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Abstract: Large language models (LLMs) can provide rich physical descriptions
of most worldly objects, allowing robots to achieve more informed and capable
grasping. We leverage LLMs’ common sense physical reasoning and code-writing
abilities to infer an object’s physical characteristics—mass m, friction coefficient
µ, and spring constant k—from a semantic description, and then translate those
characteristics into an executable adaptive grasp policy. Using a two-finger grip-
per with a built-in depth camera that can control its torque by limiting motor cur-
rent, we demonstrate that LLM-parameterized but first-principles grasp policies
outperform both traditional adaptive grasp policies and direct LLM-as-code poli-
cies on a custom benchmark of 12 delicate and deformable items including food,
produce, toys, and other everyday items, spanning two orders of magnitude in
mass and required pick-up force. We then improve property estimation and grasp
performance on variable size objects with model finetuning on property-based
comparisons and eliciting such comparisons via chain-of-thought prompting. We
also demonstrate how compliance feedback from DeliGrasp policies can aid in
downstream tasks such as measuring produce ripeness. Our code and videos are
available at: https://deligrasp.github.io/

1 Introduction
Large language models (LLMs) are able to supervise robot control and learning in manipulation
from high-level step-by-step task planning [1, 2, 3] to low-level motion planning [4, 5]. LLMs
additionally aid in robot manipulation via understanding a given object’s semantic properties and
delineating appropriate grasp positions conditioned on those semantic affordances [6, 7, 8].

These works usually assume that the acts of “picking” and “placing” are straightforward tasks. This
is not the case for contact-rich manipulation, in which LLM-supervised methods [9, 10, 11] still do
not account for force-adaptive tasks like grasping a paper airplane or ripe fruits and vegetables and
are prone to damaging such objects. Algorithmic methods for grasping delicate objects [12, 13, 14]
require custom hardware and are tested on a limited set of items. LLMs provide an opportunity to
leverage their common-sense physical reasoning [15] to produce grasp skills which are both force-
adaptive and for the open-world. This is particularly important for semi-structured environments
like supermarkets that are subject to a constantly rotating stock or dealing with loose food items
such as fruits, vegetables, and pastries that come in a large variety of changing shapes. Yet, LLMs
trained on public data are unlikely to contain information on every possible object, in particular
when considering specialty domains such as warehouse picking [16] or industrial assembly [17] that
often include bespoke parts.

We propose DeliGrasp, an extension of LLM-supervised robot learning to contact-rich manipula-
tion. We posit that LLMs can infer the physical characteristics of gripper-object interactions, in-
cluding mass, spring constant, and friction. We then formulate an adaptive grasp controller with
slip detection derived from the inferred characteristics, endowing LLMs embodied with any force-
controllable gripper with adaptive grasp skills for objects spanning a range of weight, size, fragility,
and compliance. We also compare DeliGrasp against traditional adaptive grasp algorithms, as well
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Figure 1: Large language models (LLMs) have rich physical knowledge about worldly objects, but cannot
directly reason robot grasps for them. Paired with open-world localization and pose estimation (left), our
method (middle), queries LLMs for the salient physical characteristics of mass, friction, and compliance as the
basis for an adaptive grasp controller. DeliGrasp policies successfully grasp delicate and deformable objects
(right). These policies also produce compliance feedback as measured spring constants, which we leverage for
downstream tasks like picking ripe produce (middle).

as demonstrate how object knowledge can be augmented by finetuning the LLM using property-
based comparisons.

We pair DeliGrasp with an open-world localization pipeline which, given an “object description,”
identifies the object and an initial grasp position. The same “object description” and associated
“grasp verb” are the inputs to DeliGrasp, which produces executable Python code controlling a
gripper’s compliance, force, and aperture as a complete grasp policy for the given description.

By conducting robotic grasping experiments on 12 different objects, we show that DeliGrasp per-
forms successful, minimally-damaging grasps on a custom benchmark of delicate objects which
traditional adaptive grasping methods are not capable of. We then improve property estimation and
grasp performance using the PhysObjects dataset [11] as well as by eliciting explicit comparisons
with chain-of-thought prompting (CoT) [18].

2 Related Work

LLMs, equipped with an internet-scale amount of common sense information and logical and phys-
ical reasoning [18], are able to comprehend high-level task knowledge, physical context, and robot
affordances. For task and motion planning, LLMs can generate navigation and pick-and-place in-
structions to complete complex and novel tasks [1]. LLM code-writing further augments robot
capabilities with closed-loop control [2], new skill generation [3], and translating language to robot
parameters for low-level dynamic control [4]. For semantically-afforded grasping, LLMs, in con-
junction with other learning methods [8, 19], can identify appropriate grasp locations [6, 7, 20].

For contact-rich manipulation, LLMs have been finetuned on [9, 21] to learn relative object prop-
erties such as mass or fragility, but are extensible to low-level control [11]. They have also been
prompted with environmental and object properties [10] to parameterize force constraints for robot
motion, but not gripper-object interaction. No methods, however, address both the semantics and
dynamics requisite for delicate grasping of a broad variety of objects. In comparison, our method
utilizes LLMs to estimate object physical properties, which such models are more abundantly pre-
trained on than code, reward functions, or other niche robot control domains. These estimates are
then paired with an underlying algorithmic grasp controller. LLM property estimation, as an approx-
imation of privileged expert knowledge, provides two advantages: simplification of our underlying
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adaptive grasp controller relative to classical methods, which rely on in-motion slip detection for
adaptive grasping and clarity of the low-level controller such that it is interpretable and predictable.

Grasping delicate objects can be achieved with hardware, such as relying on the compliance of soft
grippers, but these end-effectors still require semantic information for control if these grippers must
grasp both lightweight and heavy objects [22]. In this paper, we adopt a control algorithm that relies
on interaction force measurements from a rigid gripper similar to [12, 13, 23, 24] for minimally de-
forming grasps and for measuring spring constants [25]. Where these adaptive grasping methods are
hardware-specific, ours can be adapted to any force-controllable end-effector, and LLM-estimated
object properties reduce controller complexity by approximating privileged information.

3 Methods

We source delicate objects for our dataset primarily from supermarkets, kitchens, and food pantries,
shown in Figure 2c and describe object mass and object-specific thresholds for unsuccessful, “de-
forming” grasps in Table 1, shown in Figure 2a. For objects with empty entries in the “Input Phrase”
column, we do not modify or add descriptions beyond the name of the object.

Table 1: Delicate and Deformable Object Properties

ID Object Width Mass Fmin “Object Description” Input Invalidating
(mm) (g) (N) to LLM & VLM Deformation

1 Paper Airplane 20 0.8 0.02 — crumples
2 Cup (empty) 75 3.6 0.11 “empty paper cup” crumples, creased
3 Dried Yuba 30 5.5 0.16 “yuba (dried tofu skin)” cracks, shatters
4 Raspberry 20 6 0.18 — juices, torn
5 Hard Taco 65 15 0.44 “hard-shell tortilla” cracks, broken
6 Mandarin 50 56 1.65 — inelastic deform
7 Stuffed Toy 28 74 2.18 “tail of a stuffed animal” inelastic deform
8 Cup (water) 75 106 3.12 “paper cup filled with water” spillage
9 Bag (noodles) 90 191 5.62 “bag containing noodles” cracks
10 Avocado 60 204 6.00 — inelastic deform
11 Spray Bottle 50 250 7.36 “bottle filled with water” spillage
12 Bag (rice) 80 900 26.49 “bag of rice” N/A

The evaluated objects span from 0.8 to 900g and soft produce to rigid plastic, and they are commonly grasped in
real-world environments. We compute approximate minimum grasping force, Fmin from measured properties.
“Object Description” inputs are paired with a grasp verb, “pick,” to DeliGrasp prompts to generate policies.
We also qualify what kind of damage or “invalidating deformation” renders a grasp a failure.

