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ABSTRACT

The optimal transport barycenter (a.k.a. Wasserstein barycenter) is a fundamen-
tal notion of averaging that extends from the Euclidean space to the Wasserstein
space of probability distributions. Computation of the unregularized barycen-
ter for discretized probability distributions on point clouds is a challenging task
when the domain dimension d > 1. Most practical algorithms for approximat-
ing the barycenter problem are based on entropic regularization. In this paper,
we introduce a nearly linear time O(m logm) and linear space complexity O(m)

primal-dual algorithm, the Wasserstein-Descent H'-Ascent (WDHA) algorithm,
for computing the exact barycenter when the input probability density functions
are discretized on an m-point grid. The key success of the WDHA algorithm
hinges on alternating between two different yet closely related Wasserstein and
Sobolev optimization geometries for the primal barycenter and dual Kantorovich
potential subproblems. Under reasonable assumptions, we establish the conver-
gence rate and iteration complexity of WDHA to its stationary point when the
step size is appropriately chosen. Superior computational efficacy, scalability, and
accuracy over the existing Sinkhorn-type algorithms are demonstrated on high-
resolution (e.g., 1024 x 1024 images) 2D synthetic and real data.

1 INTRODUCTION

The Wasserstein barycenter, introduced by ( ) based on the theory of optimal
transport (OT), extends the notion of a Euclidean average to measure-valued data, thus representing
the “average” of a set of probability measures. Direct applications of the Wasserstein barycenter
include smooth interpolation between shapes ( s ), texture mixing ( s
), and averaging of neuroimaging data ( , ), among others. More impor-
tantly, the computation of the Wasserstein barycenter often serves as a key stepping stone to derive
more advanced machine learning and statistical algorithms. For instance, centroid-based methods
for clustermg distributions rely on the computatlon of Wasserstein barycenters (
s ). Additionally, regression models and statistical inference methods for
dlstrlbutlonal data that utilize Wasserstein geometry often employ the barycenter as an “anchor”
measure to map dlstnbutlons to a hnear tangent space ( s ; s ;

) bl s ) ) bl s )

Despite the widespread applications, computationally efficient or even scalable algorithms of the
Wasserstein barycenter with theoretical guarantees remain to be developed. Existing approaches
to compute the Wasserstein barycenter of a collection of probability density functions p, ...,
in R? rely on a Wasserstein analog of the gradlent descent algorithm, which requires to compute
n OT maps per iteration ( , ).

( ) propose a fixed point approach that is eﬁectlve for any locatlon scatter family. Classical
OT solvers, such as Hungarian method ( , ), auction algorithm (

) and transportation simplex ( , ), scale poorly for even moderately mesh-
sized problems. This presents a substantial computational barrier for computing the barycenter of
multivariate distributions. On the other hand, various regularlzed barycenters have been proposed
to mitigate the computatlonal difficulty ( , ;

, ), and Sinkhorn’s algorlthm is perhaps one of the most w1dely
used algorlthms to compute the entropy-regularized barycenter ( , ; ,
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; . ). Also, ( ) propose a new dual formulation for the regularized
Wasserstein barycenter problem such that discretizing the support is not needed. However, the
computation thrifty of these methods is subject to the approximation accuracy trade-off (

, ). In low-dimensional settings such as 2D images, this is often manifested in visually
undesirable blurring effects on the barycentric images. To break the curse of dimensionality, scalable
algorithms using input convex neural networks ( , ) and generative models (

, ) have been investigated for the Wasserstein barycenter problem.

In this paper, we recast the unregularized optimal transport (a.k.a. Wasserstein) barycenter prob-
lem as a nonconvex-concave minimax optimization problem and propose a coordinate gradient
algorithm, termed as the Wasserstein-Descent H!-Ascent (WDHA), which alternates between the
Wasserstein and Sobolev spaces. The key innovation of our WDHA algorithm is to combine two
different yet closely related primal-dual optimization geometries between the primal subproblem
for updating barycenter with the Wasserstein gradient and the Kantorovich dual formulation of
the Wasserstein distance for updating the potential functions with a homogeneous H? gradient (cf.
Definition in Section 2.2). In contrast with the usual L? gradient V, our choice of the H! gra-
dient can be interpreted as an isometric dual embedding of the potential function ¢ correspond-
ing to the earthmoving effort for pushing a source distribution p to a target distribution v via
| —vlZ_, = [IVo|35. This OT perspective is critical to ensure stability for our H'-gradient
ascent subproblem and therefore the convergence of the overall WDHA algorithm.

1.1 CONTRIBUTIONS

Current work is among the first to combine the Wasserstein and homogeneous Sobolev gradients to
derive a simple, scalable, and accurate primal-dual coordinate gradient algorithm for computing the
exact (i.e., unregularized) OT barycenter. The proposed WDHA algorithm is particularly suitable
for computing the barycenter for discretized probability density functions on a large m-point grid
such as images of 1024 x 1024 resolution. The proposed WDHA algorithm enjoys strong theoretical
properties and empirical performance. The following summarizes our main contributions.

* Discretizing the input probability density functions puq, ..., 1, onto a grid of m points, the per
iteration runtime complexity of our algorithm is O(m logm) for updating each Kantorovich po-
tential. This is in sharp contrast with the time cost O(m?) for computing an OT map between
two distributions supported on the same grid via linear programming (LP). In addition, the space
compzlexity for the H! gradient is O(m), which also substantially reduces the LP space complexity
O(m?).

* Under reasonable assumptions, we provide an explicit algorithmic convergence rate and iteration
complexity of the WDHA algorithm to its stationary point with appropriately chosen step sizes
for the gradient updates. In particular, WDHA achieves the same convergence rate O(1/T) as in
the Euclidean nonconvex-concave optimization problems.

* We demonstrate superior numeric accuracy and computational efficacy over Sinkhorn-type al-
gorithms on high-resolution 2D synthetic and real image data, where the standard Wasserstein
gradient descent algorithm cannot be practically implemented on such problem size.

For limitations, the current approach is mainly limited to computing the Wasserstein barycenter of
2D or 3D distributions supported on a compact domain.

