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ABSTRACT

The optimal transport barycenter (a.k.a. Wasserstein barycenter) is a fundamen-
tal notion of averaging that extends from the Euclidean space to the Wasserstein
space of probability distributions. Computation of the unregularized barycen-
ter for discretized probability distributions on point clouds is a challenging task
when the domain dimension d > 1. Most practical algorithms for approximat-
ing the barycenter problem are based on entropic regularization. In this paper,
we introduce a nearly linear time O(m logm) and linear space complexity O(m)

primal-dual algorithm, the Wasserstein-Descent Ḣ1-Ascent (WDHA) algorithm,
for computing the exact barycenter when the input probability density functions
are discretized on an m-point grid. The key success of the WDHA algorithm
hinges on alternating between two different yet closely related Wasserstein and
Sobolev optimization geometries for the primal barycenter and dual Kantorovich
potential subproblems. Under reasonable assumptions, we establish the conver-
gence rate and iteration complexity of WDHA to its stationary point when the
step size is appropriately chosen. Superior computational efficacy, scalability, and
accuracy over the existing Sinkhorn-type algorithms are demonstrated on high-
resolution (e.g., 1024× 1024 images) 2D synthetic and real data.

1 INTRODUCTION

The Wasserstein barycenter, introduced by Agueh & Carlier (2011) based on the theory of optimal
transport (OT), extends the notion of a Euclidean average to measure-valued data, thus representing
the “average” of a set of probability measures. Direct applications of the Wasserstein barycenter
include smooth interpolation between shapes (Solomon et al., 2015), texture mixing (Rabin et al.,
2012), and averaging of neuroimaging data (Gramfort et al., 2015), among others. More impor-
tantly, the computation of the Wasserstein barycenter often serves as a key stepping stone to derive
more advanced machine learning and statistical algorithms. For instance, centroid-based methods
for clustering distributions rely on the computation of Wasserstein barycenters (Cuturi & Doucet,
2014; Zhuang et al., 2022). Additionally, regression models and statistical inference methods for
distributional data that utilize Wasserstein geometry often employ the barycenter as an “anchor”
measure to map distributions to a linear tangent space (Dubey & Müller, 2020; Zhang et al., 2022;
Chen et al., 2023; Zhu & Müller, 2023; Zhu & Müller, 2024; Jiang et al., 2024).

Despite the widespread applications, computationally efficient or even scalable algorithms of the
Wasserstein barycenter with theoretical guarantees remain to be developed. Existing approaches
to compute the Wasserstein barycenter of a collection of probability density functions µ1, . . . , µn

in Rd rely on a Wasserstein analog of the gradient descent algorithm, which requires to compute
n OT maps per iteration (Zemel & Panaretos, 2019; Chewi et al., 2020). Álvarez-Esteban et al.
(2016) propose a fixed point approach that is effective for any location-scatter family. Classical
OT solvers, such as Hungarian method (Kuhn, 1955), auction algorithm (Bertsekas & Castanon,
1989) and transportation simplex (Luenberger & Ye, 2008), scale poorly for even moderately mesh-
sized problems. This presents a substantial computational barrier for computing the barycenter of
multivariate distributions. On the other hand, various regularized barycenters have been proposed
to mitigate the computational difficulty (Li et al., 2020a; Janati et al., 2020; Bigot et al., 2019;
Carlier et al., 2021; Chizat, 2023), and Sinkhorn’s algorithm is perhaps one of the most widely
used algorithms to compute the entropy-regularized barycenter (Peyré & Cuturi, 2019; Lin et al.,
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2022; Carlier, 2022). Also, Li et al. (2020b) propose a new dual formulation for the regularized
Wasserstein barycenter problem such that discretizing the support is not needed. However, the
computation thrifty of these methods is subject to the approximation accuracy trade-off (Nenna &
Pegon, 2024). In low-dimensional settings such as 2D images, this is often manifested in visually
undesirable blurring effects on the barycentric images. To break the curse of dimensionality, scalable
algorithms using input convex neural networks (Korotin et al., 2021) and generative models (Korotin
et al., 2022) have been investigated for the Wasserstein barycenter problem.