Our pipeline takes as input a an “object description”, as described in Table 1, and a “grasp verb,”
which for the delicate object dataset evaluation is uniformly “pick.” Our perception method, adapted
from [6], takes the “object description” and semantically segments the object from an RGB-D image
with OWL-ViT [26] and “Segment Anything” [27]. We crop the corresponding depth image with
the generated mask, produce a point cloud object representing the segmented object, and perform
Principal Component Analysis to compute a grasp pose that is aligned with the first three principal
axes as well as a minimum object grasp width[28], an example is shown in Figure 1, left.

We then prompt the LLM to define and generate grasps with a dual-prompt structure similar to that
of Language to Rewards [4], with an initial grasp “descriptor” or “thinker” prompt which produces
a structured description, which the subsequent “coder” prompt translates into an executable Python
grasp policy that modulates gripper compliance, force, and aperture according to Algorithm 1 (full
prompts in Appendix A.6, A.7). To execute grasp policies, we use a UR5 robot arm with the open-
source MAGPIE gripper [29] and implement current-draw derived force control, from a range of
0.15 N to 16 N (default output force is 4 N). Our experimental setup is shown in Fig. 2bA. We
manually score grasp failures according to whether the object slipped or if the damage experienced
matches the “invalidating deformation” criterion put forward in 1.
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(a) Experimental setup (b) Free body diagram of gripper-object interaction

(c) Delicate objects dataset

Figure 3: A. Our experimental setup with a tabletop UR5 robot arm equipped with the MAGPIE Gripper [29]
B. Free body diagram describing gripper interactions with an object at rest, adapted from [12] C. The delicate
objects dataset ranging from 2-900g and various material properties.

3.1 Grasp Force Modeling

Fig. 2b shows the interaction between our gripper and an arbitrary object with mass m and spring
constant (compliance) k. The gripper exerts a composite applied gripper force Fa = Fleft + Fright

that leads to a frictional force Ff = µFa, where µ is the Coulomb friction coefficient between the
gripper and object [28] that counteracts the force of gravity mg (g is the gravitational constant).
For compliant objects, approximated as ideal springs, we can additionally describe the left and right
gripper forces Fl,r = Fspringl,r = kxl,r, where x is the compression of the grasped object.

Typically, object slip within a gripper is detected when after the gripper grasps an object at rest, the
gripper begins some upward acceleration alift, and an object begins slipping with some downward
acceleration aslip. Increasing Fa to account for malift yields an adaptive minimum applied grasp
force Fmin which prevents slip and is minimally deforming [23]: Fmin =

m(g+alift)
µ Conversely,

when an object is slipping with aslip, the applied force Faslip
=

m(g−aslip)
µ [12].

When alift,slip are 0 and the gripper and object are at static equilibrium, Fmin = mg
µ . Fmin can then

be arranged in relation to these quantities, where m∗, µ∗ are LLM-estimated terms approximating
ground truth measurements.:

Faslip
<

mg

µ
= Fmin ≤ Fmin,LLM =

m∗g

µ∗ (1)

For the delicate objects dataset, we estimate a minimum applied grasping force Fmin = mg
µ with a

conservative, uniform Coulomb friction coefficient of µ = 0.33, used to compute Fmin in Table 1.

3.2 Delicate Grasping
Mass and friction, m and µ, which determine successful grasp forces, as well as spring constant k
form the basis of our force-adaptive algorithm for non-slipping, minimally deforming grasping of
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delicate objects. We define a closed-loop force controller: starting from an estimated target aperture
that corresponds to the estimated object’s width w from RGB-D data, we increase the gripper output
force Fout and decrease gripper aperture x until sensing a contact force Fc greater than the target
Fmin [24]. To determine the gain terms, ∆Fout and ∆x, i.e. how fast we close the gripper and
ratchet up force, the controller uses the agent-determined k and ∆x; we change Fout by c · k∆x,
where c = 0.1 is a dampening constant. We describe the controller in Algorithm 1.

Algorithm 1 Adaptive Grasping for Minimal Deformation

Fc = SetGripper(x = w, 0)
while Fc ≤ Fmin do

Fout += c · k∆x
x −= ∆x
Fc = SetGripper(x, Fout)

We query an LLM (GPT-4) for these quantities once to formulate grasp policies. Accurate predic-
tions remove the need for parameter tuning [24] and additional gripper sensors [12, 14]. By default,
we instruct the LLM to compute Fmin = mg

µ and we do not account for alift, choosing to err closer
to object slip than deformation. However, we also provide the LLM with agency to deviate from the
default Fmin depending on the “grasp verb” provided.

On average (n=30), generating one DeliGrasp policy with GPT-4 takes 9.98s (3.03s for 1x ‘Thinker’
prompt query, and 6.65s for 1x ‘Coder’ prompt query). DeliGrasp policies take on average 4.13s to
execute (Appendix A.1). Total grasp time sums to, on average, 14.11s, compared to approximately
0.5s for a force-limited grasp, or 1.7s for a classical adaptive grasp [13].

3.3 Improving Property Estimation
To demonstrate how LLM-knowledge can be improved and potentially include bespoke objects, we
finetune GPT-3.5-Turbo on 6000 captions of PhysObjects images [11], each describing two objects,
their materials, and their relative fragility, deformability, and mass. The dataset captures 276 unique
common household objects, with which the delicate objects dataset shares only the mandarin and
plastic bottle. We also augment the grasp “descriptor” or “thinker” prompt with CoT prompting
[18], paired with finetuned and non-finetuned models, to elicit a series of quantitative comparisons
of mass: objects that are 1) lighter and 2) heavier, the mass of a 3) typical object of the category
being grasped, and the mass of the 4) user-described object relative to the typical object, thereby
producing explicit bounds on the object mass (see Appendix A.8 for greater details on PhysObjects
finetuning data format, the full CoT prompt, and CoT query latency).

3.4 Classical Adaptive Grasping Baselines
We evaluate DeliGrasp against four classical adaptive grasping baselines, two for each strategy:
“In Place” and “In Motion.” “In Place” grasping closes the gripper around an object at rest until a
measured contact force of 2N or 10N, adapted from [24]. The “In Motion” strategy, adapted from
[12, 13], closes around an object at rest until a contact force of 1.5N or 0.5N and then moves upward
at approximately 10 mm/s for 5 seconds. During this upward motion, the “In Motion” strategy
performs closed-loop adaptive grasping at approximately 80Hz, increasing applied gripper force
and velocity proportional to measured slip force. We describe the baselines implementation and
differences from DeliGrasp in Appendix A.3.

