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Abstract

Most deep learning models in chest X-ray prediction utilize the posteroanterior (PA) view
due to the lack of other views available. PadChest is a large-scale chest X-ray dataset
that has almost 200 labels and multiple views available. In this work, we use PadChest
to explore multiple approaches to merging the PA and lateral views for predicting the
radiological labels associated with the X-ray image. We find that different methods of
merging the model utilize the lateral view differently. We also find that including the
lateral view increases performance for 32 labels in the dataset, while being neutral for the
others. The increase in overall performance is comparable to the one obtained by using
only the PA view with twice the amount of patients in the training set.

Keywords: convolutional neural networks, chest x-rays, lateral views, multi-label classifi-
cation

1. Introduction

Large scale public chest X-ray datasets usually have had only the posteroanterior (PA)
view available (e.g. the ChestX-ray14 (Wang et al., 2017) dataset). This has allowed the
development of several convolutional neural networks (CNN) based approaches that are
built to use only the PA view for automatic prediction (Rajpurkar et al., 2017; Yao et al.,
2017; Rajpurkar et al., 2018; Li et al., 2018; Cohen et al., 2019). Other views, such as the
lateral (L) view, are not commonly acquired as they are difficult to read without specific
training (Feigin, 2010) and only considered useful for specific diagnoses. The lateral view,
in particular, is now usually replaced by a CT scan which is only ordered if the PA view is
insufficient to diagnose. This practice delays any diagnosis or other actions as the patient
would typically need to schedule another appointment. It also increases risk of exposure to
larger doses of radiation used in performing CT scans.

There are specific cases in which the lateral view provides information for diagnosis that
isn’t clear or visible on the PA view (Shiraishi et al., 2007; Feigin, 2010; Ittyachen et al.,
2017). For example, up to 15% of the lung can be obscured by cardiovascular structures and
the diaphragm (Raoof et al., 2012). It is unclear if the information is completely missing
from the PA view, or if it is present but in a way that makes it too difficult for a human
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to read. In the first case, the lateral view becomes relevant for making a prediction but a
sufficiently advanced model could make it redundant in the second.

This question was previously challenging to answer due to the lack of public large scale
datasets of paired PA and L views. But the previous year has seen the release of sizeable
de-identified chest X-ray datasets containing multiple views, namely CheXpert (Irvin et al.,
2019) & MIMIC-CXR (Johnson et al., 2019) from the United States and PadChest (Bustos
et al., 2019) from Spain. This provides us with an opportunity to explore the usefulness of
the lateral view. In this work, we analyse the efficacy of multi-view models on the PadChest
dataset. Preliminary work by Bertrand et al. (2019) suggests there is value in predicting
from a lateral image (with a single view model) for certain radiological labels. We choose
PadChest for our analysis due to the variety of radiological labels: it has a total of 194
distinct labels compared to 14 in the other two. This enables a much more fine-grained
analysis of how the lateral view can contribute for chest X-ray prediction. We investigate
the following questions —

• Is there a benefit of also including the lateral view in a prediction model? If so, in
which cases specifically?

• Is there a trade-off between training on PA views of a large amount of patients and
training on paired PA & L views of a smaller amount of patients?

The structure of the paper is as follows. We provide a brief overview of multi-view CNNs
in radiology in §2 and a description of PadChest and the preprocessing we used in §3. We
present the models we used in §4. The experiments and results are shown in §5, and finally
we address these questions with our findings in §6.

2. Related work

Using multiple views can help in increasing detection performance in radiology. Setio et al.
(2016) achieved an increase of around 54% and 70% in baseline metrics when the number
of views was increased to 3 and 9 respectively from 1 in a pulmonary nodule detection task.
Shachor et al. (2019) found that their ‘Mixture of Views’ models achieved higher metrics
than single view methods for breast cancer classification and brain MRI segmentation tasks.
Multi-view networks also increased performance in tasks like mammogram classification
(Geras et al., 2017; Carneiro et al., 2017; Trent Kyono et al., 2019; Nasir Khan et al., 2019),
emphysema classification (Bermejo-Peláez et al., 2018), lung segmentation (El-Regaily et al.,
2019), fracture detection (Kitamura et al., 2019) and lesion detection (Li et al., 2019).