In this paper, we recast the unregularized optimal transport (a.k.a. Wasserstein) barycenter prob-
lem as a nonconvex-concave minimax optimization problem and propose a coordinate gradient
algorithm, termed as the Wasserstein-Descent Ḣ1-Ascent (WDHA), which alternates between the
Wasserstein and Sobolev spaces. The key innovation of our WDHA algorithm is to combine two
different yet closely related primal-dual optimization geometries between the primal subproblem
for updating barycenter with the Wasserstein gradient and the Kantorovich dual formulation of
the Wasserstein distance for updating the potential functions with a homogeneous Ḣ1 gradient (cf.
Definition in Section 2.2). In contrast with the usual L2 gradient ∇, our choice of the Ḣ1 gra-
dient can be interpreted as an isometric dual embedding of the potential function ϕ correspond-
ing to the earthmoving effort for pushing a source distribution µ to a target distribution ν via
∥µ − ν∥2Ḣ−1 =

∫
∥∇ϕ∥22. This OT perspective is critical to ensure stability for our Ḣ1-gradient

ascent subproblem and therefore the convergence of the overall WDHA algorithm.

1.1 CONTRIBUTIONS

Current work is among the first to combine the Wasserstein and homogeneous Sobolev gradients to
derive a simple, scalable, and accurate primal-dual coordinate gradient algorithm for computing the
exact (i.e., unregularized) OT barycenter. The proposed WDHA algorithm is particularly suitable
for computing the barycenter for discretized probability density functions on a large m-point grid
such as images of 1024×1024 resolution. The proposed WDHA algorithm enjoys strong theoretical
properties and empirical performance. The following summarizes our main contributions.

• Discretizing the input probability density functions µ1, . . . , µn onto a grid of m points, the per
iteration runtime complexity of our algorithm is O(m logm) for updating each Kantorovich po-
tential. This is in sharp contrast with the time cost O(m3) for computing an OT map between
two distributions supported on the same grid via linear programming (LP). In addition, the space
complexity for the Ḣ1 gradient is O(m), which also substantially reduces the LP space complexity
O(m2).

• Under reasonable assumptions, we provide an explicit algorithmic convergence rate and iteration
complexity of the WDHA algorithm to its stationary point with appropriately chosen step sizes
for the gradient updates. In particular, WDHA achieves the same convergence rate O(1/T ) as in
the Euclidean nonconvex-concave optimization problems.

• We demonstrate superior numeric accuracy and computational efficacy over Sinkhorn-type al-
gorithms on high-resolution 2D synthetic and real image data, where the standard Wasserstein
gradient descent algorithm cannot be practically implemented on such problem size.

For limitations, the current approach is mainly limited to computing the Wasserstein barycenter of
2D or 3D distributions supported on a compact domain.

1.2 NOTATIONS

We use Rd, H, and Pr
2 (Ω) to represent the d-dimensional Euclidean space, a Hilbert space, and the

Wasserstein space on Ω respectively. Let ∥ · ∥2 and ⟨·, ·⟩ (∥ · ∥H and ⟨·, ·⟩H) denote the Euclidean
(Hilbert) norm and inner-product. Given a function φ : Rd → R and functionals I : H → R,
F : Pr

2 → R, we use ∇φ, ∇I, and ∇∇F to represent the standard gradient on Rd, the H-gradient,
and the Wasserstein gradient respectively. Let φ∗ := supy⟨·, y⟩−φ(y) denote the convex conjugate
of φ, and φ∗∗ denote the second convex conjugate. We use id to represent the identity map and the
notation [T ] = {1, 2, . . . , T}. Given two probability measures ν and µ, let Tµ

ν denote the optimal
transport map that pushes ν to µ, and let φµ

ν be the corresponding Kantorovich potential. A more
detailed list of notations is provided in the appendix.
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2 PRELIMINARY

2.1 MONGE AND KANTOROVICH OPTIMAL TRANSPORT PROBLEMS

Let P2(Ω) be the set of probability measures on a convex compact set Ω ⊆ Rd with finite second-
order moments, i.e., it holds that

∫
Ω
∥x∥22 dµ(x) < ∞ for any µ ∈ P2(Ω). For ν, µ ∈ P2(Ω), the

Monge’s optimal transport (OT) problem for the quadratic cost can be written as

W2
2 (ν, µ) := inf

T :T#ν=µ
M(T ) with M(T ) :=

∫
Ω

1

2
∥T (x)− x∥22 dν(x),

where T#ν is the push-forward measure of ν by T , and W2(ν, µ) is called the 2-Wasserstein dis-
tance between ν and µ. Though the solution of Monge’s problem may not exist, its relaxation, the
Kantorovich formulation of the optimal transport problem shown below, always admits a solution,

min
λ∈Π(ν,µ)

