to understand whether a model can reason about whether the given 2
dots in an image are connected by a path having dashes or not. The sequence length is 1024 i.e a
32x32 image is flattened and provided as input to the model (Linsley et al., 2018; Kim et al., 2020).
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• Pathfinder-X. An extreme version of Pathfinder with a higher resolution, such as 64x64 and
128*128, which results in a sequence length of up to 16K

Penn Treebank completions. We generate a synthetic dataset of generated text from pretrained
GPT-Neo-125M (Black et al., 2021) and pretrained Mamba-130M models (Gu and Dao, 2023). We
prompt both models using the first four words of every example in the Penn Treebank (Marcus et al.,
1993b) validation set, which yields two natural slices of our dataset: sentence completions generated
by GPT-Neo and those generated by Mamba.

Natural language tasks. We evaluate the ability to fine-tune Manticore on natural language datasets.
Specifically, we evaluate on Penn Treebank (Marcus et al., 1993a), the Alpaca instruction tuning
dataset (Taori et al., 2023), and an i.i.d. split of the ELI5 training set (Fan et al., 2019). Additionally,
we use 100M tokens from the FineWeb dataset (Penedo et al., 2024) to pretrain our projector weights.
We describe all other natural language datasets that we use in our evaluations below.

• NI Spanish QA + Alpaca. This is from the Natural Instruction dataset v2.8 downloaded from
https://github.com/allenai/natural-instructions/releases, we picked
task 1610 and mixed it with equal numbers of randomly selected samples from the Alpaca dataset
to create a bilingual dataset that contains Spanish Q&A along with English instructions.

• NI Chinese QA + Alpaca. This is similar to the previous dataset, except we pick task1570, which
is Q&A that input/output language are Chinese.

• MLQA Vietnamese + Alpaca. This dataset is a subset of MLQA (MultiLingual Question Answer-
ing)(https://huggingface.co/datasets/facebook/mlqa) in which both the inputs
and outputs are in Vietnamese, and mixed with equal numbers of randomly selected samples from
Alpaca dataset to create a bilingual dataset.

• OpenOrcha. We randomly sample 10,000 samples from the OpenOrcha dataset contain-
ing Japanese translations from https://huggingface.co/datasets/atsushi3110/
cross-lingual-openorcha-830k-en-ja, to form a Japanese Q&A dataset.

• NI all non-English QA. There are six Q&A tasks in the Natural Instructions dataset such that both
their input and output language is non-English—we combine all of them to form a new dataset
containing non-English Q&A.

• XQuAD Arabic. The Arabic Q&A part from XQuAD (Cross-lingual Question Answering Dataset),
from https://huggingface.co/datasets/google/xquad.

G A CALL FOR ACTION & COMMUNITY RECOMMENDATIONS

Throughout our research process, we noted a handful of opportunities that help to democratize LM
research. Should these opportunities be taken up by the research community, we believe they could
help to democratize and help to decentralize community-driven LM research, all which enabling
further research on pretrained hybrids.

A search engine for pretrained models. Surprisingly, we were unable to easily search for pre-
trained LMs of certain sizes or with certain properties (using Huggingface or otherwise). Tools like
this should exist: this would not only significantly democratize LMs, but it would help to reduce
monopolies on LM releases and usage, and thereby decentralize LM research.

Standardized, block-structured LM implementations. We found that standard tools such as
Huggingface and PyTorch were insufficient to cleanly access intermediate activations across several
model implementations. This could be resolved by adopting standard implementations or structures
for LMs that share the common block structure that we describe in Section 3.1.1. Instead, our
solution was to fork implementations of several Huggingface models, which is time-consuming, error-
prone, and non-scalable. A solution to this problem would enable and encourage further research on
pretrained hybrid models, which in turn helps to democratize LM research.

Removing tokenizers from LM pipelines. We believe that there are too many possible tokeniz-
ers, and that tokenizers have a significant potential to introduce merge conflicts in model merg-
ing/pretrained hybrid pipelines. In response to this challenge, in our work, we simply chose an
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arbitrary tokenizer and relearned our embeddings and LM head from scratch in all of our experiments.
Possible solutions to this problem would be: as a community, we agree on a standard (small) set of
tokenizers, or we eliminate tokenizers altogether by learning character or byte-level LMs.

H LIMITATIONS

At various points in Section 4, we described limitations with using DARTS (the off the shelf NAS
search algorithm that we used) for search, in that it was not always able to recover the best architecture
in the search space. A potential limitation of Manticore is that it relies on the existence of good
gradient-based NAS search algorithms, potentially tailored to our search space. However, we postulate
that this is possible, and we leave the task of developing new search techniques to future work.

I COMPUTE RESOURCES

We ran our experiments on the following GPU hardware:

• 2x Nvidia RTX A6000 GPUs with 48GB GPU memory hosted locally in a nook in the lead author’s
house and in a friend’s basement.

• 2x Nvidia RTX 4090 GPUs with 24GB GPU memory each hosted locally in other friends’ base-
ments.

• 2x Nvidia Tesla V100 GPUs with 16GB GPU memory each hosted on AWS (p3.2xlarge instances).

In total, we estimate that our total number of GPU hours across all experiments (those which failed
as well as those included in the paper) amounted to roughly 750 GPU hours. We estimate that less
than half of these hours accounted for experiments that were not ultimately included in the paper.

J BROADER IMPACTS AND SAFEGUARDS

We acknowledge the possibility of misuse with respect to any form of LM research. In our work,
among other things, we enable the creation of pretrained hybrid models from existing pretrained
models. This has potentially positive and negative social impacts for the community. As a positive
potential social impact, we enable the community to much more easily create their own hybrid models
of various sizes without large scale pretraining—this has as much potential for positive impact in that
these models can be used for good. On the other hand, the ability to create large pretrained hybrids,
potentially with custom sets of skills, has the potential to open the door to misuse. To safeguard
against such things, we will include appropriate licenses and rules for usage when we ultimately
deploy a Python package for the community to more broadly use our framework.

K EXPANDED VERSION OF FIGURE 5 (RIGHT)

To show how the architectures evolve over search on all of the MAD tasks in our mixture weights
programming experiment, we provide a more detailed version of Figure 5 (Right) – this is shown
in Figure 8. Here, we plot the architecture trajectories throughout training on all of the MAD tasks,
and superimpose them onto the architecture-loss landscape of the Penn Treebank completions task.
The trajectories roughly follow what appears to be a gradient in the loss landscape, and all of the
trajectories are roughly similar. We derive our final ‘programmed’ alphas by taking the average of the
final alpha values on each of the MAD tasks, after training.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Mamba (second block)

0.0

0.2

0.4

0.6

0.8

1.0

M
am

ba
 (f

irs
t b

lo
ck

)

 sweep: two Manticore blocks
fuzzy-in-context-recall trajectory
in-context-recall trajectory
memorization trajectory
noisy-in-context-recall trajectory
selective-copying trajectory
Programmed s

1.4

1.6

1.8

2.0

2.2

Eval loss

Figure 8: Mixture weight sweeps on Penn Treebank completions using pretrained GPT-Neo-125M
and Mamba-130M as our component models. There is a region of the search space where we improve
over Mamba when using two Manticore blocks, and our technique for hybrid programming using
MAD discovers this region.
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