4 Experiments
We benchmark DeliGrasp (DG) against five grasp policies: in-place adaptive grasping with 2N and
10N grasp force thresholds, in-motion adaptive grasping with 0.5N and 1.5N initial force, closing
the gripper fully or until it is output force limited (F.L.), closing the gripper to the visual width of
the object determined by our perception method, and an ablated DeliGrasp-Direct policy (DG-D)
which directly generates Fmin, ∆Fout, and ∆x without first reasoning about an object’s physical
properties. We also compare DeliGrasp with PhysObjects finetuning (DG-FT) and with finetuning
and chain-of-thought prompting (DG-FT-COT), selecting the model configurations with the highest
reduction in mass overestimation (Fig. 5).
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We employ each grasp policy 10 times with objects placed randomly within a 30 x 45 cm bounding
area on a table, and do not record attempts which receive faulty poses from perception. Quantitative
results are shown in Figure 2. Figure 5 shows actual grasps of an empty paper cup and the same
paper cup filled with water as well as the LLM-generated code.

Table 2: Successful Minimally Deforming Grasps on Delicate and Deformable Objects (10 trials per object)

ID Object DG DG-FT DG-FT DG-D In Place In Place In Motion In Motion Visual F.L.
CoT 10N 2N 1.5 0.5N

1 Paper Airplane 10 10 10 10 0 0 2 8 0 0
2 Cup (empty) 10 10 10 10 0 5 3 10 10 0
3 Dried Yuba 9 10 8 7 0 3 6 10 3 0
4 Raspberry 9 10 10 8 0 0 0 0 0 0
5 Hard Taco 9 6 7 7 0 7 6 10 5 0
6 Mandarin 10 10 10 10 10 10 10 10 10 10
7 Stuffed Toy 7 6 7 8 10 10 10 10 0 10
8 Cup (water) 10 10 10 8 0 4 7 6 3 4
9 Bag (noodles) 7 4 5 4 8 0 9 0 0 5
10 Avocado 9 10 8 7 8 0 5 2 4 0
11 Spray Bottle 6 6 5 5 2 0 3 0 0 3
12 Bag (rice) 0 0 0 0 0 0 0 0 0 2

Success (%) 80.0 76.7 75.0 70.0 31.7 32.5 50.8 55.0 29.2 28.3

Number of successful, non-damaging grasps across grasping strategies (columns) on the delicate object evalu-
ation set (rows). First, we test four DeliGrasp variants, where FT corresponds to PhysObjects finetuning, and
CoT to physical reasoning prompting. DG-D uses an ablated approach that skips the first-principle model and
estimates algorithmic parameters directly. The four variants are comparatively similar in performance, though
DG-D deforms objects slightly more than the others due to higher estimated grasping force. We compare to two
classical adaptive grasping strategies: In Place adaptive grasping until a threshold contact force of 2N or 10N
and In Motion adaptive grasping with an initial contact force of 1.5 or 10N and then increasing applied force
proportional to measured slip. These classical methods are not able to generalize to the full delicate objects
dataset and require expert hand-tuning of controller parameters. We include two naive baselines: Visual, which
closes the gripper to the estimated object width and F.L., which closes the gripper to its maximal force, 16N.

The base DeliGrasp model (80%), finetuned model (76.7%), finetuned model with CoT prompting
(75.0%), and ablated DeliGrasp Direct prompt (70.0%) all perform successful, minimally-deforming
grasps that the other baselines are not capable of on objects like the paper airplane and raspberry.
DeliGrasp dominates hardware-limited (28.3%) and vision-only grasps (29.2%) in 8 out of 12 ob-
jects, and is better or on par in 10 out of 12 objects. The “In Place” strategy completes 32.5% (2N)
and 31.7% (10N) of grasps successfully. The “In Motion” strategy completes 55.0% (0.5N) and
50.8% (1.5N) of grasps successfully. Per-item performance is shown in Table 2 and full DeliGrasp
policy outputs are provided in Appendix A.1.

We look closely at failure modes to better understand the performance of each policy. Given two
bounds of failure—slip grasps and deforming grasps, DeliGrasp and its FT and CoT variants per-
form the same or better than DeliGrasp Direct in 10 out of 11 cases. These variants overestimate
Fmin terms (individual estimates in Table 7) but primarily perform slip failures. However, for all
objects DG-D estimates even higher Fmin values and deforms objects at a higher rate. DeliGrasp
overestimates Fmin by a factor of 1.95, whereas DG-D, which performs additional invalidating
deformations, overestimates Fmin by a factor of 2.55. Since mass, a common quantity, is more ac-
curately estimated by an LLM, resulting adaptive grasp policies parameterized from mass are more
robust than policies directly parameterized by an LLM with more erroneous predictions. All policies
slip at high rates on the stuffed animal (grasped by the tail), spray bottle, bag of noodles, and bag
of rice. These objects are non-linearly and/or very compliant and high volume, exerting lever forces
on the gripper that likely exceed Fmin.

DeliGrasp on average overestimates object mass by a factor of 2.5, and underestimates mass only for
one object (Appendix A.1). Figure 5 shows that mass overestimation can be reduced by employing
chain-of-thought reasoning (reduction to factor of 1.82), where the LLM is prompted to explicitly
relate its mass estimate to that of other objects, or by fine-tuning GPT-3.5 on the PhysObjects dataset
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(reduction to factor of 2.30), or a combination of both methods (reduction to factor of 1.35), with per-
item parameter estimate analysis in Appendix A.2. Though the finetuned model and finetuned model
with CoT prompting, DG FT and DG FT COT, performed similarly successful grasps to the base
DeliGrasp model and prompt, they produced more accurate, but lower mass, and thus F estimates
for the bag of noodles and hard-shelled taco, explaining why resulting policies in 7 have more slip
failures. In addition to leading to more faithful force estimates, this also creates an opportunity to
extend DeliGrasp to changing inventories or bespoke items in an industrial application.

Model Type DG 4 DG 3.5 DG CoT 3.5 DG FT 3.5 DG FT CoT 3.5 DG CoT 4
Mass Overestimation Factor 2.52 1.82 1.51 2.30 1.35 1.82

(a) Ratio of mass overestimation ratio for base Model, PhysObject-finetuned models, and models with addi-
tional chain-of-thought prompting

Figure 5: (A) We compare mass estimates (row) across different LLMs and prompting strategies (columns):
denoting that 4/3.5 cprresponds to GPT-4 and 3.5-Turbo, FT to PhysObjects Finetuning, and CoT to physical
reasoning prompting. We observe that both finetuning and CoT prompting improve mass estimates, and that the
methods together yield the most improved estimates. We show how semantic modifiers like “empty paper cup”
(B) vs. “paper cup filled with water” (C) result in drastic differences on weight and other parameter estimates.

For non-DeliGrasp methods, we observe that qualitatively, the different “In Place” strategies are
moderately successful on opposite ends of the evaluation set. The 2N strategy still performs inval-
idating deformation on the paper plane, empty cup, yuba, raspberry and is not forceful enough for
the heavier objects. The 10N strategy deforms lighter objects and delicate heavier objects like the
cup of water and the avocado.