K(λ) :=

∫
Ω×Ω

1

2
∥x− y∥22 dλ(x, y),

where Π(ν, µ) is the set of probability measures on Ω × Ω with marginal distributions ν and µ.
The optimal solution λ is called the optimal transport plan. When ν ∈ Pr

2 (Ω), the subset of P2(Ω)
consisting of all absolutely continuous probability measures (with respect to the Lebesgue measure
on Ω), it is known that the solution Tµ

ν of Monge’s problem exists, and the optimal transport plan is
λ = (id, Tµ

ν )#ν. In this work, we will utilize the following dual form of the Kantorovich’s problem,

min
λ∈Π(ν,µ)

K(λ) = max
φ:Ω→R is convex

Iµ
ν (φ)

with Iµ
ν (φ) :=

∫
Ω

∥x∥22
2

− φ(x) dν(x) +

∫
Ω

∥x∥22
2

− φ∗(x) dµ(x), (1)

where φ∗ : Ω → R is the convex conjugate of φ. Maximizers of the above Kantorovich dual
problem are referred to as Kantorovich potentials. Brenier’s Theorem states that the Kantorovich
potential φ is unique when ν ∈ Pr

2 (Ω), and the optimal transport map satisfies Tµ
ν = id−∇φ. More

details of optimal transport theory are referred to the monograph (Santambrogio, 2015).

2.2 Ḣ1 GRADIENT

In this subsection, we review the concept of H gradient and introduce a Ḣ1-gradient ascent approach
for finding the maximizers of Iµ

ν (φ) proposed by Jacobs & Léger (2020). Gâteaux derivative gener-
alizes the standard notion of a directional derivative to functionals. Given a functional F : H → R
defined on a Hilbert space H with inner product ⟨·, ·⟩H, the Gâteaux derivative of F at ϕ ∈ H in the
direction h ∈ H, denoted by δFϕ(h), is defined as

δFϕ(h) =
d

dϵ
F(ϕ+ ϵh)

∣∣∣∣
ϵ=0

.

Furthermore, the map ∇F : H → H is referred to as the H gradient of F if ⟨∇F(ϕ), h⟩H = δFϕ(h)
holds for all ϕ, h ∈ H. When H is Rd, ∇F simplifies to the standard gradient of a function. Now,
we consider the following homogeneous Sobolev space,

Ḣ1 :=

{
φ : Ω → R

∣∣∣∣ ∫
Ω

φ(x) dx =

∫
Ω

∥x∥22
2

dx,

∫
Ω

∥∇φ(x)∥22 dx < ∞
}
,

where ∇φ is the weak derivative of φ (Evans, 2022). It is shown that Ḣ1 is a Hilbert space with the
inner product ⟨φ1, φ2⟩Ḣ1 =

∫
Ω
⟨∇φ1(x),∇φ2(x)⟩dx. As demonstrated by Jacobs & Léger (2020),

the Ḣ1 gradient of Iµ
ν : Ḣ1 → R is given by

∇Iµ
ν (φ) = (−∆)−1(−ν + (∇φ∗)#µ), (2)

where (−∆)−1 denotes the negative inverse Laplacian operator with zero Neumann boundary con-
ditions. We can always assume ∇Iµ

ν (φ) ∈ Ḣ1 by noting that adding a constant to a function does
not affect its Laplacian. Note that Iµ

ν : Ḣ1 → R is a concave functional. With the definition
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of Ḣ1 gradient, the following Ḣ1-gradient ascent algorithm (Algorithm 1) can be applied to solve
maxφ Iµ

ν (φ), where φ∗ represents the convex conjugate of φ.

Algorithm 1: Ḣ1-Gradient Ascent Algorithm

Initialize φ1;
for t = 1, 2, · · · , T − 1 do

φ̂t+1 = φt + ηt∇Iµ
ν (φ

t);
φt+1 = (φ̂t+1)∗∗;

end
return {φt}Tt=1;

For an arbitrary function φ, its second convex conjugate φ∗∗ is always convex and satisfies φ∗∗ ≤ φ.
Consequently, the step φt+1 = (φ̂t+1)∗∗ can be interpreted as projecting φ̂t+1 onto the space of
convex functions. In addition, it holds that Iµ

ν (φ) ≤ Iµ
ν (φ

∗∗), indicating that applying the second
convex conjugate does not reduce the functional value.

