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Abstract

Set-valued prediction is a well-known concept in
multi-class classification. When a classifier is un-
certain about the class label for a test instance,
it can predict a set of classes instead of a single
class. In this paper, we focus on hierarchical multi-
class classification problems, where valid sets (typi-
cally) correspond to internal nodes of the hierarchy.
We argue that this is a very strong restriction, and
we propose a relaxation by introducing the notion
of representation complexity for a predicted set.
In combination with probabilistic classifiers, this
leads to a challenging inference problem for which
specific combinatorial optimization algorithms are
needed. We propose three methods and evaluate
them on benchmark datasets: a naïve approach
that is based on matrix-vector multiplication, a re-
formulation as a knapsack problem with conflict
graph, and a recursive tree search method. Experi-
mental results demonstrate that the last method is
computationally more efficient than the other two
approaches, due to a hierarchical factorization of
the conditional class distribution.

1 INTRODUCTION

In multi-class classification problems with a lot of classes,
there are often situations where a classifier is uncertain about
the class label for a given instance, e.g., because of class
ambiguity. Set-valued predictions form a natural way of
dealing with this uncertainty, by predicting a set of classes
instead of a single class. For instance, in medical diagnosis,
when there is uncertainty related to the true disease of a
patient, a set-valued classifier will return a set of candidate
diseases. This set can then be of great help for a medical
doctor, as only the remaining candidate diseases need further
investigation.

In the machine learning literature, set-valued prediction has
been studied under different frameworks. A simple approach
consists of top-k prediction, i.e., returning a set with the k
classes that have the highest probabilities or scores [Lapin
et al., 2016, Chzhen et al., 2021]. Another popular approach
is conformal prediction [Shafer and Vovk, 2008], which pro-
duces sets that contain the true class with high probability.
A third framework is rooted in Bayesian decision theory
and optimizes a utility function that trades off two important
criteria for set-valued predictions, namely correctness and
precision [Del Coz et al., 2009, Corani and Zaffalon, 2008,
2009, Zaffalon et al., 2012, Yang et al., 2017b, Mortier et al.,
2021]. Like in conformal prediction, the predicted set should
be correct in the sense of covering the true class, but at the
same time, the set should be precise and not contain too
many options.

Set-valued prediction has also been considered in a hierar-
chical classification setting, where similarity among classes
is encoded by means of a predefined class hierarchy pro-
vided by domain experts. For instance, in medical diagno-
sis, it is natural to group different types of cancer as one
branch of the disease classification hierarchy. In hierarchi-
cal classification, set-valued predictions are often restricted
to specific subsets of the set of classes, namely those that
correspond to nodes of the hierarchy and, therefore, have
a clear interpretation and are deemed semantically mean-
ingful [Alex Freitas, 2007, Bi and Kwok, 2015, Rangwala
and Naik, 2017, Yang et al., 2017a]. Moreover, restricting
candidate sets to hierarchy nodes will also reduce the compu-
tational complexity of finding the best prediction for a given
instance. On the other side, a restriction of that kind may
negatively impact predictive performance. That’s why a few
authors allow any subset of classes as a prediction in hierar-
chical classification [Oh, 2017, Mortier et al., 2021]. Then,
however, predictions might be semantically questionable
and, moreover, difficult to communicate – in the general
case, a prediction would be an enumeration of (possibly
many) leaf nodes, ignoring the hierarchy altogether.

In this paper, we propose a novel set-valued prediction
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v1 = {1, 2, 3, 4}

v2 = {1, 2}

v4 = {1} v5 = {2}

v3 = {3, 4}

v6 = {3} v7 = {4}

Figure 1: Example hierarchy for Y = {1, 2, 3, 4}. The class
space is represented by the root of the tree structure T , given
by v1. For Ŷ = {3, 4} we find ST (Ŷ ) = {{v6, v7}, {v3}}
and therefore RT (Ŷ ) = 1.

framework for hierarchical classification that makes a com-
promise between the two extremes. Compared to approaches
that predict a single node of the hierarchy, we will be less
restrictive in the type of sets that can be returned, but we
will be more restrictive than methods that return any subset
of classes. More specifically, we allow the user to restrict
the so-called representation complexity of a predicted set
(see Section 2 for a formal definition). The main idea is to
return a restricted number of internal nodes of the hierar-
chy as candidate sets instead of a single node. For example,
imagine that classes correspond to spatial regions on the
earth. In this case, a natural hierarchy is the form of

continent→ country→ state→ district→ · · · .

Obviously, one is interested in a prediction that makes it
probable to find the right location. In “flat” top-k prediction,
one may end up with many small regions (leaf nodes of
the hierarchy) scattered around the globe, which might not
be desirable (e.g., checking those regions may cause a lot
of effort). On the contrary, hierarchical predictions such as
“it’s in France or in the Netherlands” might be more useful
and require less effort.

Section 2 presents a decision-theoretic framework where the
representation complexity of a set is a user-defined param-
eter, which results in a challenging optimization problem.
In Section 3, we present three different approaches to solve
this inference problem: a naïve algorithm that has a high
computational complexity, a reformulation as a knapsack
problem with conflict graph, and a tailored recursive tree
search algorithm that adopts a hierarchical factorization of
the conditional class distribution. In Section 4, we discuss
related work, and in Section 5, we present experimental re-
sults on five challenging hierarchical classification datasets.