The “In Motion” strategies are more performant, but we observe the same performance trends be-
tween the 0.5N (more successful on lighter objects) and 1.5N strategies (more successful on heavier
objects). We observe that both 0.5N and 1.5N strategies perform slip failures on small and dense ob-
jects, such as the avocado or squeeze bottle, due to low surface area of purchase and large measured
slip force preventing the controller from adapting in time. Inversely, the controllers are relatively
aggressive on lighter or otherwise delicate objects, leading to deformation on the paper plane, wa-
ter cup, and avocado. Compared to DeliGrasp, LLM common sense reasoning enables a dynamic
grasping range in object mass and stiffness.

We note that both classical adaptive grasping methods crush the raspberry. Berry-like objects are
low-density, soft, and rough, requiring precise and “delicate” grasping force. The 0.5N “In Motion”
strategy applies a low initial force with slight deformation but crushes the raspberry during closed-
loop control due to its aggressive gain terms. Categorically, force-limited grasps deform and vision-
only grasps slip. Force-limited grasps succeed only with robust, compliant objects. Vision-only
grasps succeed when the objects are relatively stiff and are sensitive to grasp pose.

4.1 Grasping Atypical Objects

Since the baseline DeliGrasp prompt policies are performant with overestimated mass, we record
grasp performance by querying complex and atypical objects, such as a ”larger avocado” (307 g),
a wet sponge (92.0 g), a crochet yarn lily flower (26.5 g), and a 10in length of old-growth 2x4
(925 g), and record 10 grasps per configuration (Table 3). We compare across different DeliGrasp
configurations—the original DeliGrasp prompt with GPT-4-Turbo, the original prompt with the fine-
tuned GPT-3.5-Turbo model, the CoT prompt with GPT-4-Turbo, and the CoT prompt with the fine-
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Table 3: Model comparison of mass estimates and grasping success for a typical (143g) and large (306g) avocado
Model DG DG DG DG

FT CoT FT CoT
Larger Avocado
m (g) 200 200 250 300
Success 20% 10% 80% 100%
Wet Sponge
m (g) 20 50 200 75
Success 0% 30% 0% 90%
Crochet Yarn Flower
m (g) 10 5 5 29
Success 0% 0% 0% 100%
Old Growth 2x4
m (g) 450 450 780 1000
Success 0% 0% 100% 100%

We compare grasp performance from four DeliGrasp configurations, the original DeliGrasp prompt with GPT-
4-Turbo (DG), the original prompt with the finetuned GPT-3.5-Turbo model (DG FT), the CoT prompt with
GPT-4-Turbo (DG CoT), and the CoT prompt with the finetuned model (DG FT COT), on atypical objects such
as a large avocao, a wet sponge, a crochet yarn flower, and old-growth 2x4 lumber. Finetuning, paired with
CoT prompting, enables semantically appropriate mass estimates for complex and/or atypical objects.

tuned model. We observe that pairing the fine-tuned model with CoT prompting fully leveraged
PhysObjects-like physical reasoning and produced successful grasp policies from an initial descrip-
tive query, due to more accurate initial mass estimates.

The finetuned model with CoT prompting are able to grasp each object, due to more accurate mass
estimates resulting from more correct CoT-prompted bounds on object mass. The other methods
cause majority slip failures for the larger avocado, the crochet flower, and lumber due to an un-
changed mass estimate. For the wet sponge, the other models both overestimate its mass and squeeze
the sponge too tightly, or underestimate its mass. The non-finetuned models do not acknowledge
the semantic relationship between the provided modifiers (“large,” “wet,” “crochet yarn,” or “old
growth”) on the mass of a typical object until the user re-queries in the same context with the ex-
plicit relationship semantics, such as “the avocado is larger than average, try again.” In Appendix
A.4, we show how DeliGrasp can also generate atypical grasps conditioned on the verbiage provided
(e.g. generating a less forceful grasp for ”checking” versus ”picking”).

5 Conclusion
We introduce DeliGrasp, which uses LLMs to 1) infer semantic, common sense physical information
which 2) parameterizes adaptive grasp policies effective on a variety of delicate and deformable
items that traditional adaptive grasping methods cannot grasp. These inferred m,µ, k characteristics
enable more consistent control than direct estimation of grasping forces (LLM-as-code) and classical
adaptive grasping methods. We also improve property estimation accuracy and grasp performance
on atypical and complex objects with model finetuning on object property comparisons and chain-
of-thought prompting. We then show how DeliGrasp’s compliance feedback can be used to measure
produce ripeness.

Limitations and Future Work. DeliGrasp policies are performant, but dependent on stable and
accurate property estimates. For each LLM-estimated quantity in this work, we select the mode of
10 estimates, which can be done offline and reused for simple objects, but not for semantic modi-
fiers or complex and abstract objects. Furthermore, we do not systematically explore the variance of
each quantity, or policy robustness to properties besides mass. One interesting line of future work is
leveraging iterative observations by mobile robot systems such as humanoids, rather than additional
learning methods, to improve system estimates of such properties. We demonstrate this already,
as DeliGrasp policies empirically measure k and object width, superseding less-accurate LLM k
estimates and perception-based width measurements. We anticipate that perception and physical in-
teractions can produce higher fidelity information to inform manipulation of unknown objects, akin
to how humans explore dense, cluttered, and unstructured settings like supermarkets, home kitchens,
and other such representative domains. Though finetuning on PhysObjects did not improve grasp
performance on our delicate objects dataset, finetuning on this kind of higher fidelity information
about complex or out-of-distribution entities may improve grasp performance.
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A Appendix

The MAGPIE gripper has a palm-integrated Intel RealSense D-405 camera. The gripper is powered
by two separate Dynamixel AX-12 motors, which allow maximum current control. Translating
torque via a four-bar linkage, the gripper force can be controlled and sensed from 0.15 N to 16 N,
and has an aperture range from 106 mm fully open to 0 mm fully closed (default closure speed of
100 mm

s ).

A.1 Full Details of DeliGrasp Performance on Delicate Objects Dataset

Regarding delicate object evaluation, the YCB [30] and RoboCup@Home [31] datasets include
some fragile and deformable objects, but there does not exist a dataset focusing on delicate objects
with defined failure modes. By combining (1) LLM estimates of object properties to parameterize
for robust and damage-free grasping of delicate objects and (2) an algorithmic adaptive grasp con-
troller, our method is able to generalize across many objects and produce uniform grasping feedback
which can further inform the controller, LLM, or user.

Computed ∆Fout which are less than 0.01 N are set to 0.01 N. Computed Fmin values below the
force sensing threshold of 0.15 N are set to that threshold when checking for slip or setting output
force.