2.3 WASSERSTEIN GRADIENT

In this subsection, we review the definition of Wasserstein gradient and a Wasserstein gradient de-
scent approach for finding the Wasserstein barycenter of absolutely continuous probability measures.
Let H : Pr

2 (Ω) → R be a functional over the nonlinear space Pr
2 (Ω). For any ν ∈ Pr(Ω)∩L∞(Ω),

i.e., ν is absolutely continuous with an L∞ density function, we can define the first variation of H.
The map δH

δµ (µ) : Ω → R is called the first variation of H at µ, if

d

dϵ
H(µ+ ϵχ)

∣∣∣∣
ϵ=0

=

∫
Ω

δH
δµ

(µ)(x) dχ(x),

for the direction χ = ν − µ. Lemma 10.4.1 (Ambrosio et al., 2008) implies that the Wasserstein
gradient of H at µ is given by ∇∇H(µ) := ∇ δH

δµ (µ) under mild conditions.

We remark here that the Wasserstein gradient is fundamentally different from the gradient in a
Hilbert space as defined in Subsection 2.2. The primary reason is that Pr

2 (Ω) is not a linear
vector space, and standard arithmetic operations such as addition and subtraction do not exist.
For instance, given ν, µ ∈ Pr

2 (Ω), their difference ν − µ is not a valid probability measure and
hence ν − µ /∈ Pr

2 (Ω). For the same reason, a different notion of convexity is appropriate for
H : Pr

2 (Ω) → R. Specifically, H is said to be geodesically convex if, for any ν, µ ∈ Pr
2 (Ω) and

ϵ ∈ [0, 1], it holds that H((ϵTµ
ν + (1− ϵ) id)#ν) ≤ ϵH(µ) + (1− ϵ)H(ν).

3 NONCONVEX-CONCAVE MINIMAX FORMULATION FOR OPTIMAL
TRANSPORT BARYCENTER

In this section, we formulate the Wasserstein barycenter problem as a nonconvex-concave optimiza-
tion problem. By reviewing existing methods for computing the Wasserstein barycenter, we demon-
strate that our nonconvex-concave formulation is more realistic and practical. We then propose a
gradient descent-ascent type algorithm and provide relevant convergence analysis.

3.1 NONCONVEX-CONCAVE MINIMAX OPTIMIZATION IN EUCLIDEAN SPACE

Before presenting our algorithm, we first discuss nonconvex-concave optimization algorithms in
Euclidean space to better understand the challenges and feasible objectives in such problems. Given
a smooth function f : Rd1 × Rd2 → R, the nonconvex-concave minimax optimization problem is
generally formulated as

min
x∈Rd1

max
y∈Y

f(x, y),

where Y ⊂ Rd2 is convex and compact, and f(x, ·) is concave for any fixed x while f(·, y) can be
nonconvex for a given y. Let Φ(x) := maxy∈Y f(x, y). If there exists a unique y∗x ∈ Y that attains
this maximal value, i.e., Φ(x) = f(x, y∗x), then by Danskin’s Theorem (Bernhard & Rapaport, 1995;
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Bertsekas, 1997), Φ(x) is differentiable and the gradient can be computed as ∇Φ(x) = ∇xf(x, y
∗
x),

where ∇x computes the gradient with respect to x only.

The ultimate goal of the minimax optimization problem is to find the global minimum of Φ. How-
ever, such problem is NP-hard due to the nonconvexity of Φ (Lin et al., 2020). A common surrogate
in nonconvex optimization is to seek a stationary point x of Φ, where ∇Φ(x) = 0. A simple and
efficient method is the gradient descent-ascent (GDA) algorithm (Algorithm 2), where PY is the
projection operator onto Y.

Algorithm 2: Gradient Descent-Ascent Algorithm on Euclidean Domain
Initialize x1, y1;
for t = 1, 2, · · · , T − 1 do

xt+1 = xt − η∇xf(x
t, yt);

yt+1 = PY(y
t + τ∇yf(x

t, yt));
end
return {xt, yt}Tt=1;

Despite the complex structure of the minimax problem and the nonconvexity of Φ, the GDA algo-
rithm remains theoretically trackable. Lin et al. (2020) proved that, with suitable choices of step
sizes (η, τ), the following bound holds: mint∈[T ] ∥∇Φ(xt)∥22 ≤ 1

T

∑T
t=1 ∥∇Φ(xt)∥22 = O

(
1
T

)
,

which indicates that a good approximation of the stationary point can be achieved with ε-accuracy
within the first O(1/ε) iterations.