2 FORMAL PROBLEM FORMULATION

In a standard multi-class classification setting we assume
that training and test data are i.i.d. according to an unknown

distribution P (x, y) on X ×Y , with X some instance space
(e.g., images, documents, etc.) and Y = {c1, . . . , cK} a
class space consisting of K classes. In a multi-class clas-
sification setting, we estimate the conditional class prob-
abilities P (· |x) over Y , with properties ∀c ∈ Y : 0 ≤
P (c |x) ≤ 1 ,

∑
c∈Y P (c |x) = 1 . This distribution can

be estimated using a wide range of well-known probabilis-
tic methods, such as logistic regression, linear discriminant
analysis, gradient boosting trees or neural networks with a
softmax output layer. At prediction time, we will predict
sets Ŷ that are subsets of Y . The probability mass of such a
set will be computed as P (Ŷ |x) =

∑
c∈Ŷ P (c |x).

However, in this paper we will consider a hierarchical multi-
class classification setting. Hence, we assume that a domain
expert has defined a hierarchy over the class space, in the
form of a tree structure T that contains in general M nodes.
VT = {v1, . . . , vM} will denote the set of nodes and every
node identifies a set of classes. As special cases, the root
v1 represents the class space Y , and the leaves represent
individual classes – see Fig. 1 for a simple example. In
hierarchical classification, one typically makes the strong
restriction Ŷ ∈ VT for predicted sets – see e.g., Bi and
Kwok [2015]. The probability mass P (v |x) of such a set
can be computed using the chain rule of probability:

P (v |x) =
∏

v′∈Path(v)

P (v′ |Parent(v′),x) , (1)

where Path(v) is a set of nodes on the path connecting the
node v and the root of the tree structure. Parent(v) gives
the parent of node v, and for the root node v1 we have
P (v1 |Parent(v1),x) = 1. In each node of the tree, one
can train any multi-class probabilistic classifier. Classical
models of that kind include nested dichotomies [Fox, 1997,
Frank and Kramer, 2004, Melnikov and Hüllermeier, 2018],
conditional probability estimation trees [Beygelzimer et al.,
2009] and probabilistic classifier trees [Dembczyński et al.,
2016]. In neural networks with a hierarchical softmax out-
put layer, all nodes are trained simultaneously [Morin and
Bengio, 2005].

In this work, we do not focus on the training algorithms.
Instead we assume that a probabilistic model has been es-
timated, either with classical models or using a hierarchi-
cal factorization as in Eqn. (1), and we present a decision-
theoretic framework with an inference procedure at pre-
diction time. In this inference procedure, we restrict the
representation complexity RT (Ŷ ), which will be formally
defined as the minimal number of tree nodes needed to rep-
resent the set Ŷ . Let ST (Ŷ ) denote the set of all disjoint
combinations of tree nodes that represent Ŷ :

ST (Ŷ ) =

V̂ ⊂ VT :
⋃

vi∈V̂

vi = Ŷ ∧
⋂

vi∈V̂

vi = ∅

 .

Then, we define the representation complexity of the predic-



tion Ŷ as

RT (Ŷ ) = min
V̂ ∈ST (Ŷ )

|V̂ | , (2)

with |V̂ | the cardinality of V̂ . As an example, let us consider
again the four-class hierarchy that was shown in Fig. 1.
For example, with Ŷ = {c1, c3, c4} we find ST (Ŷ ) =
{{v4, v6, v7}, {v4, v3}} and therefore RT (Ŷ ) = 2.

Furthermore, if we denote the r-th representation complex-
ity class by

R(r)
T =

{
Ŷ ∈ P(Y) : RT (Ŷ ) = r

}
,

then it immediately folllows thatR(1)
T = VT . In the example

of Fig. 1, the other representation complexity classes are
given by:

R(2)
T = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 3, 4}, {2, 3, 4},

{1, 2, 3}, {1, 2, 4}} , R(3)
T = {∅} .

The example suggests that the first K − 1 representation
complexity classes form a partition of P(Y) \ {∅}, with
P(Y) the powerset of Y . The following theorem, whose
proof is found in App. A, indicates that this observation
holds more generally.

Theorem 1. {R(1)
T , . . . ,R(K−1)

T } forms a partition of
P(Y) \ {∅}, for any class space Y and hierarchy T .

We are now ready to introduce the inference problem that
forms the central idea of this paper. At prediction time, we
aim to find the set with highest probability mass, while re-
stricting the maximal representation complexity by r and
the maximal set size by k, with r and k user-defined param-
eters. As a result, we aim to solve the following constrained
maximization problem:

Ŷ ∗(x) = argmax
Ŷ⊆Y

P (Ŷ |x), (3)

subject to |Ŷ | ≤ k , RT (Ŷ ) ≤ r ,

where |Ŷ | denotes the cardinality of the predicted set Ŷ . Re-
mark that in classical hierarchical classification settings, one
would have the very tight restriction RT (Ŷ ) = 1, whereas
in flat classification RT (Ŷ ) ≤ K typically applies.

3 ALGORITHMS

In this section we will discuss three algorithms that can
be used to solve problem (3), which is a very challenging
combinatorial optimization problem, because the number of
feasible sets grows exponentially with r. To this end, we will
assume that we have access to an estimate of the conditional
class distribution P (· |x). For the first two algorithms that

we present, such an estimate can be obtained using any
probabilistic classifier. For the third algorithm, a specific
hierarchical factorization as in Eqn. (1) is needed. Owing
to this factorization, we obtain substantial improvements in
memory and runtime complexity.