These works provide a trend of a gain in performance when multiple views are used,
which motivates our work. The use of the lateral view in deep learning on chest X-rays has
been limited. Rajkomar et al. (2017) tried to predict whether an X-ray was a frontal view
or lateral on a dataset from California. Rubin et al. (2018) is one of the initial works that
assessed whether combining the frontal and lateral views would help the network. They
found that combining the PA and L views led to an increase of 3% in the average AUC over
all labels and improved the performance for 12 of the 14 labels in MIMIC-CXR.

There has not been any assessment of multi-view models on the PadChest dataset, to
the best of our knowledge. While Yao et al. (2019) performed a preliminary benchmark on
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a simple binary classification (normal/abnormal), it used only the PA view. Bertrand et al.
(2019) observed that the lateral views did contain useful information for some prediction
tasks on PadChest which is the primary motivation for our analysis on this dataset.

3. Data and preprocessing

We use the PadChest (Bustos et al., 2019) dataset in our analysis. It is comprised of 160,000
chest X-rays and reports gathered from a Spanish hospital spanning over 67,000 patients
with multiple visits and views available. The images have been annotated with various
types of radiological findings and differential diagnoses.

We extract the set of patients who have a paired PA and lateral view available forming
a total of 30,699 patients. We use only the first study from every patient and discard any
additional ones. We resize the images to 224×224 pixels, utilizing a center crop if the aspect
ratio is uneven, and scale the pixel values to [−1, 1] for the training. Each visit can have
any number of labels from the total of 194. Since the PadChest dataset defines a hierarchy
of labels, we mapped the labels to their respective top level one, in order to maximize the
number of images for each label. From those top level labels, we retain only those occurring
in at least 50 patients which reduces our set of labels to 64. Some of them are of low clinical
interest, such as “electrical device”, however they provide a sanity check on the results of
the models. The numbers of samples per label we have kept is shown in Figure 3.

4. Models

All models are built with four dense blocks following the same configuration as DenseNet-
121 (Huang et al., 2017; Rajpurkar et al., 2017). Along with one type of single view model,
we test four different methods of combining both views.

1. DenseNet: This is a standard DenseNet-121 with its fully connected layer modified
for a multi-label output. It is used as a single view model and serves as the baseline.
We use two DenseNets, each trained and tested on the PA and L views respectively.

2. Stacked: The architecture is essentially the same as a standard DenseNet-121 but
the lateral view is stacked as a second channel of the PA image. It is the simplest way
to combine the views before giving them to a model. This model is not designed to
work if only one view is available.

3. DualNet (Rubin et al., 2018): The PA and L views are processed by two separate
CNNs composed of four DenseNet blocks each. Their output feature maps are then
passed through a global average pooling layer, concatenated and given to a fully
connected layer that maps them to the output labels. Similar to Stacked, this model
also relies on both views to be available to make a prediction.

4. HeMIS (Havaei et al., 2016): The HeMIS architecture involves propagating each
input view/modality through its separate set of layers, combining them by calculating
pixelwise statistics and propagating further for classification. We create a HeMIS-style
architecture where the PA and L views are processed separately by two separate CNNs
‘branches’ composed of the first three DenseNet blocks each. The mean and variance
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of the output feature maps of both CNNs are computed pixelwise which are then
concatenated and given to another dense block. The output of this block is passed
through a global average pooling layer and given to a fully connected layer that maps
them to the output classes. This model works even if only one view is available, with
variance of the feature maps substituted with a tensor of zeroes of the same shape.

5. AuxLoss: We modify DualNet by adding two separate fully connected layers to the
PA and L branches respectively that map it to the same output labels and train all
three losses jointly. Other than concatenating the pooled vectors of the branches, we
also add an option to average them. Inspired by Lee et al. (2015) (we classify the
output of each branch rather than layer) and Trent Kyono et al. (2019), this could
be considered as a DualNet regularized by auxiliary view-specific losses. This model
is designed to be robust to missing views; if a view is not present the prediction is
calculated off the available view’s fully connected layer.

LPA LPA LPA

mean

HeMIS DualNet

concat

AuxLoss

PA loss Joint loss L losslossloss

LPA

Stacked

loss

concat

concat/mean

Figure 1: High level topology of the multi-view models used. PA and L indicate the input
images while “loss” indicates where the prediction error is computed. Arrows
indicate the computation flow during the forward pass.