3.2 EXISTING APPROACH FOR WASSERSTEIN BARYCENTER

Given n probability measures µ1, µ2, . . . , µn ∈ Pr
2 (Ω), the Wasserstein barycenter is defined as the

minimizer of the barycenter functional F : Pr
2 (Ω) → R, given by

F(ν) :=
1

n

n∑
i=1

W2
2 (ν, µi). (3)

Wasserstein barycenter can be viewed as a generalization of the arithmetic mean in the Wasserstein
space with metric W2. It is shown that the barycenter functional admits a Wasserstein gradient
∇∇F(ν) = id− 1

n

∑n
i=1 T

µi
ν , and a Wasserstein gradient based approach has been proposed (Zemel

& Panaretos, 2019; Chewi et al., 2020) for numerically computing the Wasserstein barycenter by
iteratively updating as follows:

νt+1 =
(
id−ηt∇∇F(νt)

)
#
νt.

However, the above algorithm implicitly assumes that the optimal transport maps {Tµi
ν }ni=1 are

known. In practice, computing Tµi
ν for multivariate distributions is particularly challenging and

often can only be approximated to a certain accuracy, for example, by using the Sinkhorn algorithm.

In this work, we reformulate the Wasserstein barycenter problem as a nonconvex-concave minimax
problem. Rather than computing the optimal transport maps in each iteration, we propose a gradient
descent-ascent algorithm to solve the associated minimax problem, where the transport maps are
updated using Ḣ1 ascent in each iteration. Our approach alleviates the computational burden of
solving n optimal transport problems per iteration compared with the traditional approaches.

3.3 OUR APPROACH: WASSERSTEIN-DESCENT Ḣ1-ASCENT ALGORITHM

Let Fα,β be a subset of Ḣ1 consisting of all functions that are α-strongly convex and β-smooth, i.e.
for every f ∈ Fα,β and x, y ∈ Ω, it holds that f ∈ Ḣ1 and α

2 ∥x−y∥22 ≤ f(x)−f(y)−⟨∇f(y), x−
y⟩ ≤ β

2 ∥x− y∥22. With this notation, F0,∞ represents the set of all convex functions on Ω. The dual
formulation of Kantorovich problem implies

W2
2 (ν, µi) = max

φi∈F0,∞

{
Iµi
ν (φi) =

∫
Ω

∥x∥22
2

− φi(x) dν +

∫
Ω

∥x∥22
2

− φ∗
i dµi(x)

}
.

5
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Given n probability measures µ1, . . . , µn ∈ Pr
2 (Ω), we can reformulate the Wasserstein barycenter

problem as

min
ν∈Pr

2 (Ω)
max

φi∈Fα,β

{
J (ν,φ) :=

1

n

n∑
i=1

Iµi
ν (φi)

}
. (4)

Since the inner maximization part of (4) consists of n separable subproblems, using the notation
Lµi(ν) := max

φi∈Fα,β

Iµi
ν (φi), (5)

equation 4 can be rewritten as minν maxφi∈Fα,β
J (ν,φ) = minν

1
n

∑n
i=1 Lµi(ν). When α = 0

and β = ∞, Fα,β is the set of convex functions and W2
2 (ν, µ) = maxφ∈Fα,β

Iµ
ν (φ). Thus, we

have minν
1
n

∑n
i=1 Lµi(ν) = minν F(ν). The constraint set Fα,β enforces additional regularity

on the Kantorovich potentials. This technique has been frequently used in the optimal transport
literature (Paty et al., 2020; Hütter & Rigollet, 2021; Manole et al., 2024).

Fix ν, the objective functional J (ν,φ) is concave in each φi. However, if we fix {φi}ni=1 ⊂ Fα,β

without further assumptions, J (ν,φ) is not geodesically convex unless β ≤ 1. Thus, problem 4 is
a “nonconvex-concave” minimax optimization problem.

We now discuss different notions of gradients for the objective functional J : Pr
2 (Ω)× Ḣ1 × · · · ×

Ḣ1 → R. Given ν ∈ Pt
2(Ω), the Ḣ1 gradient of J with respect to φi can be computed using equa-

tion 2. For a fixed set {φi}ni=1 ⊂ Fα,β , the definitions in subsection 2.3 imply that the Wasserstein
gradient of J is given by ∇∇J (ν,φ) = id−∇φ, where φ = 1

n

∑n
i=1 φi. Before introducing a GDA

type algorithm for solving the minimax optimization in equation 4, we summarize different notions
of gradients for readers’ convenience:

• the usual gradient of φi : Rd → R is denoted as ∇φi;

• the Ḣ1 gradient of J with respect to φi is computed as ∇φi
J (ν,φ) = 1

n (−∆)−1(−ν +
(∇φ∗

i )#µi);

• the Wasserstein gradient of J with respect to ν is computed as ∇∇J (ν,φ) = id−∇φ,
where φ = 1

n

∑n
i=1 φi.