1.2 NOTATIONS

We use R%, H], and P4 (£2) to represent the d-dimensional Euclidean space, a Hilbert space, and the
Wasserstein space on (2 respectively. Let || - ||2 and (-,-) (|| - ||m and (-, -)i) denote the Euclidean
(Hilbert) norm and inner-product. Given a function ¢ : R? — R and functionals Z : H — R,
F Py — R, weuse Vy, VI, and VF to represent the standard gradient on R, the H-gradient,
and the Wasserstein gradient respectively. Let ¢* := sup, (-, y) — ¢(y) denote the convex conjugate
of i, and ** denote the second convex conjugate. We use id to represent the identity map and the
notation [T'] = {1,2,...,T}. Given two probability measures v and u, let T} denote the optimal
transport map that pushes v to u, and let ¢/ be the corresponding Kantorovich potential. A more
detailed list of notations is provided in the appendix.
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2 PRELIMINARY

2.1 MONGE AND KANTOROVICH OPTIMAL TRANSPORT PROBLEMS

Let Py () be the set of probability measures on a convex compact set 2 C R? with finite second-
order moments, i.e., it holds that [, ||z[|3 du(x) < oo for any 1 € P2(2). For v, u € P2(S2), the
Monge’s optimal transport (OT) problem for the quadratic cost can be written as

1

Wi(v,p) := inf  M(T) with M(T) ::/ | T(z) — 2||3 dv (=),
T:Tyv=p Q 2

where Ty v is the push-forward measure of v by T', and Wh(v, p) is called the 2-Wasserstein dis-

tance between v and p. Though the solution of Monge’s problem may not exist, its relaxation, the

Kantorovich formulation of the optimal transport problem shown below, always admits a solution,

1
min (A ::/ —|lz — y||2 d\(z, y),
Jmin KO)i= [ Sl =yl diey)

where II(v, 1) is the set of probability measures on € x {2 with marginal distributions v and p.
The optimal solution ) is called the optimal transport plan. When v € P5 (), the subset of Pa(2)
consisting of all absolutely continuous probability measures (with respect to the Lebesgue measure

on (2), it is known that the solution 7/ of Monge’s problem exists, and the optimal transport plan is
A = (id, T#)xv. In this work, we will utilize the following dual form of the Kantorovich’s problem,

. _ TR
)\GIII"II(IIEI,;L) K:(A) @:Qﬁrﬁlgaisxconvex v (QD)
- w3 =3 .
with - Z}(p) := 5 — @) dv(z) + 5 — ¢ (@) dp(a), (D
Q Q

where ¢* : 2 — R is the convex conjugate of . Maximizers of the above Kantorovich dual
problem are referred to as Kantorovich potentials. Brenier’s Theorem states that the Kantorovich
potential o is unique when v € PX (), and the optimal transport map satisfies T+ = id —V . More
details of optimal transport theory are referred to the monograph ( , ).

2.2 H! GRADIENT

In this subsection, we review the concept of H gradient and introduce a H*-gradient ascent approach
for finding the maximizers of Z# () proposed by ( ). Géteaux derivative gener-
alizes the standard notion of a directional derivative to functionals. Given a functional 7 : H — R
defined on a Hilbert space H with inner product (-, -}, the Géteaux derivative of F at ¢ € H in the
direction h € H, denoted by § F(h), is defined as

SFy(h) = < F(o+eh)

e=0

Furthermore, the map V. F : H — H is referred to as the H gradient of F if (VF(¢), h)m = 6F,(h)

holds for all ¢, h € H. When H is RY VF simplifies to the standard gradient of a function. Now,
we consider the following homogeneous Sobolev space,

) 2
H! .= {@:Q—HR ’/ap(ac)dx:/ HQ;HQ dm,/ ||V<p(ac)|§dx<oo},
Q Q Q

where Vo is the weak derivative of ¢ ( , ). It is shown that H' is a Hilbert space with the
inner product (o1, v2)i = [o(Ver(z), Voa(x)) du. As demonstrated by ( ).
the H* gradient of 7/ : H! — Ris given by

VIL(p) = (=A) 7 (—v + (Ve )gh), )

where (—A)~! denotes the negative inverse Laplacian operator with zero Neumann boundary con-
ditions. We can always assume VZ* () € H' by noting that adding a constant to a function does
not affect its Laplacian. Note that Z# : H' — R is a concave functional. With the definition
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of H! gradient, the following Hl-gradient ascent algorithm (Algorithm 1) can be applied to solve
max,, ZF (), where ¢* represents the convex conjugate of .

Algorithm 1: H'-Gradient Ascent Algorithm
Initialize ©';
fort=1,2,---,T—1do

Pt =@+ mVIL(E);
et = ()

end
return {©'}1 ;

For an arbitrary function ¢, its second convex conjugate ** is always convex and satisfies p™* < .
Consequently, the step ¢'*! = ('*1)** can be interpreted as projecting @**! onto the space of
convex functions. In addition, it holds that Z#(p) < ZH(¢**), indicating that applying the second

convex conjugate does not reduce the functional value.

2.3  WASSERSTEIN GRADIENT

In this subsection, we review the definition of Wasserstein gradient and a Wasserstein gradient de-
scent approach for finding the Wasserstein barycenter of absolutely continuous probability measures.
Let H : P5(€2) — R be a functional over the nonlinear space P5 (2). For any v € P"(Q) N L>(Q),
i.e., v is absolutely continuous with an L density function, we can define the first variation of .
The map %(u) : @ — Ris called the first variation of H at p, if

0H
= )z dX z),
=] S @
for the direction ¥ = v — . Lemma 10.4.1 ( , ) implies that the Wasserstein
gradient of H at p is given by WH (p) := V%(u) under mild conditions.

d
&H(N +€x)

We remark here that the Wasserstein gradient is fundamentally different from the gradient in a
Hilbert space as defined in Subsection 2.2. The primary reason is that P5(€) is not a linear
vector space, and standard arithmetic operations such as addition and subtraction do not exist.
For instance, given v, u € P5 (), their difference v — p is not a valid probability measure and
hence v — p ¢ P5(£2). For the same reason, a different notion of convexity is appropriate for
H : P3(2) — R. Specifically, H is said to be geodesically convex if, for any v, u € P () and
e € [0, 1], it holds that H((eT} + (1 —€)id)xv) < eH(p) + (1 — e)H(v).

3 NONCONVEX-CONCAVE MINIMAX FORMULATION FOR OPTIMAL
TRANSPORT BARYCENTER

In this section, we formulate the Wasserstein barycenter problem as a nonconvex-concave optimiza-
tion problem. By reviewing existing methods for computing the Wasserstein barycenter, we demon-
strate that our nonconvex-concave formulation is more realistic and practical. We then propose a
gradient descent-ascent type algorithm and provide relevant convergence analysis.

3.1 NONCONVEX-CONCAVE MINIMAX OPTIMIZATION IN EUCLIDEAN SPACE

Before presenting our algorithm, we first discuss nonconvex-concave optimization algorithms in
Euclidean space to better understand the challenges and feasible objectives in such problems. Given
a smooth function f : R x R% — R, the nonconvex-concave minimax optimization problem is
generally formulated as

e S
where Y C R is convex and compact, and f(x, ) is concave for any fixed = while f(-,y) can be
nonconvex for a given y. Let ®(z) := maxycy f(x,y). If there exists a unique y; € Y that attains
this maximal value, i.e., ®(z) = f(x, y}), then by Danskin’s Theorem ( , ;
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, ), ®(z) is differentiable and the gradient can be computed as V®(z) = V.. f(z, y),
where V, computes the gradient with respect to x only.