3.1 MATRIX-VECTOR MULTIPLICATION

A naïve (but inefficient) algorithm performs an exhaustive
search over all feasible solutions of problem (3). By relying
on fast matrix-vector multiplication and parallelization rou-
tines, this can still be done within reasonable time for small
r. Assuming that r and k remain fixed, let us denote the set
of feasible solutions by

Mr,k =
{
Ŷ ∈ P(Y) : RT (Ŷ ) ≤ r ∧ |Ŷ | ≤ k

}
.

Given this set, together with some arbitrary ordering, let
us further consider a matrix M ∈ {0, 1}|M|×K where
rows represent the elements ofMr,k and columns the el-
ements Y . In this matrix, element Mi,j = 1 if the i-th set
inMr,k contains class cj . For a given x, let us denote by
p the vector containing conditional class probabilities, i.e.,
pj = P (cj |x). The solution to (3) is then simply found by
calculating the vector Mp and searching for the highest ele-
ment in this vector, as shown in Alg. 1. As a consequence of
Theorem 1, it is clear that the runtime and memory complex-
ity for this naïve algorithm rapidly increases as a function of
r. The complexity is of the order O(2K) in the worst case,
when r is close to K.

Algorithm 1 MVM – input: x,Mr,k, M , P , Y

1: Ŷ ∗, pŶ ∗ ← ∅, 0
2: p← conditional class probabilities, i.e., pj = P (cj |x)
3: pM ←Mp with pM,Ŷ = P (Ŷ |x) for Ŷ ∈Mr,k

4: for Ŷ ∈Mr,k do
5: if pM,Ŷ ≥ pŶ ∗ then
6: Ŷ ∗, pŶ ∗ ← Ŷ , pM,Ŷ

7: return Ŷ ∗, pŶ ∗

3.2 KNAPSACK WITH CONFLICT GRAPH

A second algorithm consists of reducing (3) to an instance of
the knapsack problem with conflict graph (KCG) [Pferschy
and Schauer, 2009]. In our case, items are represented by
tree nodes, where every tree node is either included in the
knapsack or not. The goal is then to find the set of nodes
that maximize the total probability mass, while taking into
account the constraints on the representation complexity
and the set size. In addition, we also have constraints w.r.t.
incompatibility of certain pairs of nodes. More precisely,
for any pair of tree nodes, where one node of the pair is an



ancestor of the other node, at most one node can be included
in the knapsack. This can be represented by means of an
undirected conflict graph, where every vertex corresponds to
a tree node and every edge denotes a conflict relation. More
formally, to translate our problem to an instance of KCG,
let us first denote by GT = (VT , ET ) the conflict graph with

ET = {(vi, vj) : (vi, vj) ∈ VT × VT ∧ vi ∩ vj 6= ∅} .

For every edge (vi, vj) ∈ ET , we have a corresponding
vector representation given by e ∈ {0, 1}|VT | with ei =

ej = 1 and
∑|VT |

j=1 ej = 2. Furthermore, let us denote
by w the |VT |-dimensional vector that encodes for every
tree node the size of the corresponding set of classes, i.e.,
wj = |vj |. For a given x, let p be the |VT |-dimensional
vector that contains the probability mass P (vj |x) of every
tree node vj . Let z ∈ {0, 1}|VT | be the vector that encodes
feasible solutions, i.e., an entry in this vector is 1 when
the corresponding node is contained in the knapsack, and 0
otherwise. Given the above notations, the solution to (3) is
then found by solving the following integer linear program
(ILP):

maxz pᵀz, subject to AT z ≤ br,k , (4)

with

AT =
[
1 w e1 . . . e|ET |

]ᵀ
,

br,k =
[
r k 1 . . . 1

]ᵀ
.

Alg. 2 describes the full procedure to obtain the Bayes-
optimal solution, using a generic ILP solver. It will be faster
than Alg. 1, but long runtimes can still be expected, be-
cause KCG problems are known as strongly NP-hard prob-
lems [Pferschy and Schauer, 2009]. In the related work
section, we give an overview of algorithms that have been
developed for this group of problems.

Algorithm 2 KCG – input: x, AT , br,k, ILP, P , VT

1: Ŷ ∗, pŶ ∗ ← ∅, 0
2: Compute p using an estimated probabilistic model

P (· |x)
3: Ŷ ∗, pŶ ∗ ← ILP(p,AT , br,k). Solve with a given ILP

solver
4: return Ŷ ∗, pŶ ∗

3.3 RECURSIVE TREE SEARCH

The last algorithm is a tailor-made recursive tree search,
inspired by A∗-search for probabilistic classifier trees [Dem-
bczyński et al., 2012, 2016, Mena et al., 2017, Mortier et al.,
2021]. Unlike the previous two approaches, which are both
usable with flat and hierarchical classifiers, this method
assumes that the conditional class distribution can be factor-
ized as in Eqn. (1). This restriction will result in significant

speed-ups, because the search for the Bayes-optimal solu-
tion of problem (3) can then be performed in a top-down
manner.

At its core, the algorithm uses a priority queue for storing
visited nodes in decreasing order of probability mass. First,
the queue is initialized with the root node in Alg. 3. Next,
in the main loop of Alg. 4, for each iteration, the next node
is popped from the priority queue in order of decreasing
probability mass. For each node that is popped, the current
solution is updated and compared to the best solution seen
so far. Subsequently, Alg. 4 is recursively called with a copy
of the priority queue. In this way, solutions are recursively
explored in a depth-first search manner until the maximum
level (i.e., representation complexity r) is reached. To show
that Alg. 4 finds the Bayes-optimal solution to problem (3)
in an efficient way, we first prove that the equality Ŷ ∩
v = ∅ must hold for any feasible set Ŷ ∪ v considered in
line 3 (Prop. 1). Subsequently, we show in Theorem 2 that
from those feasible sets, only a limited number needs to be
considered to find the Bayes-optimal solution.