Let PFα,β
be the projection operator onto Fα,β . This projection is well-defined and unique since

Fα,β ⊂ Ḣ1 is a complete and convex metric space. We propose the following Wasserstein-Descent
Ḣ1-Ascent (WDHA) algorithm, of which the pseudocode is provided in Algorithm 3.

Algorithm 3: Wasserstein-Descent Ḣ1-Ascent Algorithm

Initialize ν1,φ1;
for t = 1, 2, · · · , T − 1 do

for i = 1, 2, . . . , n do
φ̂t+1
i = φt

i + η∇φi
J (νt,φt);

φt+1
i = PFα,β

(φ̂t+1
i );

end
νt+1 = (id−τ∇∇J (νt,φt))#ν

t;
end
return {(νt,φt)}Tt=1;

Since J (·,φ) is a functional on the space of absolutely continuous probability measures, it can also
be viewed as a functional mapping density functions to R. By embedding all densities functions
into L2(Ω), we can alternatively use the L2-gradient to update ν. However, in simulations, the
Wasserstein gradient update significantly outperforms the L2-gradient update.

3.4 CONVERGENCE ANALYSIS

We now establish the notion of stationary points for Fα,β(ν) := 1
n

∑n
i=1 Lµi(ν) and show that

the output sequence from Algorithm 3 converges to a stationary point of Fα,β(ν). We start from
presenting several properties of the functionals Iα,β and Lµ.

6
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The first lemma demonstrates the strong concavity and smoothness of the functional Iµ
ν on Fα,β

with 0 < α ≤ β < ∞, when the density function of µ is bounded from below and above.
Lemma 1 (Strong concavity and smoothness of Iµ

ν ). If 0 < a ≤ µ(x) ≤ b < ∞ for all x ∈ Ω, then
for any φ1, φ2 ∈ Fα,β , set A = aαd/β and B = bβd/α, the following inequalities hold,

−A

2
∥φ2 − φ1∥2Ḣ1 ≥ Iµ

ν (φ2)− Iµ
ν (φ1)− ⟨∇Iµ

ν (φ1), φ2 − φ1⟩Ḣ1 ≥ −B

2
∥φ2 − φ1∥2Ḣ1 .

The following lemma provides an explicit form of the Wasserstein gradient of Lµ.
Lemma 2. If 0 < a ≤ µ(x) ≤ b < ∞ for all x ∈ Ω, then Iµ

ν (φ) admits a unique maximizer in
Fα,β . Let φ̃µ

ν := argmaxφ∈Fα,β
Iµ
ν (φ). Then, we have

• the first variation of Lµ at ν is δLµ

δν (ν) = ⟨id,id⟩
2 − φ̃µ

ν ;

• the Wasserstein gradient of Lµ at ν is ∇∇Lµ(ν) = id−∇φ̃µ
ν .

The above result directly implies that ∇∇Fα,β(ν) = id−∇φ̃
µ

ν , where φ̃
µ

ν = 1
n

∑n
i=1 φ̃

µi
ν . Conse-

quently, it is natural to define the stationary points of Fα,β as probability measures for which the
Wasserstein gradient has zero L2-norm.
Definition 1. We call ν ∈ Pr

2 (Ω) a stationary point of Fα,β if and only if
∫
Ω
∥∇∇Fα,β(ν)∥22 dν = 0.

We denote the dual norm of ∥·∥Ḣ1 as ∥·∥Ḣ−1 , defined by ∥ν∥Ḣ−1 := inf{
∫
Ω
φdν | ∥φ∥Ḣ1 ≤ 1}. For

more information on ∥ ·∥Ḣ−1 , we refer readers to Chapter 5 of (Santambrogio, 2015). The following
lemma indicates that the Wasserstein gradient ∇∇Lµ is Lipschitz continuous with constant 1/A with
respect to the Ḣ−1-norm, where A is the constant from Lemma 1.
Lemma 3 (Lipschitzness of Wasserstein gradient ∇∇Lµ). If 0 < a ≤ µ(x) ≤ b < ∞, then

∥∇∇Lµ(ν1)−∇∇Lµ(ν2)∥L2 = ∥φ̃µ
ν2

− φ̃µ
ν1
∥Ḣ1 ≤ A−1∥ν1 − ν2∥Ḣ−1 ,

where ∥ · ∥L2 denote the L2-norm of the function.