The ultimate goal of the minimax optimization problem is to find the global minimum of ®. How-
ever, such problem is NP-hard due to the nonconvexity of @ ( , ). A common surrogate
in nonconvex optimization is to seek a stationary point x of ®, where V®(x) = 0. A simple and
efficient method is the gradient descent-ascent (GDA) algorithm (Algorithm 2), where Py is the
projection operator onto Y.

Algorithm 2: Gradient Descent-Ascent Algorithm on Euclidean Domain

Initialize =1, y1;
fort=1,2,---,T—1do
e =at =V fat,y);
L=Py(yt + 7V, f(ah y"));
end
return {z!, y'}T ,;

Despite the complex structure of the minimax problem and the nonconvexity of ®, the GDA algo-
rithm remains theoretically trackable. ( ) proved that, with suitable choices of step

sizes (1, 7), the following bound holds: min,epr) [V®(z!)|3 < %37, [Ve(2h)|3 = O(%),

which indicates that a good approximation of the stationary point can be achieved with e-accuracy
within the first O(1/¢) iterations.

3.2 EXISTING APPROACH FOR WASSERSTEIN BARYCENTER

Given n probability measures j1, fi2, . . . , i, € P35 (L), the Wasserstein barycenter is defined as the
minimizer of the barycenter functional F : P5(£2) — R, given by

NN
- 5 W) G)

Wasserstein barycenter can be viewed as a generalization of the arithmetic mean in the Wasserstein
space with metric Ws. It is shown that the barycenter functional admits a Wasserstein gradient
VF(v) = ZZ 1 TH, and a Wasserstein gradient based approach has been proposed (
, ) for numerically computing the Wasserstein barycenter by
iteratively updatmg as follows:
1 _ (17 t t
V' = (id =, VF (v ))#V .
However, the above algorithm implicitly assumes that the optimal transport maps {74}, are
known. In practice, computing 7** for multivariate distributions is particularly challenging and
often can only be approximated to a certain accuracy, for example, by using the Sinkhorn algorithm.

In this work, we reformulate the Wasserstein barycenter problem as a nonconvex-concave minimax
problem. Rather than computing the optimal transport maps in each iteration, we propose a gradient
descent-ascent algorithm to solve the associated minimax problem, where the transport maps are
updated using H' ascent in each iteration. Our approach alleviates the computational burden of
solving n optimal transport problems per iteration compared with the traditional approaches.

3.3 OUR APPROACH: WASSERSTEIN-DESCENT H'-ASCENT ALGORITHM

Let F, 5 be a subset of H! consisting of all functions that are a-strongly convex and S-smooth, i.e.
forevery f € Fo gand z,y € €, itholds that f € H' and |z —y||3 < f(z)— f(y) — (Vf(y), 2 —

y) < g”;z; — y||3. With this notation, Fy ., represents the set of all convex functions on ). The dual
formulation of Kantorovich problem implies

5 (Vi) = max S Zh(p;) = pi(r)dv + wi dpi(z) o

@i €F0, 0o Q 2 Q 2
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Given n probability measures p1, . . ., i, € P5(§2), we can reformulate the Wasserstein barycenter
problem as

1 n
min - max {«7(1/, p) = o 2157'(<Pi)}~ 4)
i—1

vePL(Q2) pi€Fa,p

Since the inner maximization part of (4) consists of n separable subproblems, using the notation
L8 (v) = max Tj(ei), ©)

wi€Fq 8
equation 4 can be rewritten as min, maxg,cr, , J (v, ) = min, 3"  LFi(v). When a = 0
and 3 = oo, Fq g is the set of convex functions and Wj (v, u) = maxger, , Zl (o). Thus, we
have min, 2 >°" | £#i(v) = min, F(v). The constraint set F, 3 enforces additional regularity
on the Kantorovich potentials. This technique has been frequently used in the optimal transport

literature ( , ; s ; s

Fix v, the objective functional 7 (v, ¢) is concave in each ;. However, if we fix {p;}1" | C Fo
without further assumptions, 7 (v, ¢) is not geodesically convex unless 8 < 1. Thus, problem 4 is
a “nonconvex-concave” minimax optimization problem.

We now discuss different notions of gradients for the objective functional 7 : P5(€2) x H' x - - x

H' — R. Given v € PL(Q), the H* gradient of 7 with respect to ¢; can be computed using equa-
tion 2. For a fixed set {¢;}7; C F, g, the definitions in subsection 2.3 imply that the Wasserstein
gradient of 7 is given by W.J (v, ) = id =V, where p = 2 3" | ;. Before introducing a GDA
type algorithm for solving the minimax optimization in equation 4, we summarize different notions
of gradients for readers’ convenience:

+ the usual gradient of ¢; : R? — R is denoted as V;;
« the HI' gradient of 7 with respect to ¢; is computed as V., 7 (v, ) = L(=A)~} (v +
(Vi) yi);
* the Wasserstein gradient of J with respect to v is computed as W7 (v, ) = id —Vp,
where g = L 370 .
Let Pp, , be the projection operator onto F, 5. This projection is well-defined and unique since

Fop C H! is a complete and convex metric space. We propose the following Wasserstein-Descent
H'-Ascent (WDHA) algorithm, of which the pseudocode is provided in Algorithm 3.

Algorithm 3: Wasserstein-Descent H'-Ascent Algorithm

Initialize 1, p';
fort=1,2,---,T—1do
fori=1,2,...,ndo
Pt =0l 4V, T @)

Pt =Pr, L (BITh);
end
vl = (id =7V I (U, b)) pr/t;

end
return {(v', ")} ;

Since J (-, ¢) is a functional on the space of absolutely continuous probability measures, it can also
be viewed as a functional mapping density functions to R. By embedding all densities functions
into L?(Q2), we can alternatively use the L?-gradient to update v. However, in simulations, the
Wasserstein gradient update significantly outperforms the L?-gradient update.

3.4 CONVERGENCE ANALYSIS

We now establish the notion of stationary points for 7 g() := 23"  £Mi(v) and show that

the output sequence from Algorithm 3 converges to a stationary point of F,, g(v). We start from
presenting several properties of the functionals Z,, g and L.
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The first lemma demonstrates the strong concavity and smoothness of the functional Z}' on F, g
with 0 < o < 8 < 00, when the density function of 1 is bounded from below and above.
Lemma 1 (Strong concavity and smoothness of Z#). If0 < a < u(x) < b < oo for all x € Q, then
forany o1, € F g, set A = aa/B and B = b3/ q, the following inequalities hold,

A B
—§||<P2 —o1llF = TH(p2) — TH(p1) — (VIE (1), 02 — 1) > —5||902 — o1l

The following lemma provides an explicit form of the Wasserstein gradient of £*.
Lemma 2. If0 < a < p(z) < b < oo forall x € Q, then I!'(p) admits a unique maximizer in

Fo,p. Let gl := argmax g, , I}/ (¢). Then, we have

« the first variation of LM at v is 5= (v) = @ — ot

v v

o the Wasserstein gradient of LV at v is VLH(v) = id =V k.