Proposition 1. For any solution Ŷ ∈ P(Y) and corre-
sponding priority queue QŶ in Alg. 4, there are no nodes
v in QŶ for which Ŷ ∩ v 6= ∅ in line 3. This holds for any
x, r, k, P and VT .

Proof. The proposition holds naturally for the first call of
Alg. 4, i.e., when Ŷ = ∅. Let us now consider all Ŷ for
which RT (Ŷ ) = 1, or in other words all Ŷ ∈ VT . Fur-
thermore, assume that there exists a v ∈ QŶ such that
Ŷ ∩ v 6= ∅, then v must be one of the descendants of Ŷ or
vice versa. The first case is not possible, since descendants
of Ŷ are only added to QŶ after the recursive call in line
10 has finished. Nor is the second, since v must be already
popped from the priority queue in that case. Therefore, the
above proposition must hold for any Ŷ with RT (Ŷ ) = 1.
Let us now assume that the proposition holds for any Ŷ
for which RT (Ŷ ) = r′ < r. Assume that for all Ŷ with
RT (Ŷ ) = r′+1 there exists a v inQŶ such that Ŷ ∩v 6= ∅.
Since there exists a v′′ in VT such that Ŷ = Ŷ ′′ ∪ v′′ with
QŶ ” = QŶ ∪ v”, then either v′′ ∩ v 6= ∅ or Ŷ ′′ ∩ v 6= ∅.
Similarly as in the beginning of the proof, the first case is
not possible since descendants of v′′ are only added to the
priority queue after the recursive call in line 10. For the
second case, given that the proposition holds for any Ŷ with
RT (Ŷ ) = r′ < r, we know that there is no v ∈ QŶ with
Ŷ ′′ ∩ v 6= ∅. This contradiction completes the proof by
induction.

Theorem 2. For any x, r, k, P and VT , Alg. 3 will find the
Bayes-optimal solution of problem (3).

Proof. Without lines 4–6,8,11–13 and 17–18, it is clear
that Alg. 4 will visit all sets in R(1)

T ∪ . . . ∪ R(r)
T . The

check in line 4 makes sure that only sets that satisfy the size



constraint are 1) compared with the best solution so far and
2) are considered as current solution for a next recursive
call in line 10. Moreover, with respect to the latter, if for
the current solution we have that |Ŷ | = k, then we are not
allowed to include additional nodes, hence, the additional
check in line 8. Furthermore, we can return to the parent
call in line 12 since the maximum level (i.e., representation
complexity r) is reached and for any subsequent node v′

that is popped from QŶ we know that P (Ŷ ∪ v′ |x) ≤
P (Ŷ ′ |x). Finally, for any level of the recursion, we can
also return to the parent call in line 18 from the moment
that we pop a leaf node. Indeed, assume that for a given
level of recursion and iteration in the while loop of Alg. 4,
the first leaf node vl is popped from QŶ , resulting in a
new candidate solution Ŷl = Ŷ ∪ vl. Let us denote by vn
and Ŷn = Ŷ ∪ vn any subsequent node that is popped
from QŶ and corresponding candidate solution. We have
to show that there is no solution containing Ŷn having a
strictly higher probability mass than all solutions containing
Ŷl. Let’s assume that there exists a solution that satisfies
the above, which we denote by Ŷ ′n = Ŷn ∪ V̂ with V̂ ⊂
VT . With a similar reasoning as in Prop. 1, we know that
vl ∩ V̂ = ∅, and hence, the solution Ŷ ′l = Ŷl ∪ V̂ must also
be visited by Alg. 4. Taking into account the property of the
priority queue we know that:

P (Ŷl |x) ≥ P (Ŷn |x)⇔ P (Ŷ ′l |x) ≥ P (Ŷ ′n |x) ,

which is in contrast with the above, and therefore, completes
the proof by contradiction.

Algorithm 3 RTS – input: x, r, k, P , VT
1: Q = ∅
2: Q.add((v1, 1))
3: Ŷ ∗, pŶ ∗ ← RTS.find(x, r, k, ∅, 0, ∅, 0, Q, P , VT )
4: return Ŷ ∗, pŶ ∗

Taking into account the stopping criterion in line 18 of Alg. 4
that is proven in Theorem 2, while assuming a complete
binary tree with depth log2 K as hierarchy T , an upper
bound on the time complexity of Alg. 3 is therefore given
by O(log2 K

r).