Applying Theorem 5.34 in (Santambrogio, 2015), the above result further implies

A∥φ̃µ
ν2

− φ̃µ
ν1
∥Ḣ1 ≤ ∥ν1 − ν2∥Ḣ−1 ≤

√
max{∥ν1∥∞, ∥ν2∥∞}W2(ν1, ν2). (6)

We emphasize that the inequality above holds because φ̃µ
ν2
, φ̃µ

ν1
are restricted to Fα,β . Otherwise,

only a weaker bound in W1 metric is available (Theorem 1.3, Berman, 2021), ∥φµ
ν2

− φµ
ν1
∥Ḣ1 ≤

c1
√
W1(ν1, ν2), where W1(ν1, ν2) is the 1-Wasserstein distance between ν1 and ν2, and c1 is a

constant depending on ν1 and ν2. Following standard notations in the literature, we define ∥ν1∥∞ =
supx ν1(x) and ∥ν2∥∞ = supx ν2(x), where ν1(x) and ν2(x) are density functions of ν1 and ν2
evaluated at the point x ∈ Ω.

Following the above discussion and applying Lemma 3, we derive the smoothness of Lµ with respect
to the W2 metric.
Lemma 4 (Smoothness of Lµ). Let C = 1 + α+ max{∥ν1∥∞,∥ν2∥∞}

A , we have

Lµ(ν2)− Lµ(ν1) ≤
∫
Ω

⟨id−∇φ̃µ
ν1
, T ν2

ν1
− id⟩dν1 +

C

2
W2

2 (ν1, ν2).

Finally, we establish the convergence of the WDHA algorithm 3 to a stationary point of Fα,β in the
following theorem.
Theorem 1 (Convergence rate of WDHA). Assume that there are constant a and b, such that the
density functions satisfy 0 < a ≤ µi(x) ≤ b < ∞ for all i = 1, 2 . . . , n and x ∈ Ω. Recall that
A = aαd/β and B = bβd/α. If maxt ∥νt∥∞ ≤ V < ∞ for some constant V > 0, by choosing the
step sizes (τ, η) satisfying η < 1/B and τ < A2η

Aη(Aα+A+V )+4V
√
4−2Aη

, we have

min
t∈[T ]

∫
Ω

∥∇∇Fα,β(ν
t)∥22 dνt

≤ 1

T

T∑
t=1

∫
Ω

∥∥∇∇Fα,β(ν
t)
∥∥2
2
dνt ≤

4τV δ̄1

Aη + Fα,β(ν
1)−Fα,β(ν

T+1)

Tτ/2
,

where δ̄1 = δ̄1(ν1,φ1, µ1, . . . , µn) > 0 is a constant.
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Remark 1. (i) The minimum value of the squared L2-norm of the Wasserstein gradient ∇∇Fα,β

over the first T iterations converges to zero at a rate of O(T−1). This convergence rate is consis-
tent with the results obtained by using GDA to solve nonconvex-concave minimax problems in the
Euclidean space, as demonstrated by Lin et al. (2020). (ii) We assume that the density functions of
all iterates νt are uniformly bounded. In practice, we have not encountered any case where ∥νt∥∞
diverges. Therefore, we hypothesize that this technical assumption can be inferred from other as-
sumptions, which we leave as an open problem. (iii) By definition, ν is a Wasserstein barycenter if
id − 1

n

∑n
i=1 ∇φµi

ν = 0, where φµi

ν is the Kantorovich potential between ν and µi. If φµi

ν ∈ Fα,β

for all i, then ν is a stationary point of Fα,β , i.e., ∇∇Fα,β(ν) = 0. Reversely, if we assume that
the Kantorovich potential between the true barycenter and each µi is in Fα,β , then ∇∇Fα,β(ν

′) = 0
would mean that ν′ is a Wasserstein barycenter.