The above result directly implies that WF, g(v) = id —V&,, where &, = LS @k Conse-
quently, it is natural to define the stationary points of F, g as probability measures for which the
Wasserstein gradient has zero L?-norm.

Definition 1. We call v € P5(Q2) a stationary point of Fo, g if and only if [, ||V Fq 5(v)||3dv = 0.

We denote the dual norm of |||, as [|-||5—., defined by ||v|| g := inf{ [, o dv | [l¢|lzn < 1}. For
more information on || - || ;- , we refer readers to Chapter 5 of ( , ). The following
lemma indicates that the Wasserstein gradient W £* is Lipschitz continuous with constant 1/A with
respect to the Hfl-norm, where A is the constant from Lemma 1.

Lemma 3 (Lipschitzness of Wasserstein gradient WL*). If0 < a < p(z) < b < oo, then

IV L (v1) = VL (vo) L2 = (1B, — &L, g < A7l — vl

v2

where || - || .2 denote the L?-norm of the function.
Applying Theorem 5.34 in ( , ), the above result further implies

AL, = &4, i < v = vallgr < Vmax{[[vflos, [[v2llocIWa (1, v2). (6)
We emphasize that the inequality above holds because ¢t , o¥ are restricted to F,, 5. Otherwise,
only a weaker bound in W; metric is available (Theorem 1.3, , ) et — o8 g <

1/ Wi (v1, 1), where Wi (11, 12) is the 1-Wasserstein distance between v and v, and ¢; is a
constant depending on v and v,. Following standard notations in the literature, we define ||v1 |00 =
sup, v1(x) and ||v2|lec = sup, va(x), where v (z) and vo(x) are density functions of 14 and v
evaluated at the point z € ().

Following the above discussion and applying Lemma 3, we derive the smoothness of £# with respect
to the W, metric.

Lemma 4 (Smoothness of £L#). LetC =1+ o + max{”l’l”go’””2”°°}, we have

- . c

£1(0) ~ L) < [ 4=V, T — id) s + GWE (@ 0).
Q

Finally, we establish the convergence of the WDHA algorithm 3 to a stationary point of F,, g in the

following theorem.

Theorem 1 (Convergence rate of WDHA). Assume that there are constant a and b, such that the

density functions satisfy 0 < a < p;(x) < b < ooforalli =1,2...,nand x € Q. Recall that

A =aa?/Band B =bB/a. If max, |[Vt]|ec <V < 00 for some constant V > 0, by choosing the
A%

step sizes (T,m) satisfyingn < 1/B and T < An(AaT ATV savvisay We have
i VFash)|5dv!
min [ IV F 0w
T 47Vt 1 T+1
1 a2 gt An + Fa,s(?) = Fap(v’ ™)
< T;/Q\Wfaﬁ(u )5 dvt < T3 ,

where §' = ' (vY, 1, i1, . . ., ptn) > 0 is a constant.
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Remark 1. (i) The minimum value of the squared L?-norm of the Wasserstein gradient V.F, s
over the first T iterations converges to zero at a rate of O(T~1). This convergence rate is consis-
tent with the results obtained by using GDA to solve nonconvex-concave minimax problems in the
Euclidean space, as demonstrated by Lin et al. (2020). (ii) We assume that the density functions of
all iterates v* are uniformly bounded. In practice, we have not encountered any case where |||«
diverges. Therefore, we hypothesize that this technical assumption can be inferred from other as-
sumptions, which we leave as an open problem. (iii) By definition, U is a Wasserstein barycenter if
id — L3 Vbt = 0, where L' is the Kantorovich potential between v and ;. If ¢4 € Fo g
for all i, then U is a stationary point of F, g, i.e., VI, (T) = 0. Reversely, if we assume that
the Kantorovich potential between the true barycenter and each i; is in ¥, g, then VFap(@)=0
would mean that V' is a Wasserstein barycenter.

3.5 COMPUTATIONAL COMPLEXITIES

In this subsection, we discuss the implementation and computational complexity of the WDHA al-
gorithm (Algorithm 3). To implement Algorithm 3, we need to numerically approximate the infinite-
dimensional objects v, 1, . .., @, through discretization. Given v and ¢ supported on a fixed grid
of size m, the computation of the convex conjugate ¢*, the pushforward measure (V¢)xv, and
the negative inverse Laplacian (—A) () with zero Neumann boundary conditions only requires
a time complexity of O(mlog(m)) and space complexity of O(m), as demonstrated by Jacobs &
[Léger (2020). However, computing the projection Pr, ,(¢) is computationally expensive, with a
time complexity O(m?) (Simonetto, 2021). For more efficient computation, we recommend replac-
ing the projection step Pr,, , () with computing the second convex conjugate (¢)** in Algorithm 3
in practice. Although (¢)** only enforces the convexity and not strong convexity or smoothness, the
modified algorithm performs well empirically. This adjusted algorithm achieves a time complexity
O(mlog(m)) per iteration, and the pseudocode is provided below.

Algorithm 4: Wasserstein-Descent H'-Ascent Algorithm

Initialize 1/1, cpl;
fort=1,2,--- ,T—1do
fori=1,2,...,ndo
G =t iV, T (W eb);

A = )
end
v = (id = VI (v, ') w1t

end
return {(v', ")} ;

Theorem 1 suggests that the parameters 7, 77 should be bounded above. Empirically, we find that the
above algorithm works better with diminishing step sizes, potentially due to two reasons: (1) dimin-
ishing step sizes may reduce the effect of discrete approximations; and (2) diminishing step sizes
may be more effective for nonsmooth convex functions. Since the second convex conjugate does not
enforce strong convexity and smoothness, Lemma 1 no longer holds, and Z}' is only guaranteed to
be concave. In addition, diminishing step size may speed up the learning process in the early stages
and a inverse time decay for 7, i.e., 7; = 1/t, works equally well in the simulation studies.

4 NUMERICAL STUDIES

Using both synthetic and real data, we compare our approach with two existing methods appli-
cable to distributions supported on large grids: (1) Convolutional Wasserstein Barycenter (CWB)
(Solomon et al,, 2015) and (2) Debiased Sinkhorn Barycenter (DSB) (Janati et al., 2020). Both
CWB and DSB employ entropic regularization techniques and are implemented as Python functions
convolutional barycenter2d and convolutional barycenter2d_debiased, re-
spectively, in the Python library “POT: Python Optimal Transport” (Flamary et al., 2021).
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Figure 1: Illustration of Wasserstein barycenters computed using different methods. The goal is to
compute the barycenter of four uniform densities supported on the square, circle, heart, and cross,
respectively, as displayed in the top left image. The blended shape shown in the top middle image
is the barycentric density computed using our method. Barycentric densities computed using CWB
and DSB with regularization strength parameter reg = 0.005, and their thresholded versions are
shown in the top right image and the bottom three images.