4 RELATED WORK

In flat multi-class classification, similar inference problems
as problem (3) are considered, but without any restrictions
on the representation complexity. This setting is simply re-
ferred to as top-k prediction, and very popular in applied
papers, e.g., papers that report the recall@k. A few other au-
thors who study top-k prediction in a more fundamental way
prove that the top-k can simply be found by the k classes
with the highest conditional class probabilities [Lapin et al.,

Algorithm 4 RTS.find – input: x, r′, k, Ŷ ∗, pŶ ∗ , Ŷ , pŶ ,
QŶ , P , VT

1: while QŶ 6= ∅ do
2: (v, pv)← QŶ .pop()
3: Ŷ ′, pŶ ′ ← Ŷ ∪ v, pŶ + pv
4: if |Ŷ ′| ≤ k then
5: if pŶ ′ ≥ pŶ ∗ then
6: Ŷ ∗, pŶ ∗ ← Ŷ ′, pŶ ′

7: if r′ > 1 then
8: if |Ŷ ′| 6= k then
9: QŶ ′ ← QŶ . Copy priority queue

10: Ŷ ∗, pŶ ∗ ← RTS.find(x, r′ − 1, k, Ŷ ∗,
pŶ ∗ , Ŷ

′, pŶ ′ , QŶ ′ , P , VT )

11: else
12: break
13: if v is not a leaf node then
14: for v′ ∈ Children(v) do
15: pv′ ← pv × P (v′ | v,x)
16: QŶ .add((v′,P (v′ |x)))

17: else
18: break
19: return Ŷ ∗, pŶ ∗

2016, Chzhen et al., 2021]. Top-k predictions are also fre-
quently used in the context of extreme multi-label classifica-
tion, where the number of labels is very large [Prabhu and
Varma, 2014, Babbar and Schölkopf, 2017, Prabhu et al.,
2018, Wydmuch et al., 2018, Zhuo et al., 2020, Chang et al.,
2020].

Authors such as Chzhen et al. [2021] refer to top-k predic-
tion as pointwise size control. They also discuss many other
set-valued prediction settings, including average size con-
trol [Denis and Hebiri, 2017], average error control (such
as conformal prediction) [Sadinle et al., 2019, Lei, 2014,
Shafer and Vovk, 2008] and pointwise error control [Cai
et al., Lei and Wasserman, 2014, Vovk, 2012]. Another
set-valued prediction framework for flat multi-class classifi-
cation is rooted in Bayesian decision theory and optimizes
a utility function that trades off the two important criteria
for set-valued predictions, namely correctness and preci-
sion [Del Coz et al., 2009, Corani and Zaffalon, 2008, 2009,
Zaffalon et al., 2012, Yang et al., 2017b, Mortier et al.,
2021].

Set-valued prediction has also been considered in hierarchi-
cal multi-class classification. Here, too, various frameworks
exist, which typically differ in the type of loss function that
is considered, and in the flexibility in representation com-
plexity that is allowed. Many papers restrict the representa-
tion complexity of the predicted set to one, using abstention
strategies for classifiers in internal nodes of the hierarchy
[Alex Freitas, 2007, Rangwala and Naik, 2017, Yang et al.,



2017a]. For example, Sun and Lim [2001] propose a simple
stopping strategy based on thresholding. When the prob-
ability mass for a given node is greater than a predefined
threshold, the sample is iteratively sent to its children. Wang
et al. [2017] introduced a reject option by considering two
specific local risk minimization problems in each node of
the hierarchy. By starting at the root node, the tree is recur-
sively traversed until an internal or leaf node is returned as
prediction.

In hierarchical classification, many authors have considered
the optimization of hierarchical loss functions, which eval-
uate the hierarchical distance between the predicted node
and the ground truth node – see [Bi and Kwok, 2015] for an
overview. Those approaches also return a single node of the
hierarchy as prediction, so they restrict the representation
complexity to 1 as well. An exception worth mentioning
is Oh [2017], where the so-called top-k hierarchical loss is
introduced, which extends the hierarchical loss function pro-
posed by Cesa-bianchi et al. [2004] to the top-k setting. This
method has no constraint on the representation complexity.
Similarly, Mortier et al. [2021] also consider a factorization
like Eqn. (1) without any constraint on the representation
complexity, but here set-based utility functions are optimzed.
Yang et al. [2017a] also evaluate different set-based utility
functions in a framework where hierarchies are considered
for computational reasons.

Finally, due to the reduction in (4), our problem could be
reduced to the knapsack problem with conflict graph. There
are also some correspondences with the maximum indepen-
dent set problem and the maximum vertex weight clique
problem [Bettinelli et al., 2017, Gurski and Rehs, 2019,
Pferschy and Schauer, 2017, Vassilevska, 2009, Wang et al.,
2016]. Those problems have been extensively studied in the
literature, and depending on the problem statement, differ-
ent algorithms have been proposed. Generally speaking, the
knapsack problem is an NP-hard problem class in combina-
torial optimization. However, exact and approximate pseudo-
polynomial algorithms, based on dynamic programming
and branch-and-bound, exist for special cases of conflict
graphs, such as co-graphs or graphs with bounded clique
width [Gurski and Rehs, 2019, Pferschy and Schauer, 2017,
Bettinelli et al., 2017]. However, in addition to the structure
of our conflict graph, it is not immediately clear whether our
problem statement allows a dynamic programming solution,
since an additional constraint on the representation complex-
ity is considered in problem (3). This additional constraint
is atypical for classical KCG problems. Therefore, a more
thorough analysis on the structure of the conflict graph in
problem (3) and a translation to more efficient algorithms
appear to be interesting problems for future work.