Table 4: DeliGrasp Performance on Delicate Objects Dataset (10 trials)

LLM Inferred m,µ, k and Downstream Terms Mean Values of Experimentally Produced Terms
ID Success m µ k Fmin (N) Ferr (N) ∆Fout ∆x xfinal xgoal Fout Time kmax k

(g) (N/m) = mg
µ (N) (mm) (mm) (mm) (N) (s) (N/m) (N/m)

1 10 5 0.5 20 0.098 0.08 0.01 2 11.9 7.8 0.54 4.23 332.46 184.91
2 10 10 0.4 50 0.25 0.14 0.025 5 67.83 59.5 0.5 2.94 707.93 389.76
3 9 20 0.5 200 0.39 0.23 0.04 2 24.74 19.82 0.6 4.08 240.27 157.69
4 9 5 0.8 50 0.063 0.12 0.01 1 15.4 5.98 0.28 7.26 97.46 60.96
5 9 50 0.5 1000 0.98 0.54 0.2 2 53.17 46.64 1.59 3.19 342.05 188.39
6 10 150 0.8 500 1.88 0.23 0.1 2 45.13 39.83 2.12 3.08 236.41 151.83
7 9 50 0.8 100 0.61 1.57 0.02 2 9.79 4.19 0.97 5.29 308.73 192.77
8 9 250 0.6 200 4.08 0.96 0.04 2 58.23 53.3 4.36 4.27 958.61 373.24
9 7 500 0.4 300 12.3 6.68 0.15 5 71.72 61.11 12.77 2.89 7484.7 4324.33
10 9 200 0.5 500 3.92 2.08 0.1 2 50.88 46.4 4.39 3.04 729.11 298.66
11 6 500 0.4 150 12.2 4.84 0.03 2 41.94 35.08 12.6 3.64 3456.4 1383.11
12 0 1000 0.5 200 19.6 5.9 0.1 5 35 27.5 20.8 5.7 13671. 6192.2

We also show the corresponding values for the ablated DeliGrasp-Direct policy. We did not record
time, experimental k values, or xfinal in these experiments.

Table 5: Ablated DeliGrasp-Direct Performance on Delicate Objects Dataset (10 trials)

ID Success Fmin ∆Fout ∆x xgoal Fout

(N) (N) (mm) (mm) (N)

1 10 0.15 0.05 1 4.48 0.98
2 10 0.5 0.2 1 57.4 0.922
3 7 0.5 0.3 2 8.6 1.14
4 8 0.2 0.1 1 6.4 0.83
5 7 1.5 0.2 1 49.2 2.3
6 10 1.25 0.5 5 32.4 2.01
7 8 1.5 0.5 2 3.0 3.2
8 8 3 1 5 49.6 3.18
9 4 4 1 4 52.8 6
10 7 1 1 5 47.2 2.2
11 5 5 2 2 25.0 7.1
12 0 8 2 5 105. 10
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ID Object Mass (g) a a err b b err c c err d d err e e err f f err g g err h h err i i err j j err

1 paper airplane 0.8 10 11.5 5 6.25 5 6.25 10 11.5 1 1.25 5 6.25 10 11.5 5 5.25 10 11.5 10 11.50
2 empty cup 3.6 10 1.78 10 2.78 10 2.78 10 1.78 5 1.39 5 1.39 5 4.56 10 1.78 20 4.56 10 1.78
3 yuba 5.5 20 2.64 20 3.64 20 3.64 10 0.82 10 1.82 10 1.82 10 8.09 20 2.64 50 8.09 20 2.64
4 raspberry 6 5 0.17 20 3.33 5 1.17 4 0.33 5 1.17 4 1.33 5 2.33 20 2.33 20 2.33 10 0.67
5 hard-shell tortilla 15 20 0.33 10 1.33 50 3.33 15 0.00 10 1.33 30 2.00 20 0.00 20 0.33 15 0.00 10 0.33
6 mandarin 56 150 1.68 150 2.68 150 2.68 100 0.79 50 1.11 75 1.34 150 1.68 150 1.68 150 1.68 150 1.68
7 stuffed animal 74 50 0.32 50 1.32 50 1.32 30 0.59 20 1.73 30 1.59 50 0.93 50 0.32 5 0.93 10 0.86
8 water cup 106 200 0.89 200 1.89 250 2.36 100 0.06 150 1.42 100 1.06 200 1.36 200 0.89 250 1.36 200 0.89
9 bag of noodles 191 500 1.62 200 1.05 500 2.62 500 1.62 200 1.05 250 1.31 200 1.62 500 1.62 500 1.62 500 1.62
10 ripe avocado 204 200 0.02 200 1.02 200 1.02 200 0.02 200 1.02 150 1.26 200 0.02 200 0.02 200 0.02 150 0.26
11 squeeze bottle 250 300 0.20 300 1.20 500 2.00 300 0.20 450 1.80 350 1.40 400 0.40 500 1.00 350 0.40 200 0.20
12 bag of rice 900 500 0.44 1000 1.11 1000 1.11 500 0.44 1000 1.11 1000 1.11 500 0.44 500 0.44 500 0.44 500 0.44

Avg Err 1.80 2.30 2.52 1.51 1.35 1.82 1.43 1.53 2.74 1.91

Table 6: Model Mass Estimation: Columns a through j represent the mass estimates and respective relative
error across different model and prompt configurations. The configurations are as follow: a: gpt-3.5-turbo, b:
finetuned gpt-3.5-turbo, c: gpt-4-turbo, d: gpt-3.5-turbo with CoT prompting, e: finetuned gpt-3.5-turbo with
CoT prompting, f: gpt-4-turbo with CoT prompting, g: finetuned gpt-3.5-turbo with 1% training set size, h:
finetuned gpt-3.5-turbo with 10% training set size, i: finetuned gpt-3.5-turbo with 1% training set size and CoT
prompting, j: finetuned gpt-3.5-turbo with 10% training set size and CoT prompting

We also provide the full per-item breakdown mass estimates from the full set of evaluated models.

A.2 Per-Item Mass, Friction Coefficient, and Spring Constant Estimate Comparisons for
Four DeliGrasp Variants

Table 7: DeliGrasp Model Comparisons of Estimated Fmin and m

Ground Truth DG DG D DG FT DG FT CoT
ID Object Name F m k F F m m µ k F F F F m m F F m m

(N) (g) (N/m) (N) Err. (g) Err. (N/m) (N) Err. (N) Err. (g) Err. (N) Err. (g) Err.

1 Paper Airplane 0.02 0.8 184.9 0.10 4.00 5 6.25 0.5 20 0.15 6.50 0.10 3.91 5 6.25 0.02 0.02 1 1.25
2 Cup (empty) 0.11 3.6 389.8 0.25 1.27 10 2.78 0.4 50 0.5 3.55 0.25 1.23 10 2.78 0.12 0.11 5 1.39
3 Dried Yuba 0.16 5.5 157.7 0.39 1.44 20 3.64 0.5 200 0.5 2.13 0.39 1.45 20 3.64 0.20 0.23 10 1.82
4 Raspberry 0.18 6 61.0 0.06 0.67 5 1.17 0.8 50 0.2 0.11 0.25 0.36 20 3.33 0.06 0.66 5 1.17
5 Hard Taco 0.44 15 188.4 0.98 1.23 50 3.33 0.5 1000 1.5 2.41 0.20 0.55 10 1.33 0.20 0.55 10 1.33
6 Mandarin 1.65 56 151.8 1.88 0.14 150 2.68 0.8 500 1.25 0.24 1.84 0.11 150 2.68 0.61 0.63 50 1.11
7 Stuffed Toy 2.18 74 192.8 0.61 0.72 50 1.32 0.8 100 1.5 0.31 0.61 0.72 50 1.32 0.25 0.89 20 1.73
8 Cup (water) 3.12 106 373.2 4.08 0.31 250 2.36 0.6 200 3 0.04 3.27 0.05 200 1.89 2.45 0.21 150 1.42
9 Bag (noodles) 5.62 191 4324. 12.3 1.19 500 2.62 0.4 300 4 0.29 4.91 0.13 200 1.05 4.91 0.13 200 1.05
10 Avocado 6.00 204 298.7 3.92 0.35 200 1.02 0.5 500 1 0.83 3.92 0.35 200 1.02 3.92 0.35 200 1.02
11 Spray Bottle 7.36 250 1383. 12.2 0.66 500 2.00 0.4 150 5 0.32 7.36 0.00 300 1.20 11.0 0.50 450 1.80
12 Bag (rice) 26.5 900 6192. 19.6 0.22 1000 1.11 0.5 200 8 0.70 19.6 0.26 1000 1.11 19.6 0.26 1000 1.11