4.1 SYNTHETIC UNIFORM DISTRIBUTIONS

In this example, we aim to compute the barycenter of four uniform distributions whose supports are
contained in [0, 1]2 and take the shapes of a square, a circle, a heart, and a cross, respectively. Their
densities are discretized on a fixed grid of size m = 1024 x 1024 and are displayed in Figure 1 (top
left). We apply Algorithm 4 and set 7 = exp(—t/T') and ! = 0.05 for all i and decrease it by a
factor of 0.99 if T (! T) < THi (¢1).

The barycenters computed by our method, CWB, and DSB after 300 iterations are displayed in
Figure 1. The density of the barycenter distribution generated by our method, as shown in the
center of the top middle image in Figure 1, is uniformly distributed over a blended shape comprising
a square, a circle, a heart, and a cross, with sharp edges. In contrast, the barycenters computed
using CWB with regularization strength parameter reg = 0.005, displayed in the top right image in
Figure 1, appear blurred. DSB yields a better representation than CWB but remains unclear; see the
bottom middle image in Figure 1 for barycenters produced by DSB with reg = 0.005. Notably, we
encounter a division by zero error if the regularization strength parameter is set to 0.001. We also
compute thresholded versions of barycenters of CWB and DSB by removing intensities smaller than
the threshold such that the removed intensities amount to 10% of the total mass. The thresholded
barycenters are shown in the bottom left and right images in Figure 1. However, the resulting
barycenters lack the inward sharp curvature inherited from the heart and cross shape. Thus, the
barycenter obtained by our method offers a clearer and more representative summary of the set.

We report the program run times for computing these barycenters and the corresponding 2-
Wasserstein barycenter functional values F(v°%!), where 15! represents the computed barycenter.
All functional values reported below are estimated using the back-and-forth approach (

, ) and are multiplied by 103. All methods were executed on Google Colab with an L4
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Wasserstein Barycenter of Handwritten Eight

Exemplary Digit 8 Exemplary Digit 8 Exemplary Digit 8

WDHA (Ours) WSB (reg=0.005) DSB (reg=0.005)

\/ "\ ‘/ .

Figure 2: Top row displays three exemplary digit 8 images. Bottom row displays barycenters com-
puted by different methods using 300 iterations.

GPU. Our method takes 676 seconds, whereas CWB takes 3731 seconds and DSB takes 7249 sec-
onds. Additionally, our method achieves the smallest barycenter functional value (74.5791), com-
pared to CWB and DSB, which yield values of 75.0689 and 74.5804, respectively. The functional
values for the thresholded barycenters are 74.7346 (CWB) and 74.5921 (DSB).

4.2 HIGH-RESOLUTION HANDWRITTEN DIGITS

Here, our method is applied to the high-resolution handwritten digits data (

). By treating the digit images as densities, we aim to compute the barycenter of one hundred
handwritten images of the digit 8, each with a size of 500 x 500 pixels. Three exemplary i 1mages are
displayed in the top row of Figure 2. To run Algorithm 4, we set 7, = exp(—t/T), and ! = 0.5 at
iteration ¢ = 1 and decrease it by a factor of 0.95 whenever Z"; (¢! *') < Z"i (!). The barycenters
computed by our method, CWB, and DSB using 7' = 300 iterations are dlsplayed in the bottom
row of Figure 2. The barycenter computed by WDHA exhibits clearer and more detailed textures,
revealing variations of the digits viewed as densities in the Wasserstein space. Furthermore, our
method is more time-efficient, taking 3,299 seconds compared to 10,808 seconds for CWB and
11,186 seconds for DSB.

5 CONCLUSION

In this paper, we introduced a Wasserstein-Descent H!-Ascent (WDHA) algorithm for computing
the Wasserstein barycenter of n probability density functions supported on a compact subset of R.
Our key technique is motivated by the recent progress in nonconvex-concave minimax optimization
problems in the Euclidean space. Compared to existing methods for high-resolution densities, the
WDHA algorithm is computationally more efficient and produces a clearer, sharper, and more de-
tailed barycenter. We believe that our work not only advances computational techniques for Wasser-
stein barycenters but also sheds new light on optimizing nonlinear functionals using a combination
of geometric structures.

10
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A LIST OF NOTATIONS

Notations Meaning
H! homogeneous Sobolev space
H-1 dual space of H*
F.pz a subset of H* consisting of a-strongly convex and 5 smooth functions
P2 (82) space of probability measures with finite second order moment
P35 () subset of P5(2) consisting of absolutely continuous probability measures
Tup pushforward measure of ¢ under the map T’
Ty the optimal transport map from v to i
Wy, v) p-Wasserstein distance between . and v
iy Kantorovich dual functional defined in equation 1
‘fs—l]j first variation of the functional F : P5(2) — R
YV F Wasserstein gradient of the functional F
J (v, ) Wasserstein barycenter functional defined in equation 4
LH(v) the maximal functinoal defined in equation 5
Fa,B average of maximal functionals defined as F, g = % Z?:l LH
(—A)~! | negative inverse Laplacian operator with zero Neumann boundary conditions
Pr, 4 projection operator onto [F, 3
©H | best a-strongly convex, 3-smooth Kantorovich potential defined in Lemma 2
p* convex conjugate of the function ¢
Vo (standard) gradient of the function ¢
id identity map
llollze L2-norm of ¢, defined as ( [, [|¢||3 dz)'/2
lell2w) L?(v)-norm of ¢, defined as ([, [l¢ll3 dv)1/?

B TECHNICAL DETAILS

B.1

PROOF OF LEMMA 1

Before proving the lemma, let us demonstrate a technical result for computing the H! inner product

first.

Lemma 5. For any functions @1, € H' and p, v € P4 (Q), we have

(VTE(1), 02 — o1)en =/Q@1—s02du—/9[golovso’{—sozowﬂ dg.

Proof. Let g = VI!(p1). By the definition of VZ! in equation 2, we have

Ag=v—(Vei)gp.

Therefore, we have

(i)

(VI (1), 02 — 01)pm 0 / (Vg, Voo — Vi) de = — / (p2 —p1)Agdx
Q Q

Here, (i) is by the definition of inner product in M, and (ii) is due to integration by parts.

— /Q(am —@2) [V = (Vi) pp] da

=/901—<P2dV—/9010V¢T—<P20V90Tdu~
0 0

Let us now prove the lemma.