Table 1: Overview of of image (top) and text (bottom)
datasets used in the experiments. Notation: K – number
of classes, D – number of features, N – number of samples

Dataset K D Ntrain Ntest

Caltech-101 [Li et al., 2003] 97 1000 4338 4339
Caltech-256 [Griffin et al., 2007] 256 1000 14890 14890
PlantCLEF2015 [Goëau et al., 2015] 1000 1000 91758 21447

Bacteria [RIKEN, 2013] 2659 1000 10587 2294
Proteins [Li et al., 2018] 3485 1000 11830 10179

(a) {Aquilegia vulgaris L.}1,2 ∪
{Vinca major L.,Vinca minor L.}2

(b) {Carduus defloratus L.}1,2,3 ∪
{Carduus nigrescens Vill.}2,3 ∪ {Leontodon hispidus L.}3

Figure 2: Left: image of Vinca major L. (top) and Leontodon
hispidus L. (bottom) from PlantCLEF2015 with correspond-
ing predictions. Set sizes were restricted to five and for each
example, different representation complexities were con-
sidered. Notation: {. . .}i,j := set that is predicted when
restricting the representation complexity by i and j. Right:
image of corresponding top-1 prediction, in this case Aqui-
legia vulgaris L. (top) and Carduus defloratus L. (bottom).

5 EXPERIMENTS

We perform two types of experiments. In a first experiment,
we illustrate the usefulness of restricting the representation
complexity on a fine-grained visual categorization dataset.
In a second experiment, we compare the different algo-
rithms that we propose with some baselines, by looking
at predictive performance and runtime efficiency for five
different benchmark datasets. Summary statistics related to
the datasets can be found in Table 1. For all datasets, we use
a predefined hierarchy that was provided with the data. For
detailed information, related to the experimental setup, we
refer the reader to App. B.



Table 2: Performance versus runtime for MVM, TOP-k, KCG, RTS and SVBOP-HF on five benchmark datasets. For all
models, we consider different restrictions for the representation complexity r and set size k. Notation: ttrain – CPU training
time in seconds per training instance, Acc. – test accuracy for underlying probabilistic model, ttest – CPU top-1 prediction
time in seconds per test instance, R – avg. recall on test set, |Ŷ | – avg. prediction size on test set, t – CPU prediction time in
seconds per test instance, n – complexity per test instance (see main paper for more information).

DATASET MODEL-r ttrain ACC. ttest R |Ŷ | t n R |Ŷ | t n
k = 5 k = 10

CALTECH-101

MVM-1

0.0013 0.8993 0.0006

0.9215 2.3713 0.0020 117 0.9303 4.4690 0.0020 122
MVM-2 0.9602 3.1725 0.0103 6359 0.9669 5.3850 0.0114 7245
MVM-3 0.9734 3.9037 0.2892 222711 0.9780 6.5212 0.3587 278537
TOP-k 0.9831 5.0000 0.0007 - 0.9926 10.0000 0.0008 -

KCG-1

0.0013 0.8919 0.0006

0.9113 2.5674 0.0053

425× 128

0.9183 5.4093 0.0053

425× 128
KCG-2 0.9558 3.1931 0.0056 0.9623 5.9845 0.0056
KCG-3 0.9729 3.8329 0.0053 0.9764 7.0317 0.0057
KCG-∞ 0.9838 4.4481 0.0053 0.9931 8.9662 0.0057

RTS-1

0.0022 0.8898 0.0007

0.9076 2.5550 0.0008 3.9090 0.9100 5.4079 0.0007 3.4421
RTS-2 0.9468 3.4234 0.0009 8.3639 0.9579 6.1926 0.0009 9.1150
RTS-3 0.9609 4.1470 0.0010 12.7731 0.9706 7.5350 0.0011 15.5488
SVBOP-HF 0.9729 5.0000 0.0010 - 0.9885 10.0000 0.0011 -

CALTECH-256

MVM-1

0.0013 0.7581 0.0006

0.7705 1.8499 0.0043 284 0.8016 5.1747 0.0043 303
MVM-2 0.8569 3.1443 0.0550 39602 0.8774 6.9616 0.0627 44917
MVM-3 0.8882 3.8196 4.2796 3385995 0.9040 7.9964 5.4916 4301775
TOP-k 0.9196 5.0000 0.0007 - 0.9515 10.0000 0.0007 -

KCG-1

0.0012 0.7625 0.0006

0.7747 1.8688 0.0082

1140× 318

0.8034 5.1944 0.0083

1140× 318
KCG-2 0.8611 3.1744 0.0082 0.8789 6.9935 0.0086
KCG-3 0.8918 3.8339 0.0085 0.9077 7.9933 0.0088
KCG-∞ 0.9214 4.9950 0.0081 0.9519 9.9709 0.0087

RTS-1

0.0023 0.6640 0.0008

0.6955 1.8809 0.0008 4.6238 0.7181 5.2998 0.0008 4.0122
RTS-2 0.7832 3.1265 0.0009 7.9226 0.8087 7.1283 0.0009 9.0010
RTS-3 0.8192 3.8171 0.0010 11.2637 0.8445 8.1210 0.0011 15.1166
SVBOP-HF 0.8576 5.0000 0.0010 - 0.9079 10.0000 0.0012 -

PLANTCLEF2015

MVM-1 0.0013 0.4938 0.0006 0.5220 2.0595 0.0149 1571 0.5536 3.9500 0.0148 1613
TOP-k 0.7239 5.0000 0.0007 - 0.7969 10.0000 0.0007 -

KCG-1

0.0012 0.4949 0.0006

0.5236 2.1305 0.0708

4158× 1641

0.5547 4.1527 0.0707

4158× 1641
KCG-2 0.6226 3.2944 0.0716 0.6538 6.1007 0.0725
KCG-3 0.6690 3.9379 0.0746 0.7003 7.2684 0.0755
KCG-∞ 0.7187 4.9743 0.0752 0.7923 9.9064 0.0789