5. Experiments

We train all models for 40 epochs with Adam and a batch size of 8. Other hyperparameters
differ for the models. In addition, we use curriculum learning with HeMIS and AuxLoss
denoted by the ‘-CL’ suffix hereon. A description of our training details including hyperpa-
rameters and how we implement curriculum learning is given in Appendix B.

5.1. Performance

We evaluate the multi-view models using the AUC (averaged over the 64 labels) achieved
in three configurations of the test set. The first is the general case where paired views are
available for all patients. The other two are the cases when only a single view is available:
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either only the PA view is present or the L view. For models that require both views to be
available (Stacked and DualNet), we use a zero matrix in place of the missing view. With
this testing regime, we want to see how the multi-view models perform with only one view
relative to the respective single view model. We perform five runs of every model with a
different random split every time and report the results, averaged over all runs, in Table 1.

It is apparent that there is very little difference between the multi-view models and most
of the models’ confidence intervals overlap when both views are available. We perform t-
tests between pairs of all models’ performances and find that only two pairs have differences
that are statistically significant. AuxLoss-CL achieves a significantly better performance
than DualNet (p = 0.003) and Stacked (p = 0.017) but not the rest. A very interesting
observation is that the Stacked model performs as well as the rest, despite the lack of a
spatial correspondence between the channels of the input.

The multi-view models diverge in performance when given only a single view. In the
case of testing on only PA images of patients in the test set, DualNet emerges as a clear
winner. Its confidence interval seems very close to that of Stacked, AuxLoss and AuxLoss-
CL but a t-test proves the difference is statistically significant (p = 0.012, p = 0.002,
p = 0.001 respectively). The AUC of the single view DenseNet-PA lies between DualNet
and Stacked and we find that the two multi-view models are not significantly better or
worse respectively. Curriculum learning also seems to not have a discernible effect, in fact
HeMIS with curriculum learning is much worse than a vanilla HeMIS. When evaluating on
only lateral images, there is a large change in the performance. While the AuxLoss models
experience a 5-7% decrease in AUC relative to paired images, the other models deteriorate
by more than 20%. The single view model is better than the multi-view in this case.

Table 1: Test AUC achieved by the different models, averaged over five runs with standard deviation
also reported. DenseNet is trained on a single view denoted by the suffix, rest are trained
on both views. The symbol in the superscript indicates the difference between a pair of
models in the same column is statistically significant.

Model
Test AUC

Both PA L

DenseNet-L — — 0.780± 0.004

DenseNet-PA — 0.793± 0.007 —

Stacked 0.804± 0.003∗ 0.786± 0.009‡ 0.595± 0.046

DualNet 0.801± 0.003† 0.800± 0.004†∗‡ 0.539± 0.018

HeMIS 0.803± 0.006 0.758± 0.014 0.603± 0.044

HeMIS-CL 0.803± 0.007 0.723± 0.017 0.627± 0.036

AuxLoss 0.803± 0.006 0.787± 0.005∗ 0.753± 0.002

AuxLoss-CL 0.809± 0.003∗† 0.788± 0.005† 0.771± 0.003
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5.2. How does the lateral view help in prediction?

As evidenced in Section 5.1, there is a major difference between the multi-view models when
it comes to the view(s) they have to use for making a prediction. We wanted to examine
how the AUC is affected when the proportion of patients having a paired L view in the test
set is varied. We do this in Figure 2 by iteratively removing the lateral view for 1% of the
patients and testing the models, incrementing the percent removed until 100%.

The most conspicuous observation is that the DualNet does not seem to use the lateral
view for prediction at all. HeMIS is also unusual where adding paired views actually hurts
performance until the proportion crosses a threshold. This could be caused by the usage of
variance in combining the views: when HeMIS was tested on only PA images, the variance
of the feature maps was substituted with a zero tensor causing the model to believe there
was zero variance. As we add patients with paired lateral views, smaller proportions of
paired views led to high variance causing the dip in the curve in Figure 2. Past a certain
proportion, the variance of the feature maps started approximating the population variance
which led to increasing performance.