14
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Proof of Lemma 1. Note that we have

Iy (p2) — Ly (1) = (VIY (1), 02 — 1)

g{ @_ / =3 )z )}

_ [ ) Hi‘% — o1 (z) dv(z) + i H% - ¢i(2) du(x)}

[ [ 1) - eate) avta) = [ (o1 TeD)(o) - (o2 0 Vi) o) du(o)
Q Q
= /Qw*{(x) — #5(2) + (p1 0 Vl)(2) = (2 0 Vooi ) (z) dpu(z). (7

Here, we use the definition of 7/ and Lemma 5 to derive (i). By properties of convex conjugate,
Ve*(y) = argmax,cq(z,y) — ¢(x), which further implies that

0" (y) = (Ve (v),y) — o(Ve* (y)).

Combining the above quality with equation 7 yields

I (p2) = Ih (1) — (VI (p1), 02 — 1)

; Vei(e) 'z — [Ves(x) 'z — 02 (Vs ()] — @2 (Vi () dp(z)
0} * *
- [ @(76i@) ~ 2 (Te3(0) ~ (Tea(Veis(a). V(o) - V(o)) dle)

~ [ B (Vii(@). V(@) dito).

where B, is the Bregman divergence of ¢ defined as

By, (z,2") := @a(x) — p2(2") — (Vipa(a'), & — 2).

Here, in (i), we use the fact that Vo o V3 = id. By properties of Bregman divergences,
By, (Vi (x), Vipy () = By (Vipa 0 Vipi (2), Vipg 0 Vipy () = By (Vi 0 Vipi (2), ).

Since s is a-strongly convex and S-smooth, we know ¢} is 1/5-strongly convex and 1/«a-smooth.
Thus, we have

1 * * 1 *

%HVW 0 Vi (z) = all3 < By (Voo 0 Vi (x), 2) < 5[ Vep2 0 Vipi () — 3,

Integrating the above inequality with respect to i and applying change of variable formulas entail
1 2 *
25 V2 — Vi (2)[l2d(VeT)
Q
< /QBq;; (Va0 Vi (x),z) dp <

1 *

30 [ IVex(o) = Tr@ BTt

where we used the fact that V1 o Vi = id. The density of (Vi) gpis p = po Vo - |D; V|
Since ¢ is a-strongly convex and 3-smooth, we have aa? < p(z) < b3¢ and thus

aa? 9 . b4
ﬁllw — ol < ., Bys (V2 0 Vi (z), ) dp < —H@g — o1l
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B.2 PROOF OF LEMMA 2

Proof. We first show the uniqueness of maximizer. Suppose there exits two maximizers @1 # @2,
then for any v € [0, 1], ¢ := y¢1 + (1 — 7)¢2 is again a maximizer. Applying Lemma 1,

A(l — 7)2 2 o o m
- #H% — il = Zh () = I (p1) — (L =V (pt)s o2 — 1) (8)
A72 2 iz H iz
= ez = el 2 Z5(er) = I (w2) = (VIS (1), 01— @2)im ©)
Adding equation 8 multiplied by v and equation 9 multiplied by 1 — ~ gives
Al — )y
ALY 0, — 3, 2 T (o) ~ AT ) — (1~ V)T (22)

For fixed v € (0, 1), the right-hand side of above is 0, while the left-hand side is strictly smaller
than 0. This shows a contradiction and the uniqueness is proved.

L 1 2 —~
Next, we show that the first variation is given by 5 M (v) = fﬂ % — @k dy. Note that

matiE]Fa B V+e)( (QD) max(/JEF IIIJL(SO)
=0 €

d
14
—deﬁ (v + ex)

Iﬁ—&-ex(&u-&-ex) I ((plul-i-ex)
€

(id, id) ~
:/Q Y @ﬁ+ex dx

id, id
%/w—(ﬁ,‘jdx as € — 0.
o 2

On the other hand, we have
maXQDEFa”a 154»5)((()0) - manoe]Fa,ﬁ Ig(@) > Zﬁ+ex<$ﬁ) - Illj ((7071:) o / <1da ld> ("bfu
= 5 W
Q

Recall that the Wasserstein gradient is just the standard gradient of the first variation. Together, the
Lemma is concluded.

€ €

B.3 PROOF OF LEMMA 3

The equality part is direct by applying Lemma 2,
IV L (1) = VL ()2 = [IVey, = Voy, |2 = lley, — b, llm-

To prove the inequality part, note that Z,, ,, is concave by Lemma 1, and IF, g is a convex set. By the
optimality of @} , @t , for any ¢ € F,, 5, we have

(o=@, VI, (@0, )i <0, (10)

(0 —@0,, VIL (@), ) < 0. (1)

Substituting ¢ = @4 in equation 10 and ¢ = ¢¥. in equation 11 and summing them together results
(Ph, — @b, VI, (2r,) — VI (¢0,)mn < 0. (12)

The following two inequalities follow from Lemma 1,
~ ~ A ~
(@) — IL, (84,) — (VIL(8L,), &, — @, )i < *gll% AR

Z (#y,) — 10, (o)) — (VI (@1,), Ph, — @y din < —fIIsZ‘JQ A
Summing over the above two inequalities gives

(VI (L)) — VIL(8L,), 84, — )i < —AlGL, — &L, -

A
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Then, combining the above inequality with equation 12 shows that
AllgY, = @4, If, <(VIL(BL,) = VIL(BL,), B, — P
© [ ot -t de - )
<llev, — ev il = vallg--

Here, (i) is derived by applying Lemma 5 as
(VI (81,). @0, — &h,) — (VIL,(@,), &, — &L,)
= [ [ ot =t an = [ (oo V@) ~ 7t 0 V()] du]

— [ [ 7t -t = [ [ 0 V@)~ 0 V@) di

- / G — 3 Ay — ).
Q

O
B.4 PROOF OF LEMMA 4
Proof. Notice that
id, id -
LF(vg) — LF(v1) — /Q % — @b drg — 1y
1 c1 1 e 1 .
(id,id) ~ _, / / (id,id) .
= e T dvy — vy de — —— — b dvs — 1y de
/o/sz 2 1he(va—i) 0oJa 2 !
1
_ > St
_/O /Q“Pllfl ~ Purte(va—nr) dvy — 1 de
1
S R AU P P P
@ [t 1
< [ e =)l e = vl de = gzl vl
i max{ ||11|eo, ||V2]]co
ol ) g, o)
where (i) is due to Lemma 3, and (ii) follows from Theorem 5.34 ( R ). Since
@ — @b is (1 4 «)-smooth, we have
id,id)
Q
(did) 0 o, fdid)
:/(T — @b )oT)? — (T — @b ) oiddiy
Q
~ 1
< [ G-Vt T2 —id)+ ST — id [ dn,
Q
Combining the above two results would conclude the lemma. O