We record LLM estimates for F , the minimum grasping force, the relative error F Err., mass m, and ra-
tio of mass overestimation m Err. for 5 different DeliGrasp strategies: DG with the default model without
finetuning, the ablated DGD which directly estimates F , DG FT with the model finetuned on the PhysOb-
jects dataset, and DG FT CoT for the finetuned model with additional chain-of-thought prompting to elicit
PhysObjects-like comparisons. We use the same µ and k values across models to isolate the effect of mass
estimates on grasping. Lower mass, and thus F estimates for DG FT DG FT COT for the bag of noodles and
hard-shelled taco explain why resulting policies in 7 have more slip failures.

A.3 Classical Adaptive Grasping Baseline Validation

We first validate these baseline methods on the evaluated objects from their respective studies, span-
ning a potato chip, tomato, and paper cup (2g to 150g) for “In Place” grasping and an empty sty-
rofoam cup, filled styrofoam cup, empty plastic water bottle, filled plastic water bottle, and filled
cereal box (68g to 384g) for “In Motion” grasping. For the “In Motion” strategies, we tune a sepa-
rate set of applied force gain and velocity gain for the 0.5N and 1.5N contact force strategies. The
0.5N strategy has more aggressive gain terms than the 1.5N strategy, and our current-draw based
force sensing used in ”In Motion” adaptive grasping is much lower resolution and frequency than
dedicated force sensing resistors and slip sensors used in the original baselines.

13



(a) Force Adjustment (b) Spring Constant

Query Object k1 k2 k3 k4

(N/m) (N/m) (N/m) (N/m)

Avocado 65.1 143.5 335.4 —
Tomato 271.6 331.8 606.2 1559.

At a given time, which should I eat?

Next Avocado ✓
week? Tomato ✓
Right Avocado ✓
now? Tomato ✓ ✓
Three Avocado ✓ ✓
Days? Tomato ✓ ✓ ✓

When will this go bad? (days)

Avocado 3–5 4–6 5–7
Tomato 1–2 2–4 3–5 7+

(c) LLM Reasoning

Figure 6: DeliGrasp adjusts the grasp force (A) for the verb of “checking” the avocado, from the estimated 3.92
N to 0.5 N. Each grasp measures a spring constant k (B) without damaging the avocados. Such measurements
can be used for downstream LLM-reasoning tasks (C) like picking ripe produce or meal planning.

We note that the “In Motion” strategy, in various implementations, requires, in addition to a custom
sensor configuration across force, contact, slip, and/or pressure, expert tuning of controller param-
eters. DeliGrasp requires no sensing beyond the gripper motor(s) current draw and no parameter
tuning. Perhaps the even larger obstacle is that such strategies require motion to execute, limiting
efficacy on certain geometries and inducing slip uncertainty in a majority of grasps, whereas ours
executes entirely in-place and is equally effective across object types.

A.4 Sensing with DeliGrasp to Pick Ripe Produce

DeliGrasp explicitly measures a spring constant k while performing Algorithm 1: the adaptive grasp
controller checks for contact force Fc with each small motion ∆x, and k = Fc

∆x . These measured
k (Appendix A.1) show that DeliGrasp estimates of spring constants are incorrect by a factor of 6.5
(2.5 for only the compliant objects) and, more relevantly, can be utilized as a compliance sensor in
tasks such as appraising produce ripeness, a correlate of compliance (Figure 6b and 6c). This sensor
data can be used for learning tasks, human collaboration tasks, or for higher-level reasoning tasks
such as ripeness checking or appropriateness for specific dishes. We perform this measurement on
two assortments of produce: avocados and tomatoes. When receiving the “grasp verb” of “check”
or “inspect for ripeness”, DeliGrasp bypasses the default minimum grasp force value of mg

µ and
manually sets a lower Fc of 0.5 N for avocados and 0.2 N for tomatoes.

Qualitatively, the relative ordering of the measured k for each item type corresponds with judgments
from our own human hand grasps. We query an LLM (GPT-3.5) with the item name and compliance
data, and show in Table 6c that it is able to reason over and answer abstract, relative questions about
when to eat them. Further qualitative questions such as “how” to eat a specific item “right now”
yield dishes appropriate for the ripeness of the produce (Appendix A.5).

A.5 Ripeness Reasoning with LLMs

1. Asking ”how should I eat avocado k3” yields: sliced avocado, grilled avocado, salad top-
pings, stuffed avocado

2. Asking ”how should I eat avocado k1” yields: guacamole, avocado toast, sushi rolls,
smoothies

3. Asking ”how should I eat tomato k4” yields: sliced for burgers, grilled or roasted, salsa,
stuffed

4. Asking ”how should I eat tomato k1” yields: caprese salad, gazpacho, pasta sauce

We additionally observe that multimodal models like GPT-4V or OWL-ViT alone cannot reason
ripeness over visual images. We query GPT-4V with an image of the same items 5 times and request
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a ripeness ranking. For the 4 tomatoes, GPT- 4V produces the same ranking each query, from most
ripe to least ripe, of: [k4, k2, k3, k1], reasoning entirely on the “redness” of the tomatoes. For the 3
avocados, it refuses to generate a ranking, citing a fundamental lack of sensory capabilities.

OWL-ViT when directly queried for ”the ripest” or ”least ripe” produce arbitrarily detects items
(sometimes the same item) depending on the angle (and thus lighting, resolution, relative object
size) of the captured image.

When we pair the spring constant data with the image in a query to GPT-4V, it ignores the visual
characteristics and reasons solely on the spring data.:
Query:

I have labeled 3 avocados for you between 0, 1, 2 and provide their
average spring constants from an initial ripeness check. Spring
constants are inversely proportional to ripeness --a low spring
constant means a soft object , and high means stiff. Combining
this information with the image , please do the following tasks:

1. Estimate the ripeness of a ripe and unripe avocado.
2. Rank the given avocados by ripeness.
E. Using the estimated ripeness range , estimate when each one will go

bad (avocados are stored in the open at room temperature).

Spring constant data:
Avocado 1: 65 N/m
Avocado 2: 143 N/m
Avocado 3: 335 N/m

Response:

To perform the tasks , we need to use the given spring constants and
the visual clues from the image to estimate the ripeness and
predict when each avocado will spoil. Typically , a ripe avocado
has a spring constant at the lower end because it is softer ,
while a less ripe or unripe avocado has a higher spring constant
because it is firmer.