The performance of the multi-view models in the three testing regimes (Table 1) suggests
that the AuxLoss model combined with curriculum learning utilizes the lateral view most
productively. We use AuxLoss-CL to find the effect of the lateral view on individual labels
in the dataset: we perform a comparison between the label-wise AUC of AuxLoss-CL and
DenseNet-PA averaged over all runs. If the difference between the average AUC for a given
label is lesser than the standard deviation of the better model, we annotate that label as
indifferent to the model used. We find that 32 of the 64 labels see an improvement in AUC
when both the views are used jointly, visualized in Figure 3

0.2 0.4 0.6 0.8 1.0

Proportion of patients with a paired lateral image

0.72

0.74

0.76

0.78

0.80
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U

C

AuxLoss

AuxLoss-CL

DualNet

HeMIS

HeMIS-CL

Stacked

Figure 2: Change in AUC as proportion of patients with paired lateral views increase. Only multi-
view models can be evaluated here. Here 0.2 indicates that 20% of the PA image samples
used to test the model had a corresponding L view and the rest were treated as single
images (If they had a L view in the dataset it was ignored).
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Figure 3: The subset of the 64 labels we use in PadChest that see an improvement in AUC with
AuxLoss-CL. The improvement is considered relative to the AUC achieved by the single
view DenseNet-PA which is denoted by the darker bar. The number in the brackets refers
to the number of samples with the label

5.3. Benefits of increasing the training set size

We form a second dataset by adding the remaining patients that have a PA view available;
we call this the extended dataset. This adds 27,576 PA images from new patients which are
used only for training the model. We trained the DenseNet-PA and AuxLoss-CL models on
this extended dataset, and evaluated them on the main test set. Those results are reported
in Table 2.

The DenseNet-PA model gains one percent of AUC from doubling the dataset size.
This marginal increase in performance from a major increase in dataset size is consistent
with what is observed in other computer vision tasks (Sun et al., 2017). We examine how
the AUC of individual labels changes between the DenseNet-PA trained on the main and
extended datasets and find that, similar to AuxLoss-CL, 32 labels see an increase with 22
of them overlapping with the AuxLoss-CL. The top three increases are in the labels ‘azygos
lobe’ (+24.1%), ‘tracheal shift’ (+12.4%) and ‘diaphragmatic eventration’ (+6.3%). A plot
detailing all the improvements in the style of Figure 3 is included in Appendix A.

AuxLoss-CL is indistinguishable in performance from the extended DenseNet-PA. It also
became worse at utilizing both views, likely due to the dominant presence of PA images.
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Careful over-sampling of joint and lateral images during the curriculum learning might fix
that problem.

Table 2: AUC and standard deviation of the DenseNet-PA and AuxLoss models trained on the
main and extended dataset but evaluated on the same main test set. The size of the
training set for the extended dataset is double that of the main. The Main AUC column
copies the values from Table 1 for easier reference.

Train Data (AUC on test reported)

Model Test Data Main Extended

DenseNet-PA PA 0.793 ± 0.007 0.813 ± 0.005

AuxLoss-CL PA 0.788 ± 0.005 0.812 ± 0.006

AuxLoss-CL Both 0.809 ± 0.003 0.772 ± 0.018

6. Discussion

To return to the questions posed in the introduction, it appears a well-tuned PA-only
model is competitive with a well-tuned joint model. However, for the specific labels shown
in Figure 3, the lateral view allows a statistically significant improvement relative to using
just the PA view. We proposed a joint model using auxiliary tasks that gives strong results
with any subset of views.

While all multi-view models offer similar performance when given both views, they do
not perform as well when given only one view. Testing these models on different proportions
of paired L images brings very intriguing observations to surface. First, it indicates that
models other than AuxLoss were relying too heavily on the PA view to make a prediction,
especially DualNet which completely ignores the L view. Second, it might explain how
the Stacked model performs well on the first two testing regimes: it just learns to use less
information from the second channel of the input image to favour predicting from the first
channel only. Third, adding curriculum learning to AuxLoss mitigates this reliance on the
PA view but does not have much effect on HeMIS.

For the second question, we found that doubling the number of PA images in the training
set only gives a marginal increase in performance. A joint model trained on only half the
data gives the same performance. If it is more costly to bring in a new patient than to
acquire another view for an already present patient, then our results suggest acquiring both
views for a smaller number of patients rather than one view on twice that number.

We also find that although the different approaches achieve similar performance with
both views, the training is less sensitive to hyperparameters for the AuxLoss and DualNet
models shown in Figure 4. With this result, we would conclude that these models would be
easier to train as the range of optimal hyperparameters would be relatively wider.