B.5 PROOF OF THEOREM 1

Lemma 6. For any ¢' € Fo (), let o't = Pr_ (¢ +nVIE(pY)). If n < 1/B, then

le™ = QLI < (1= Ao’ — @LIE,-
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Proof. Recall that p# = arg max TH(p). We have

0€Fy g~V

L &5”[2}]11

Il
0 t o, ot ~u |2
<lle" +nVIL(¢") — oIz
=ll¢" = BLIIE + PIIVIE()IE + 20(VTE ("), ¢" — P

(ll) ~ L L INSedqdi) A ~L
<lle" = GLlZ, + VI, + 2n (Ii(sot) —T@) - 5le" - @LIIH%) :

Here, (i) is due to the property of the projection map, and (ii) is by Lemma 1. Since H! is a linear
space and o' + VZ!(p!)/B € H!, we have

N 1
TH(@h) >TH (o' + EVlﬁ(wt))

(i) 1

ST () + (VIE), £ VI i — 5 5 VI,
1

=Ih (") + @HVI(W)II%I-

Again, (i) is due to Lemma 1. Combining the above two inequalities yields
t+1

. BHl
2

lle
- - N A -
<llo* — GLlIZ, + 2B (ZH(SE) — TH(9") + 20 (Iﬁ‘(sﬁt) @) - 5 le" - <P£‘||§p>
=(1— An)|l¢" — GLIIZ, + 2n(1 — Bn) (T (e") — TH (L)) -
Ifn < 1/B, we have [lp"" — L2, < (1— An)lle’ — 25|13, O

- @5”]12.]11

Proof of Theorem 1. Since v'*! = (id —7(id —V@")) xv', where o' = L 3" | ©"i, we have from
Lemma 4 that for each 7,

Lo (W) — Lr ) < 7 /

. C
Q(id —V@", V! —id) dvt +7271/Q||V¢t —id |2 dvt,

where C; =1+ a+ %. Averaging over ¢ yields
Fa,s(W'™) = Fa (V')
— C
§T/<id—V<pt,V¢t—id) dyt+7271/ Ve —id |2 dvt
Q Q
T —t T =t .2t T —12C4 a2t
=5 [ IVe =V |adv' — - [ Vo —id|zdv' — ——— [ |[V§' —id|zdv
2 Jo 2 Jao 2 0
027 — 72C) —t 3r —12C —t
T [V - vepar - T2 [ 9E - d
Q Q
2r — 72C)V —t _ 3r —712C —t .
S N R e
Q Q
—t _ 3r —12C —t .
<oV [ IV = Velide - T [ 9F —id g

TV — s 3r —12C —t .
<TES [ Ives - Vel e - = [ 9E —id pav (13
=179 Q

where (i) is due to the fact 1 [, ||V;5t —id[3dvt < [, HV? — Ve |3dvt + [, Ve —id |3 dvt.
Set 6! = [, [V@hi — Vl||3 dz. By Young’s inequality,

ot < 1+ g ) [ 198 Vel [Le2( g 1)) [ i9et - v gan
n
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For the first term above, applying Lemma 6 yields
1 - A
1+ 5] [ Ivet, - Vetlgar < (1- 50)a,
2(+ — 1 o 2
For the second term, Lemma 2 and Theorem 5.34 ( s ) implies that

/ IvEh, 55*;:
@

do = [|@}i. — Phillg,

) 1 t—1 t +
< A2”V VEa < Azwz( L)
(iii)l L t—1  t—1yy _ : 2 t—1 112 1
< A2 [(Gd =V T (W' o) 1dH2dV = Hld Vg 3 dv
Q

27’2V . _ —t—1 . —
<2y (/nw —v“uzdutw/ﬂuw g ')
22

< TV( St [ I9E ).

Here, (i) is due to Lemma 3, (ii) is due to equation 6 (Theorem 5.34, , ), and
(iii) is because id —7V 7 (v~ 1, !~ 1) is a transport map from v*~! to v*. Combining above pieces
together yields

i< (1- e+ [”2(;71>}221?/<Z§55‘1+/QHV¢“ id||§du“).

Set6' = 13" §tandy =1 - A" + M. Averaging the above inequality for i €
{1,--- ,n} ylelds
< - 2 V 2 An)
5t < 4gt—1 4 2V (2= An) / I3 —id 2 vt
= 2V (2 - A o P
< 151*54377 ”)th * 1/ IVE" —id||3 dv*. (14)
k=1 Q

Putting all pieces together yields

T
Fap (™) = =D [Fap™) = Fap(v")]
t=1

- 3r—12C, —t
z t 9T —T°Ch a2t
_E [TV(S 1 /QHch 1d||2d1/}
t—1

LT

(if) - 23V22—A —k

< E [TVvt_lél—&- u il E bk 1/ HV(pk—idH%dyk
k=1 Q@

_ 12 _
ST [ 9E - fpav]
4 Q

o4 1=4T T 1273y 22— An) 1—-~T7t 37 —120C4 —t .
_ 1 =7 ) B a2t
=71V 1 +t:EI [ A3y T~ 1 ]/QHV@ id |3 dv

~
I
—

i) 4rVS1 [273V2(2— An) 4 31— 7201 w— —t 9
< - —_— —id |2 dvt
PR By el > / IV —id |3 dv

47Vt 8m3V2(2— An) 31 —72C d =t .9t
- +] e }Z;/an —id |2 v,
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reg  Wasserstein distance  L2-distance F(vest)

WDHA 3.758 x 1078 0.4869 9.001 x 1072

CWB 0.003 2.98 x 1077 1.321 9.031 x 1072
0.002 2.538 x 1072 3.041 0.1154

psg 0005 1.2x 1077 0.8219 9.013 x 1072
0.004 1.164 x 10~ 2.281 0.1016

Table 1: Simulation results for uniform distributions supported on round disks.

Here, (i) is from equation 13, (ii) is due to equation 14, and in (iii) we use the fact that

_An 27%VE(2 - An) - An

1-— -
T A3y 4
A3
when 7 < N CTo R Nk Therefore, we have
T 47V 5t 1y T+1
73 [IVE - < - T Fap]) ~ Fapv T)
T ~ Ja -T %T _ %7.2 _ SVZE;QAW) 73
V8 | Fop(v) — Fap ()
T7/2 ’
. . 1 _ A%n
where the last inequality holds when 7 < - \/8V2(27An) = An(Aa ATV LAV Vo O
1+2 AT,2

C ADDITIONAL EMPIRICAL STUDIES

C.1 UNIFORM DISTRIBUTIONS WITH GROUND TRUTH

Here, the goal is to compute the barycenter of four uniform distributions supported on round disks
of radius 0.15, centered at (0.2,0.2), (0.2,0.8), (0.8,0.2), (0.8, 0.8) respectively. It’s clear that the
true barycenter is uniform on the disk of radius 0.15 centered at (0.5, 0.5). The computed barycenter
densities by WDHA, CWB and DSB are shown in Figure 3. We note that regularization parameters
reg= 0.003 and reg=0.005 are the optimal choices for CWB and DSB respectively. Smaller regular-
ization parameters lead nonconvergent and worse results for both CWB and DSB. We report in Table
1 the Wasserstein distance between computed barycenter distribution and the truth, L2-distance be-
tween computed barycenter densities and the true density, and the barycenter functional value. Our
method is uniformly the best, and in particular, the improvement in the Wasserstein distance is of
orders of magnitude.