RTS-1

0.0033 0.4278 0.0007

0.4645 2.1577 0.0009 3.1423 0.5004 4.2118 0.0009 2.7745
RTS-2 0.5642 3.3311 0.0011 6.5725 0.6001 6.1405 0.0010 6.8671
RTS-3 0.6099 4.0115 0.0012 10.3591 0.6432 7.3037 0.0012 12.3894
SVBOP-HF 0.6626 5.0000 0.0011 - 0.7433 10.0000 0.0013 -

BACTERIA

MVM-1 0.0001 0.5704 0.0000 0.6215 2.0788 0.0377 3994 0.6976 4.2610 0.0380 4096
TOP-k 0.8063 5.0000 0.0001 - 0.8675 10.0000 0.0002 -

KCG-1

0.0001 0.5929 0.0000

0.6369 1.9423 1.0533

29556× 4330

0.7038 4.1752 1.0542

29556× 4330
KCG-2 0.7205 3.4833 1.0611 0.7812 5.7421 1.0646
KCG-3 0.7606 4.1175 1.0606 0.8081 7.3407 1.0855
KCG-∞ 0.7931 5.0000 1.0672 0.8741 10.0000 1.0918

RTS-1

0.0030 0.8006 0.0003

0.8398 1.7742 0.0005 7.9489 0.8913 3.7601 0.0005 7.5678
RTS-2 0.9353 3.1959 0.0005 10.5867 0.9516 5.5599 0.0006 11.1743
RTS-3 0.9608 3.8191 0.0006 13.4784 0.9705 6.6738 0.0006 15.7210
SVBOP-HF 0.9802 5.0000 0.0006 - 0.9952 10.0000 0.0007 -

PROTEINS

MVM-1 0.0000 0.7699 0.0000 0.7766 1.3152 0.0489 3626 0.7829 2.2505 0.0500 3672
TOP-k 0.9009 5.0000 0.0001 - 0.9235 10.0000 0.0002 -

KCG-1

0.0000 0.7667 0.0000

0.7728 1.3245 0.4748

14784× 3792

0.7802 2.3300 0.4739

14784× 3792
KCG-2 0.8439 2.3042 0.4758 0.8494 4.2730 0.4751
KCG-3 0.8734 3.2057 0.4837 0.8765 5.8075 0.4861
KCG-∞ 0.9003 4.9320 0.4888 0.9219 9.8309 0.4906

RTS-1

0.0016 0.7806 0.0002

0.7936 1.3045 0.0004 5.0570 0.8012 2.2052 0.0003 4.8834
RTS-2 0.8610 2.3161 0.0004 7.2716 0.8664 3.6366 0.0005 7.7215
RTS-3 0.8842 3.2457 0.0005 9.0939 0.8885 4.7484 0.0006 10.9509
SVBOP-HF 0.9086 5.0000 0.0005 - 0.9308 10.0000 0.0007 -



5.1 SOME ILLUSTRATIONS

We illustrate the usefulness of our framework on the Plant-
CLEF2015 dataset. This is a well-known image dataset with
fine-grained annotations of 1000 plant species. The dataset
is characterized by a substantial class ambiguity, making
accurate predictions on the species level often impossible.
In Fig. 2, we show two images (left) and the predictions for
the labels. Additionally, we also show images of correspond-
ing top-1 predictions (right). The subscript i means that the
subset belongs to the prediction obtained by restricting the
representation complexity by i. For the top image, an exam-
ple of the Vinca major L. class, we show two predictions
obtained by restricting the representation complexity to one
and two, respectively. If the representation complexity is
two, then the ground truth class is included in the solution.
Class ambiguity is present at a higher level in the plant
species hierarchy, since both the genera Aquilegia and Vinca
contain plants with similar flowers, which are difficult to
distinguish from each other, as can be observed by com-
paring the left with the right image. In this case, predicting
a single node from the hierarchy (i.e., by restricting the
representation complexity to one) would not be sufficient,
given the restriction on the set size. For the bottom image,
an example of class Leontodon hispidus L., we even have a
higher degree of ambiguity, which is illustrated by the fact
that we need a representation complexity of three for the
ground truth to be included in the predicted set.

5.2 BENCHMARKING RESULTS

In a second set of experiments, with results shown in Table 2,
we analyse the performance versus runtime for MVM, KCG
and RTS on the five benchmark datasets. In addition, we
also include results for two baselines from literature: (i) the
pointwise size control framework, as described by Chzhen
et al. [2021], which corresponds to top-k prediction by using
a flat probabilistic model (TOP-k), and (ii) SVBOP-HF, an
exact inference algorithm that was proposed by Mortier et al.
[2021] for top-k prediction by using a probabilistic model
with hierarchical factorization. Note that the latter baselines
are only applicable when we don’t have a restriction on the
representation complexity (i.e., r = ∞ in Table 2). More
precisely, for SVBOP-HF and RTS, we use a hierarchical
softmax layer, as given by Eqn. (1), whereas for MVM,
TOP-k and KCG, we use a (flat) softmax layer for the prob-
abilistic model. In a first step, we train and validate our
probabilistic model on the training set. Finally, in a last
inference step, we use our trained probabilistic model to ob-
tain predictions on the test set. For KCG, we tested different
mixed-integer solvers such as SCIP, CBC and a long-step
dual simplex solver from the GLPK kit [Achterberg, 2009,
Forrest et al., 2018, Makhorin, 2001]. However, we only
mention the results for the GLPK solver, since for this solver
the runtime was substantially lower for all experiments.