This study has two limitations. First, while we have shown that the lateral view is
useful for some labels, we did not sort those by clinical relevance. This can be seen notably
by the presence of “electrical device” or “catheter”. It might be that most of those labels
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are extremely rare, or typically detected through other means than a chest x-ray. Second,
this study is based entirely on the PadChest dataset. The population differs from other
available datasets, at least by ethnicity, but likely also by clinical practice. In other words,
we expect both covariate shift and concept shift (Moreno-Torres et al., 2012). This implies
that while the lateral view will still be useful for many labels, those labels might not be the
same as the ones we found here.

Stacked

DualNet

HeMIS

HeMIS CL

AuxLoss

0.60 0.65 0.70 0.75 0.80
AUC

AuxLoss CL

Figure 4: Distributions of AUC for a 40 combination hyperparameter search for each model. Some
models are much more robust to hyperparameter changes than others.
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PadChest: A large chest x-ray image dataset with multi-label annotated reports.
arXiv:1901.07441, 2019.

Gustavo Carneiro, Jacinto Nascimento, and Andrew P Bradley. Automated Analysis of Un-
registered Multi-View Mammograms With Deep Learning. IEEE transactions on medical
imaging, 2017. doi: 10.1109/TMI.2017.2751523.

Joseph Paul Cohen, Paul Bertin, and Vincent Frappier. Chester: A Web Delivered Locally
Computed Chest X-Ray Disease Prediction System. arXiv:1901.11210, 2019.

Salsabil Amin El-Regaily, Mohammed Abdel Megeed Salem, Mohamed Hassan Abdel Aziz,
and Mohamed Ismail Roushdy. Multi-view Convolutional Neural Network for lung nodule
false positive reduction. Expert systems with applications, 2019. doi: 10.1016/j.eswa.2019.
113017.

David S Feigin. Lateral Chest Radiograph. A Systematic Approach. Academic Radiology,
2010. doi: 10.1016/j.acra.2010.07.004.

Krzysztof J. Geras, Stacey Wolfson, Yiqiu Shen, Nan Wu, S. Gene Kim, Eric Kim, Laura
Heacock, Ujas Parikh, Linda Moy, and Kyunghyun Cho. High-Resolution Breast Can-
cer Screening with Multi-View Deep Convolutional Neural Networks. arXiv:1703.07047,
2017.

Mohammad Havaei, Nicolas Guizard, Nicolas Chapados, and Yoshua Bengio. HeMIS:
Hetero-modal image segmentation. In Medical Image Computing and Computer Assisted
Intervention, volume 9901 LNCS, 2016. doi: 10.1007/978-3-319-46723-8{\ }54.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
Connected Convolutional Networks. In Computer Vision and Pattern Recognition, 2017.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, and Others. Chex-
pert: A large chest radiograph dataset with uncertainty labels and expert comparison.
In Thirty-Third AAAI Conference on Artificial Intelligence. aaai.org, 2019.

Abraham M. Ittyachen, Anuroopa Vijayan, and Megha Isac. The forgotten view: Chest
x-ray - lateral view. Respiratory Medicine Case Reports, 2017. doi: https://doi.org/10.
1016/j.rmcr.2017.09.009.

Alistair E W Johnson, Tom J Pollard, Seth Berkowitz, Nathaniel R Greenbaum, Matthew P
Lungren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr: A large publicly
available database of labeled chest radiographs. arXiv:1901.07042, 2019.

10



Gene Kitamura, Chul Y Chung, and Barry E Moore, 2nd. Ankle Fracture Detection Uti-
lizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De
Novo Training, and Multiview Incorporation. Journal of digital imaging, 2019. doi:
10.1007/s10278-018-0167-7.

Chen Yu Lee, Saining Xie, Patrick W. Gallagher, Zhengyou Zhang, and Zhuowen Tu.
Deeply-supervised nets. In International Conference on Artificial Intelligence and Statis-
tics (AISTATS). Microtome Publishing, 2015.

Zhe Li, Chong Wang, Mei Han, Yuan Xue, Wei Wei, Li-Jia Li, and Li Fei-Fei. Thoracic
disease identification and localization with limited supervision. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018.