0. Estimate the ripeness of a ripe and unripe avocado:
- A ripe avocado typically has a low spring constant , indicating
softness , perhaps similar to Avocado 1, which has the lowest
spring constant
- An unripe avocado has a high spring constant , as it’s stiffer ,
like Avocado 3, with the highest spring constant

1. Rank the given avocados by ripeness:
- Avocado 1, with the lowest spring constant range 65, would
generally be the ripest.
- Avocado 2, with a spring constant range 143, would be less ripe
than avo1.
- Avocado 3, having the highest spring constant range 335, would
be the least ripe.

So the ripeness rank from ripest to least ripe would be:
Avocado 1 > Avocado 2 > Avocado 3

2. Estimate when each avocado will go bad:
- Avocado 1, being the ripest , based on its lower spring constant ,
could spoil in about 2-3 days if stored at room temperature.
- Avocado 2 is less ripe than avo1 and may take around 4-5 days to
spoil at room temperature.
- Avocado 3 is the least ripe , with quite a high spring constant
and could take upwards of a week to spoil , potentially around
7-10 days at room temperature.

Please note that these estimates are quite rough and actual spoilage
times can vary due to numerous factors such as specific room
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temperature , humidity , and the avocado ’s initial condition. The
visual clues are limited , but from the image , the physical
characteristics that usually indicate ripeness (dark skin ,
slightly yielding to gentle pressure) don’t provide significant
additional information beyond the spring constant data.

A.6 DeliGrasp Desciptor Prompt

The descriptor takes as input a “grasp verb”, “object description”, and “object width.” It outputs
a structured summary of the object, how it should be grasped, and physical characteristics of the
object.

Control a robot gripper with force control and contact information.
The gripper’s parameters can be adjusted corresponding to the type of

object that it is trying to grasp as well as the kind of grasp it
is attempting to perform.

The gripper has a measurable max force of 16N and min force of 0.15N,
a maximum aperture of 105mm and a minimum aperture of 1mm.

Some grasps may be incomplete , intended for observing force
information about a given object.

Describe the grasp strategy using the following form:

[start of description]
* This {CHOICE: [is , is not]} a new grasp.
* In accordance with the user instruction , this grasp should be

[GRASP_DESCRIPTION: <str >].
* This is a {CHOICE: [complete , incomplete ]} grasp.
* This grasp {CHOICE: [does , does not]} contain multiple grasps.
* This grasp is for an object with {CHOICE: [high , medium , low]}

weight.
* The object has an approximate mass of [PNUM: 0.0] grams
* This grasp is for an object with {CHOICE: [high , medium , low]}

compliance.
* The object has an approximate spring constant of [PNUM: 0.0]

Newtons per meter.
* The gripper and object have an approximate friction coefficient of

[PNUM: 0.0]
* This grasp should set the goal aperture to [PNUM: 0.0] mm.
* If the gripper slips , this grasp should close an additional [PNUM:

0.0] mm.
* If the gripper slips , this grasp should increase the output force

by [PNUM: 0.0] Newtons.
* [optional] Because of [GRASP_DESCRIPTION: <str >], this grasp sets

the force to be {CHOICE: [lower , higher ]} than the default
minimum grasp force.

[end of description]

Rules:
1. If you see phrases like {NUM: default_value}, replace the entire

phrase with a numerical value. If you see {PNUM: default_value},
replace it with a positive , non -zero numerical value.

2. If you see phrases like {CHOICE: [choice1 , choice2 , ...]}, it
means you should replace the entire phrase with one of the
choices listed. Be sure to replace all of them. If you are not
sure about the value , just use your best judgement.

3. If you see phrases like [GRASP_DESCRIPTION: default_value], use
information from the user instruction to provide a description of
the grasp or the object to be grasped , including mentioned
physical characteristics or features.

4. Using information from the user instruction about the object and
the grasp description , set the initial grasp force either to this
default value or an appropriate value.
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5. If you deviate from the default force value , explain your
reasoning using the optional bullet points. It is not common to
deviate from the default value.

6. Using knowledge of the object and how compliant it is, estimate
the spring constant of the object. This can range broadly from 20
N/m for a very soft object to 2000 N/m for a very stiff object.

7. Using knowledge of the object and the grasp description , if the
grasp slips , first estimate an appropriate increase to the
aperture closure , and then the gripper output force.

8. The increase in gripper output force the maximum value of (0.05 N,
or the product of the estimated aperture closure , the spring
constant of the object , and a damping constant 0.1:
(k*additional_closure *0.0001)).

9. Provide the full description of the grasp plan , even if you may
only need to change a few lines. Always start the description
with [start of description] and end it with [end of description ].

10. Do not add additional descriptions not shown above. Only use the
bullet points given in the template.

11. Make sure to give the full description. Do not skip points if
they are not optional.

"""

A.7 DeliGrasp Coder Prompt

The coder takes as input the structured summary of the grasp and inferred characteristics and gener-
ates an grasp policy which implements the adaptive grasping algorithm 1 and compliance sensing.

We have a description of a gripper’s motion and force sensing and we
want you to turn that into the corresponding program with
following class functions of the gripper:

The gripper has a measurable max force of 16N and min force of 0.15N,
a maximum aperture of 105mm and a minimum aperture of 1mm.

‘‘‘
def get_aperture(finger=’both’)
‘‘‘
finger: which finger to get the aperture in mm, of, either ’left’,

’right ’, or ’both’. If ’left’ or ’right ’, returns aperture , or
distance , from finger to center. If ’both’, returns aperture
between fingers.

‘‘‘
def set_goal_aperture(aperture , finger=’both’, record_load=False)
‘‘‘
aperture: the aperture to set the finger(s) to (in mm)
finger: which finger to set the aperture in mm, of, either ’left’,

’right ’, or ’both’.
record_load: whether to record the load at the goal aperture. If

true , will return array of (pos , load) tuples
This function will move the finger(s) to the specified goal aperture ,

and is used to close and open the gripper.
Returns a position -load data array of shape (2, n) --> [[ positions],

[loads]], average force , and max force after the motion.

‘‘‘
def set_compliance(margin , flexibility , finger=’both’)
‘‘‘
margin: the allowable error between the goal and present position (in

mm)
flexibility: the compliance slope of motor torque (value 0-7, higher

is more flexible) until it reaches the compliance margin
finger: which finger to set compliance for , either ’left’, ’right ’,

or ’both’
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‘‘‘
def set_force(force , finger=’both’)
‘‘‘
force: the maximum force the finger is allowed to apply at contact

with an object(in N), ranging from (0.1 to 16 N)
finger: which finger to set compliance for , either ’left’, ’right ’,

or ’both’

‘‘‘
def deligrasp(goal_aperture , initial_force , additional_closure ,

additional_force , complete_grasp)
‘‘‘
goal_aperture: the goal aperture to grasp the object (in mm)
initial_force: the initial force to apply to the object (in N)
additional_closure: the additional aperture to close if the gripper

slips (in mm)
additional_force: the additional force to apply if the gripper slips

(in N)
complete_grasp: whether the grasp is complete or incomplete (True or

False)
This function will close the gripper to the goal aperture , apply the

initial force , and adjust the force if the gripper slips. If the
grasp is incomplete , the gripper will open after the slip check.

