
Reproducibility Report: D3S - A Discriminative Single Shot
Segmentation Tracker

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

The original paper describes the architecture of the D3S neural network and evaluates its performance in the task of3

visual object tracking and video segmentation tasks. In our reproducibility study, we focused on training and evaluation4

of D3S for visual object tracking tasks due to limited time.5

Methodology6

Our work is based on code provided by the authors of the original paper. The training code was reorganized and partially7

re-implemented. As a result, our version consists of only the most necessary code (the original code consists of other8

experiments not presented in the paper). For model evaluation, we use the pytracking framework following the authors9

of the original article. We used NVIDIA Tesla V100 GPU with CUDA 9.2 and pytorch 1.7.1 for model training and10

validation. The time it took to train the model was 16 hours.11

Results12

The difference of the reproduced model quality metrics does not exceed 3%. These differences do not change the13

position of D3S relative to other architectures in comparison. It is found that the speed of model evaluation (FPS)14

differs significantly for different datasets, whereas the original paper provided a single estimate of a speed. At the same15

time, the obtained values are lower than the ones given in the article. The reason for the differences may be the various16

hardware configurations of the computers used for the experiments.17

What was easy18

The open-source code of the authors was very helpful. Also, the evaluation pipeline in visual object training is not19

trivial, and the authors of the original code use the pytracking framework for this task. It is significantly reduced the20

complexity of our work.21

What was difficult22

We had a few problems due to incompatibilities between the versions of pytorch and CUDA used in the original code23

and required to work with our hardware. In addition, it is not clear from the original paper how metrics were calculated24

from the raw output (bounding boxes): by toolkits supplied with datasets or somehow else.25

Communication with original authors26

We did not communicate with the authors at all, except to use their publicly available source code.27

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

Metrics D3S SPM SiamMask ATOM ASRCF SiamRPN CSRDCF CCOT TCNN
EAO 0.493 0.434 0.433 0.430 0.391 0.344 0.338 0.331 0.325
Acc. 0.66 0.62 0.64 0.61 0.56 0.56 0.51 0.54 0.55
Rob. 0.131 0.210 0.214 0.180 0.187 0.302 0.238 0.238 0.268

Table 1: VOT2016 – comparison with state-of-the-art trackers.

Metrics D3S SiamRPN++ ATOM LADCF DaSiamRPN SiamMask SPM ASRCF
EAO 0.489 0.414 0.401 0.389 0.383 0.380 0.338 0.328
Acc. 0.64 0.60 0.59 0.51 0.59 0.61 0.58 0.49
Rob. 0.150 0.234 0.204 0.159 0.276 0.276 0.300 0.234

Table 2: VOT2018 – comparison with state-of-the-art trackers.

1 Introduction28

The most common formulation of visual object tracking considers the task of reporting target location in each frame of29

the video given a single training image. D3S - a discriminative single shot segmentation tracker [1] is a single shot30

network that applies two target models with complementary geometric properties, one invariant to a broad range of31

transformations, the other assuming a rigid object. D3S was trained on youtube-VOS 2018 dataset only for segmentation32

as the primary output and evaluated on vot2016, vot2018, GOT10-k, and TrackingNet datasets without per-dataset33

finetuning. D3S outperforms other state-of-the-art trackers on most of these tracking benchmarks.34

35

36

37

38

2 Scope of reproducibility39

The original paper demonstrates the results of D3S evaluation on visual object tracking and video object segmentation40

datasets, but in our reproducibility study, we focused on training and evaluation of D3S for visual object tracking41

tasks only due to limited time. The results of comparisons of D3S with other neural networks architectures on various42

benchmarks from the original papers are shown in tables 1 - 4. The main claims of the original paper are as follows:43

• Claim 1: D3S outperforms state-of-the-art trackers on the VOT2016, VOT2018 and GOT-10k benchmarks and44

performs on par with top trackers on TrackingNet, regardless of the fact that some of the tested trackers were45

retrained for specific datasets.46

• Claim 2: D3S evaluation speed close to real-time (25fps) on a single NVidia GTX 1080 GPU.47

• Claim 3: D3S significantly outperforms recent top segmentation tracker SiamMask on all benchmarks in all48

metrics and contributes towards narrowing the gap between two, currently separate, domains of short-term49

tracking and video object segmentation, thus blurring the boundary between the two.50

3 Methodology51

Our work is based on the code provided by the authors of the original paper. The code consists of two parts - training52

code and evaluation code based on the pytracking framework [2]. The training code consists of neural network53

Metrics D3S ATOM SiamMask SiamFCv2 SiamFC GOTURN CCOT MDNet
AO 59.7 55.6 51.4 37.4 34.8 34.2 32.5 29.9

SR0.75 46.2 40.2 36.6 14.4 9.8 12.4 10.7 9.9
SR0.5 67.6 63.5 58.7 40.4 35.3 37.5 32.8 30.3

Table 3: GOT-10k test set – comparison with state-of-the-art trackers.