Zihao Li, Shu Zhang, Junge Zhang, Kaiqi Huang, Yizhou Wang, and Yizhou Yu. MVP-
Net: Multi-view FPN with Position-aware Attention for Deep Universal Lesion Detection.
arXiv:1909.04247, 2019.
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Appendix A. Improvement in labels with extended dataset and paired
views
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Figure 5: The subset of the 64 labels we use in PadChest that see an improvement in AUC when the
extended dataset is used with the DenseNet-PA model. The improvement is considered
relative to the AUC achieved by the single view DenseNet-PA on the main dataset which
is denoted by the darker bar. The number in the brackets before and after the plus sign
refers to the number of samples in the main and extended dataset with the label
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Table 3: Increase in AUC relative to DenseNet-PA (Main) for labels that improved with both
DenseNet-PA (Extended) and AuxLoss (Main). Averaged over all runs

Labels
AUC increase

DenseNet-PA (Extended) AuxLoss-CL (Main)

azygos lobe 0.241 0.076
diaphragmatic eventration 0.063 0.052
hernia 0.059 0.043
air fluid level 0.051 0.021
hemidiaphragm elevation 0.040 0.036
catheter 0.040 0.056
fibrotic band 0.037 0.020
mass 0.032 0.023
mediastinal enlargement 0.031 0.014
volume loss 0.028 0.024
costophrenic angle blunting 0.026 0.035
aortic elongation 0.026 0.013
pulmonary fibrosis 0.025 0.042
artificial heart valve 0.024 0.034
aortic atheromatosis 0.023 0.014
emphysema 0.018 0.021
surgery 0.015 0.029
pneumonia 0.014 0.016
pleural effusion 0.010 0.024
COPD signs 0.009 0.019
cardiomegaly 0.008 0.004
electrical device 0.004 0.004
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Appendix B. Hyperparameters

B.1. Stability of training

For each model, we performed a random search using Orion (Bouthillier et al., 2019) over
the learning rates, the amount of dropout, and for CL models the probability of dropping
a view for each batch. 40 combinations of those hyperparameters were tried per model.

In Figure 4, we show the distributions of the AUC on the validation set over the com-
binations, per model. We observe strong variations in the shape of those distributions.
HeMIS, for example, is very sensitive to the choice of hyperparameters, whereas AuxLoss
is much more concentrated.

B.2. Training details

For all models, we use the Adam optimizer and a batch size of 8 and train up to 40 epochs.
We also compute class weights (clamped at 5) to balance the loss as the labels are highly
imbalanced. All models use early stopping based on the AUC achieved on the validation
set.

Learning rate The initial learning rate differs for every model but it is decayed by a
factor of 10 halfway through training for all. These model-specific hyperparameters were
found through an extensive random search and are given in Table 4.

Dropout We use dropout with a different probability for each model, given in Table 4

Dataset We utilize a 60-20-20 split in the dataset for train, validation and test sets. We
also use data augmentation such as adding random translations and rotations. We also add
random Gaussian noise to the image.

Loss weights for AuxLoss AuxLoss uses a weighted sum of the three losses (averaged
over all labels) with weights of 1.0, 0.3 and 0.3 for the joint, PA and L losses.

Curriculum learning On HeMIS, we randomly drop one of the views with probability
0.25 each. For AuxLoss, we randomly select one of the PA or L loss with probability of
0.2 for each and use that to update that view’s branch instead of the entire model. The
weighted sum of the three losses is used to update the entire model only 60% of the time.
This is done to make the model rely less on having both views available all the time.
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Table 4: Hyperparameters of the best models found. Most joint models are composed of 3
parts, each with a different learning rate: the PA branch, the L branch, and a com-
mon branch. Curriculum learning (CL) models have an additional hyperparameter
which is the probability of dropping one view for any given sample.

Model LR Dropout View dropping

DenseNet-PA 5.8e−4 0.0
DenseNet-L 2.6e−4 0.2
Stacked 1.9e−4 0.1
DualNet 3.0e−4, 7.6e−4, 2.7e−4 0.2
HeMIS 3.8e−4, 2.0e−5, 2.8e−5 0.1
HeMIS-CL 1.7e−4, 5.6e−4, 7.2e−5 0.1 0.5
AuxLoss 2.1e−4, 1.9e−4, 6.6e−4 0.2
AuxLoss-CL 6.9e−5, 9.5e−5, 5.2e−5 0.1 0.4
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