‘‘‘
def poke(direction , speed , aperture)
‘‘‘
direction: ’left’ or ’right’ to poke the left or right finger
speed of finger in m/s
aperture: distance to poke in mm (of one finger , not both)

Example answer code:
‘‘‘
from magpie.gripper import Gripper # must import the gripper class
G = Gripper ()
import numpy as np # import numpy because we are using it below

goal_aperture = {PNUM: goal_aperture}
complete_grasp = {CHOICE: [True , False ]}
# Initial force. Convert mass (g) to (kg). The default value of

object weight / friction coefficient.
initial_force = {PNUM: {CHOICE: [({ PNUM: mass} * 9.81) / ({PNUM: mu}

* 1000), {PNUM: different_inital_force }] }}}
additional_closure = {PNUM: additional_closure}
# Additional force increase. The default value is the product of the

object spring constant and the additional_closure , with a
dampening constant 0.1.

additional_force = np.max ([0.01 , additional_closure * {PNUM:
spring_constant} * 0.0001])

G.set_goal_aperture(goal_aperture + additional_closure * 2,
finger=’both’, record_load=False)

G.set_compliance (1, 3, finger=’both’)
G.set_force(initial_force , ’both’)

G.deligrasp(goal_aperture , initial_force , additional_closure ,
additional_force , complete=complete_grasp , debug=True)

‘‘‘

Remember:
1. Always format the code in code blocks. In your response all five

functions above: get_aperture , set_goal_aperture , set_compliance ,
set_force , check_slip should be used.
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2. Do not invent new functions or classes. The only allowed functions
you can call are the ones listed above. Do not leave
unimplemented code blocks in your response.

3. The only allowed library is numpy. Do not import or use any other
library. If you use np , be sure to import numpy.

4. If you are not sure what value to use , just use your best judge.
Do not use None for anything.

5. If you see phrases like [REASONING], replace the entire phrase
with a code comment explaining the grasp strategy and its
relation to the following gripper commands.

6. If you see phrases like [PREDICTION], replace the entire phrase
with a prediction of the gripper ’s state after the following
gripper commands are executed.

7. If you see phrases like {PNUM: default_value}, replace the value
with the corresponding value from the grasp description.

8. If you see phrases like {CHOICE: [choice1 , choice2 , ...]}, it
means you should replace the entire phrase with one of the
choices listed. Be sure to replace all of them. If you are not
sure about the value , just use your best judgement.

9. Remember to import the gripper class and create a Gripper at the
beginning of your code.

10. Remember to take into account instructions to use different
forces than the default values , and to explain your reasoning in
the code.

"""

A.8 PhysObjects Finetuning Data Format, CoT Prompt, and CoT Latency Evaluation

Each text caption is adapted to a pair-wise relative Q&A conversations across these physical con-
cepts concepts, following the structure: Q: Which {has more mass, is more fragile, is more
deformable}, material1 object1 or material2 object2? and A: A material object {has more mass,
is more fragile, is more deformable}.

When evaluating mass estimates from finetuned and/or CoT-prompted models for atypical objects,
we query the model 10 times for the mode of estimates (minimum 5) as mass estimates are more
varied. We execute these queries in parallel, which is a little bit slower than querying an LLM just
once, as the final requests are rate-limited and slower to complete, taking on average 3.73s (n=30).

We add three new mandatory bullet points to the description, starting after the description of whether
the grasp contains multiple grasps. These three bullets elicit CoT thinking and leverage PhysObjects
finetuning by requesting explicit mass comparisons between heavier, lighter objects and a typical
vs. the user-described object to be grasped. We modify rule 3, add a rule for an example object (rule
4) to further enforce CoT and leverage PhysObjects finetuning.

Control a robot gripper with force control and contact information.
The gripper’s parameters can be adjusted corresponding to the type of

object that it is trying to grasp as well as the kind of grasp it
is attempting to perform.

The gripper has a measurable max force of 16N and min force of 0.15N,
a maximum aperture of 105mm and a minimum aperture of 1mm.

Some grasps may be incomplete , intended for observing force
information about a given object.

Describe the grasp strategy using the following form:

[start of description]
* This {CHOICE: [is , is not]} a new grasp.
* In accordance with the user instruction , this grasp should be

[GRASP_DESCRIPTION: <str >].
* This is a {CHOICE: [complete , incomplete ]} grasp.
* This grasp {CHOICE: [does , does not]} contain multiple grasps.
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* This object has more mass than [example object: <str >], with mass
of [PNUM: 0.0] g, and less mass than [example object: <str >],
with mass of [PNUM: 0.0] g

* Typically , this object ’s mass is approximately [PNUM: 0.0] g, which
is between these two masses.

* Because the user specified that [OBJECT_DESCRIPTION: <str >],
compared to typical , this object has a {CHOICE: [greater , lesser ,
similar ]} mass of [PNUM: 0.0] grams.

* This grasp is for an object with {CHOICE: [high , medium , low]}
compliance.

* The object has an approximate spring constant of [PNUM: 0.0]
Newtons per meter.

* The gripper and object have an approximate friction coefficient of
[PNUM: 0.0]

* This grasp should set the goal aperture to [PNUM: 0.0] mm.
* If the gripper slips , this grasp should close an additional [PNUM:

0.0] mm.
* If the gripper slips , this grasp should increase the output force

by [PNUM: 0.0] Newtons.
* [optional] Because of [GRASP_DESCRIPTION: <str >], this grasp sets

the force to be {CHOICE: [lower , higher ]} than the default
minimum grasp force.

[end of description]

Rules:

1. If you see phrases like {NUM: default_value}, replace the entire
phrase with a numerical value. If you see {PNUM: default_value},
replace it with a positive , non -zero numerical value.

2. If you see phrases like {CHOICE: [choice1 , choice2 , ...]}, it
means you should replace the entire phrase with one of the
choices listed. Be sure to replace all of them. If you are not
sure about the value , just use your best judgement.

3. If you see phrases like [GRASP_DESCRIPTION: default_value] or
[OBJECT_DESCRIPTION: default_value], use information from the
user instruction to provide a description of the grasp or the
object to be grasped , including mentioned physical
characteristics or features.

4. If you see phrases like [example object: <str >], replace the
entire phrase with an appropriate example object that is similar
to the object to be grasped.

5. Using information from the user instruction about the object and
the grasp description , set the initial grasp force either to this
default value or an appropriate value.

6. If you deviate from the default force value , explain your
reasoning using the optional bullet points. It is not common to
deviate from the default value.

7. Using knowledge of the object and how compliant it is, estimate
the spring constant of the object. This can range broadly from 20
N/m for a very soft object to 2000 N/m for a very stiff object.

8. Using knowledge of the object and the grasp description , if the
grasp slips , first estimate an appropriate increase to the
aperture closure , and then the gripper output force.

9. The increase in gripper output force the maximum value of (0.05 N,
or the product of the estimated aperture closure , the spring
constant of the object , and a damping constant 0.1:
(k*additional_closure *0.0001)).

10. Provide the full description of the grasp plan , even if you may
only need to change a few lines. Always start the description
with [start of description] and end it with [end of description ].

11. Do not add additional descriptions not shown above. Only use the
bullet points given in the template.

12. Make sure to give the full description. Do not skip points if
they are not optional.

"""
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