For each experiment, we show the training time in seconds
per instance ttrain, the accuracy of the underlying probabilis-
tic model Acc., time in seconds to obtain the top-1 prediction
for a test instance ttest, average recall on test set R, average
prediction size on test set |Ŷ | and prediction time in seconds
per test instance t. In addition, we also analyse the com-
plexity for each test instance by means of a method-specific
complexity metric n, which corresponds to the size of the
feasible setMr,k, dimensionality of the matrix AT and the
number of nodes that are popped from the priority queue in
line 3 of Alg. 4. In terms of runtime efficiency, RTS signif-
icantly outperforms MVM and KCG for all datasets. This
is also illustrated by looking at the complexity metrics. For
the biological datasets, we only considered a representation
complexity of 1 for MVM, since higher values for r quickly
gave rise to out-of-memory usage errors due to the size of
the matrix M increasing exponentially. In general, the im-
provement in runtime for RTS comes with a cost of lower
performance of the underlying probabilistic model. Only
for the non-visual biological datasets, there seems to be an
improvement when a hierarchy is considered. Perhaps, this
finding can be explained by the fact that taxonomic infor-
mation is much more present in those datasets, compared
to the image datasets. Finally, increasing the representa-
tion complexity generally results in a higher recall and set
size, which once again illustrates its usefulness. In extremis,
when the representation complexity is not restricted, the
best performance is observed. However, in that case, the
complexity of our prediction is also much higher, which is
not really meaningful in case we want to restrict predictions
to a predefined hierarchy.

6 CONCLUSION

In this work, we proposed a new decision-theoretic frame-
work for set-valued prediction in hierarchical classification
by introducing the notion of representation complexity. This
complexity allows the user to relax the often strong restric-
tion that is implied by hierarchical classification, namely
that predictions should correspond to single nodes of a pre-
defined hierarchy. We proposed several algorithms that solve
the challenging optimization problem in an exact way. One
of those algorithms, based on a recursive tree search method
that uses a hierarchical factorization of the conditional class
distribution, shows especially promising results in terms of
runtime complexity. An interesting future direction could be
to generalize our framework to other settings that are com-
monly found in the set-valued prediction literature, such as
pointwise and average control of the set size or error rate.
Moreover, the translation of our problem to the well-known
knapsack problem with conflict graph seems interesting and
opens the potential to improve the runtime complexity of
the recursive tree search method by exploiting the specific
structure of our conflict graph.
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Krzysztof Dembczyński, Wojciech Kotłowski, Willem
Waegeman, Róbert Busa-Fekete, and Eyke Hüllermeier.
Consistency of probabilistic classifier trees. In ECML/P-
KDD, 2016.

Christophe Denis and Mohamed Hebiri. Confidence sets
with expected sizes for multiclass classification. J. Mach.
Learn. Res., 18(1):3571–3598, 2017.

John Forrest, Ted Ralphs, Stefan Vigerske, and et al. coin-
or/cbc: Version 2.9.9, 2018.

John Fox. Applied regression analysis, linear models, and
related methods. Sage, 1997.

Eibe Frank and Stefan Kramer. Ensembles of nested di-
chotomies for multi-class problems. In Proc. of the
Twenty-first International Conference on Machine Learn-
ing, ICML ’04, 2004.

Hervé Goëau, Pierre Bonnet, and Alexis Joly. Lifeclef plant
identification task 2015. In Working Notes of CLEF 2015,
volume 1391, 2015.

Greg Griffin, Alex Holub, and Pietro Perona. Caltech-256
object category dataset. Technical Report 7694, Califor-
nia Institute of Technology, 2007.

Frank Gurski and Carolin Rehs. Solutions for the knapsack
problem with conflict and forcing graphs of bounded
clique-width. Mathematical Methods of Operations Re-
search, 89(3):411–432, 2019.

Maksim Lapin, Matthias Hein, and Bernt Schiele. Loss
functions for top-k error: Analysis and insights. In CVPR,
pages 1468–1477, 2016.

Jing Lei. Classification with confidence. Biometrika, 101
(4):755–769, 2014.

Jing Lei and Larry Wasserman. Distribution-free prediction
bands for non-parametric regression. J. Roy. Stat. Soc.
Series B, 76(1):71–96, 2014.

Fei-Fei Li, Marco Andreetto, and Marc Aurelio Ranzato.
Caltech101 image dataset. Technical report, California
Institute of Technology, 2003.



Yu Li, Sheng Wang, Ramzan Umarov, and et al. Deepre:
sequence-based enzyme EC number prediction by deep
learning. BMC Bioinformatics, 34(5):760–769, 2018.

Andrew Makhorin. Glpk linear programming kit: Imple-
mentation of the revised simplex method. Glpk documen-
tation, Moscow Aviation Institute, 2001.

Vitalik Melnikov and Eyke Hüllermeier. On the effective-
ness of heuristics for learning nested dichotomies: an
empirical analysis. Machine Learning, 107(8–10):1537–
1560, 2018.

Deiner Mena, Elena Monta nés, José Ramón Quevedo, and
Juan José del Coz. A family of admissible heuristics for
A* to perform inference in probabilistic classifier chains.
Machine Learning, pages 1–27, 2017.

Frederic Morin and Yoshua Bengio. Hierarchical proba-
bilistic neural network language model. In Proc. of the
Tenth International Workshop on Artificial Intelligence
and Statistics, pages 246–252. Society for Artificial Intel-
ligence and Statistics, 2005.

Thomas Mortier, Marek Wydmuch, Krzysztof Dem-
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