C.2 EXPERIMENTS ON 1D DISTRIBUTIONS

In this empirical study, we compare the performance of Algorithm 3 (with projection onto F, g)
and Algorithm 4 (with double convex conjugates) on 1D distributions. For each repetition ¢ and
i = 1,2,3, we let u; ¢ be the truncated version of N(a;, ;) on the domain [0, 1], where a; ~
uniform [0.3, 0.7] and o; ~ uniform [0, 1]. Let T;, 71 4, V2, be the true barycenter, computed baryc-
ernter from Algorithm 3, computed barycernter from Algorithm 4 respectively. We repeat the exper-
iment 300 times and report two types of average distances between the groundtruth and each com-

puted barycenters : average WWa-distance % Zthl W2 (v, 7;+) and average L?-distance between
densities & S, ([(Ti(z) — 7j4(x))2dx) /2,5 = 1,2. Algorithm 3 (with a = 1072, 8 = 10%)
performs slightly better with W,-distance 7.610 x 10~5 (standard deviation: 3.367 x 10~°) and
L?-distance 0.608 (standard deviation: 0.194), while Algorithm 4 has W,-distance 7.771 x 10~°
(standard deviation: 3.32 x 10~°) and L?-distance 0.6434 (standard deviation: 0.451). Tn addition,
CWB has W;-distance 0.0022 (standard deviation: 5.85 x 10~*) and L2-distance 0.082 (standard
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Wasserstein Barycenter Uniform Densities

Uniform Densities WDHA (Ours) CWB (reg=0.003)

CWB (reg=0.002) DSB (reg=0.005) DSB (reg=0.004)

Figure 3: Illustration of Wasserstein barycenters computed using WDHA, CWB and DSB.

deviation: 0.039). DSB achieves Ws-distance 1.225 x 10~° (standard deviation: 2.644 x 10~°) and
L2-distance 0.0699 (standard deviation: 0.034). DSB performs the best in Wasserstein distance for
this example.

C.3 L?-DESCENT H'-ASCENT ALGORITHM

Let v(x), p;(x) be density functions, we can write

s01= 355 [ (8 - ) iraes [ (1 - ron

Let L2(\) = {h : [h(z)*d\ < oc} be the space of functions that are L?-integrable with re-
spect to the Lebesgue measure A and D = {f € L?()\) : f(x) > 0, [ f(z)d\ = 1} be the set
of density functions. Notice that the L?-gradient of J with respect to v(x) is V,J (v, ¢) :=
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0
0 1

Figure 4: Plot of output from Algorithm 5 to uniform distributions on round disks.

;(z), we may consider the L?-descent H'-ascent algorithm described below

711 Zz 1
Algorithm 5: L2-Descent H'-Ascent Algorithm
Initialize 11, ';

fort=1,2,---, T —1do

fori=1 2,...,nd0

@;H_l - 901 =+ nzVWij(Vt’¢t);

ottt = (@
end
Hl*V -V, I (v, 9);
PD( t+1)

end
return {(', 0")}7_;:

Here, Pp('+1) is the projection of 7/*1 onto D, which can be computed using Python function
pyproximal.Simplex in the library PyProximal. We apply this algorithm to the uniform distri-
butions supported on round disks, and observe that it diverges leading to a wrong result. Neverthe-
less, we plot the output in Figure 4.

D ADDITIONAL DETAILS

D.1 WASSERSTEIN GRADIENT

To compute W7 (v, ), we apply the definition in subsection 2.3. Note that

J( v+ex, ¢)

{ /n:cuz_, /||||2_* }

v+ex)+ dpg(x)
_;E{g;; o]
:d{a x”%—@(ﬂdx}

de 0 2

=0

e=0

e=0

2
X
Q

which implies that ‘;—‘Z(u) (z) = % — @(z). By the definition of Wasserstein gradient, W7 =

V&L () = id — V.
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D.2 IMPLEMENTATION

Let Q = [0,1]? and {(x;, Y;)}i—o be the equally spaced grid points, we have zo = 0,yo = 0 and
x; =i/m,y; = j/mfor i, j # 0. Given the evaluations {¢; ; = ¢(x;, y;)} of function ¢ on these
grid points, we compute the gradient at point (x;, x;),4,j # 0 as

$Pii=Pi-1.j
V(P($i,yj) = ( @i,j*}&@i,j—l > )
h
where h = 1/m. For the computation of convex conjugates of , we note that for the 1D case,

convex conjugate can be computed efficiently using the method in ( ). For the 2D case,
notice that

©*(y1,y2) : = sup (z1 — y1)?/2 + (z2 — ¥2)?/2 — (21, T2)

Z1,T2

= sup ((351 —u1)?/2+ Sup {(z2 —92)?/2 - ‘P(xla$2)})
= sup ((z1 = 91)*/2 4 [(z1, )] (12)) -

Thus, the convex conjugate in the 2D case can be computed by iteratively applying the 1D
solver to each row and column. To discuss the implementation of (V¢)xv, we describe
how the mass v(x;,y,) (density value of v at a point (x;,y,)) is splitted and mapped (

. ) as follows. Since ¢ is convex, we observe that V,o(z;,y;) <
Vao(ziy1,y;) and Vyp(xi,y;) < Vyo(zi,yj11). Let R(z;,y;) be the quadrilateral formed
by 4 points V(zi,y;), Vo(zit1,Y;), Vo(@i, Yj+1), Ve(Titr, yj41) and pick the mesh grids
{(Zir,9j))}0 ji=1 C Rlwi,y;), where

(@i gy0) = (1 — air)(1 = B )Veo(wi, y;) + air (1 = B ) V(@i y5)
+ (1 — i) By V(i yjt1) + ai By Vo(Tivt, Yjv1)

with0 =ap < a1 <~ <o =1,0= 06y <1 <--- < P = 1. The mass of v(x;,y;)
is first uniformly distributed to the meshed grids {(z;, ﬂj/)}fi jo=1- Then, the mass at each point
(i, yjr) is distributed to 4 nearest grid points in {(z;, y;) }, inversely proportional to their distances.
If (V)4 v exceeds the grid specified, the mass will be distributed to the boundary points instead.
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