2

Metrics D3S SiamRPN++ SiamMask ATOM MDNet CFNet SiamFC ECO
AUC 72.8 73.3 72.5 70.3 60.6 57.8 57.1 55.4
Prec. 66.4 69.4 66.4 64.8 56.5 53.3 53.3 49.2

Prec.N 76.8 80.0 77.8 77.1 70.5 65.4 66.3 61.8
Table 4: TrackingNet test set – comparison with state-of-the-art trackers.

description, hyperparameter settings, training cycle, etc. We have revised and reorganized this part of the code to leave54

only the code necessary to investigate reproducibility.55

3.1 Model descriptions56

The backbone features are extracted from the target search region resized to 384 × 384 pixels. The backbone network in57

D3S is composed of the first four layers of ResNet50, pre-trained on ImageNet for object classification. Two models58

are used in D3S to robustly cope with target appearance changes and background discrimination: a geometrically59

invariant model (GIM) and a geometrically constrained Euclidean model (GEM). The GIM and GEM pathways provide60

complementary information about the pixel-level target presence. GEM provides a robust, but rather inaccurate estimate61

of the target region, whereas the output channels from GIM show greater detail, but are less discriminative. These62

models process the input in parallel pathways and produce several coarse target presence channels, which are fused into63

a detailed segmentation map by a refinement pathway. A refinement pathway is thus designed to combine the different64

information channels and upscale the solution into an accurate and detailed segmentation map. For a more detailed65

description see the original paper [1].66

3.2 Datasets67

The model was trained on the YouTube-VOS dataset [3] (2018 version, train part, 3471 sequences). The model68

evaluation was carried out on VOT2016 and VOT2018 [4] (60 sequences each), GOT10-k (180 test sequences),69

TrackingNet [5] (511 test sequences) datasets.70

3.3 Hyperparameters71

We used hyperparameters settings provided in the original paper [1]: batch size 64, 40 epochs training with 100072

iterations per epoch, ADAM optimizer with a learning rate set to 0.001 and with 0.2 decay every 15 epochs.73

3.4 Experimental setup and code74

Firstly, datasets were downloaded (by URL or using toolkits) and the model was trained. Model evaluation was carried75

out by the pytracking framework [2], which generates output files with target bounding boxes for each frame of each76

sequence. For metric calculation we used toolkits supplied with datasets. For exact commands see code and description77

in supplementary materials (Readme.md).78

3.5 Computational requirements79

Our work was performed using resources of the NRNU MEPhI high-performance computing center. For model training80

end evaluation we used NVIDIA Tesla V100 GPU with CUDA 9.2 and pytorch 1.7.1. The training time was 16 hours.81

Evaluation speed will be reported in section 4.82

4 Results83

For evaluated D3s on the visual object tracking benchmarks and calculated metrics to support claims 1 and 2 of84

the original paper. A comparison of the results obtained with those given in the original article is shown in table 5.85

Evaluation speeds (FPS) listed in table 6.86

87

88

3

Dataset Metric Our result Original result
vot2016 EAO 0.494 0.493

Acc. 0.67 0.66
Rob. 0.131 0.131

vot 2018 EAO 0.487 0.489
Acc. 0.63 0.64
Rob. 0.153 0.150

GOT10-k AO 0.60 59.7
SR0.75 47.3 46.2
SR0.5 68.6 67.6

TrackingNet AUC 72.8 72.8
Prec. 66.5 66.4

Prec.N 76.8 76.8
Table 5: Comparison of the results

Dataset vot2016 vot2018 GOT10-k TrackingNet
Our result 22 21 16 23

Original result 25
Table 6: Comparison of the results

5 Discussion89

The difference of the reproduced model quality metrics does not exceed 3%. These differences do not change the90

position of D3S relative to other architectures in comparison. It is found that the speed of model evaluation (FPS) differs91

significantly for different datasets, whereas the original paper provided a single estimate of a speed. The resulting92

speeds of the model are lower than those indicated in the original article but still close to real-time. The reason for the93

differences may be the various hardware configurations of the computers used for the experiments. Thus, the data sets94

in our case were stored on a separate machine connected to the computational node with the GPU over the network.95

This could have affected the speed degradation.96

5.1 What was easy97

The open-source code of the authors was very helpful. Also, the evaluation pipeline in visual object training is not98

trivial, and the authors of the original code use the pytracking [2] framework for this task. It is significantly reduced the99

complexity of our work.100

5.2 What was difficult101

We had a few problems due to incompatibilities between the versions of pytorch and CUDA used in the original code102

and required to work with our hardware. In addition, it is not clear from the original paper how metrics were calculated103

from the raw output (bounding boxes): by toolkits supplied with datasets or somehow else.104

5.3 Communication with original authors105

We did not communicate with the authors at all, except to use their publicly available source code.106

References107

[1] Alan Lukežič, Jiří Matas & Matej Kristan.(2020) D3S - A Discriminative Single Shot Segmentation Tracker.108

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 7133-7142.109

[2] Pytracking framework. URL https://github.com/visionml/pytracking110

[3] YouTube-VOS dataset. URL https://youtube-vos.org/dataset/111

[4] VOT challenge. URL https://www.votchallenge.net/challenges.html112

[5] TrackingNet dataset. URL https://tracking-net.org/113

4

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Hyperparameters
	Experimental setup and code
	Computational requirements

	Results
	Discussion
	What was easy
	What was difficult
	Communication with original authors