3.5 COMPUTATIONAL COMPLEXITIES

In this subsection, we discuss the implementation and computational complexity of the WDHA al-
gorithm (Algorithm 3). To implement Algorithm 3, we need to numerically approximate the infinite-
dimensional objects ν, φ1, . . . , φn through discretization. Given ν and φ supported on a fixed grid
of size m, the computation of the convex conjugate φ∗, the pushforward measure (∇φ)#ν, and
the negative inverse Laplacian (−∆)−1(ν) with zero Neumann boundary conditions only requires
a time complexity of O(m log(m)) and space complexity of O(m), as demonstrated by Jacobs &
Léger (2020). However, computing the projection PFα,β

(φ) is computationally expensive, with a
time complexity O(m2) (Simonetto, 2021). For more efficient computation, we recommend replac-
ing the projection step PFα,β

(φ) with computing the second convex conjugate (φ)∗∗ in Algorithm 3
in practice. Although (φ)∗∗ only enforces the convexity and not strong convexity or smoothness, the
modified algorithm performs well empirically. This adjusted algorithm achieves a time complexity
O(m log(m)) per iteration, and the pseudocode is provided below.

Algorithm 4: Wasserstein-Descent Ḣ1-Ascent Algorithm

Initialize ν1,φ1;
for t = 1, 2, · · · , T − 1 do

for i = 1, 2, . . . , n do
φ̂t+1
i = φt

i + ηti∇φi
J (νt,φt);

φt+1
i = (φ̂t+1

i )∗∗;
end
νt+1 = (id−τt∇∇J (νt,φt))#ν

t;
end
return {(νt,φt)}Tt=1;

Theorem 1 suggests that the parameters τ , η should be bounded above. Empirically, we find that the
above algorithm works better with diminishing step sizes, potentially due to two reasons: (1) dimin-
ishing step sizes may reduce the effect of discrete approximations; and (2) diminishing step sizes
may be more effective for nonsmooth convex functions. Since the second convex conjugate does not
enforce strong convexity and smoothness, Lemma 1 no longer holds, and Iµ

ν is only guaranteed to
be concave. In addition, diminishing step size may speed up the learning process in the early stages
and a inverse time decay for τt, i.e., τt = 1/t, works equally well in the simulation studies.

4 NUMERICAL STUDIES

Using both synthetic and real data, we compare our approach with two existing methods appli-
cable to distributions supported on large grids: (1) Convolutional Wasserstein Barycenter (CWB)
(Solomon et al., 2015) and (2) Debiased Sinkhorn Barycenter (DSB) (Janati et al., 2020). Both
CWB and DSB employ entropic regularization techniques and are implemented as Python functions
convolutional barycenter2d and convolutional barycenter2d debiased, re-
spectively, in the Python library “POT: Python Optimal Transport” (Flamary et al., 2021).
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Uniform Densities WDHA (Ours) CWB (reg=0.005)

CWB (thresholded) DSB (reg=0.005) DSB (thresholded)

Wasserstein Barycenter Uniform Densities

Figure 1: Illustration of Wasserstein barycenters computed using different methods. The goal is to
compute the barycenter of four uniform densities supported on the square, circle, heart, and cross,
respectively, as displayed in the top left image. The blended shape shown in the top middle image
is the barycentric density computed using our method. Barycentric densities computed using CWB
and DSB with regularization strength parameter reg = 0.005, and their thresholded versions are
shown in the top right image and the bottom three images.

4.1 SYNTHETIC UNIFORM DISTRIBUTIONS

In this example, we aim to compute the barycenter of four uniform distributions whose supports are
contained in [0, 1]2 and take the shapes of a square, a circle, a heart, and a cross, respectively. Their
densities are discretized on a fixed grid of size m = 1024× 1024 and are displayed in Figure 1 (top
left). We apply Algorithm 4 and set τt = exp(−t/T ) and η1i = 0.05 for all i and decrease it by a
factor of 0.99 if Iµi

νt (φ
t+1
i ) < Iµi

νt (φt
i).

The barycenters computed by our method, CWB, and DSB after 300 iterations are displayed in
Figure 1. The density of the barycenter distribution generated by our method, as shown in the
center of the top middle image in Figure 1, is uniformly distributed over a blended shape comprising
a square, a circle, a heart, and a cross, with sharp edges. In contrast, the barycenters computed
using CWB with regularization strength parameter reg = 0.005, displayed in the top right image in
Figure 1, appear blurred. DSB yields a better representation than CWB but remains unclear; see the
bottom middle image in Figure 1 for barycenters produced by DSB with reg = 0.005. Notably, we
encounter a division by zero error if the regularization strength parameter is set to 0.001. We also
compute thresholded versions of barycenters of CWB and DSB by removing intensities smaller than
the threshold such that the removed intensities amount to 10% of the total mass. The thresholded
barycenters are shown in the bottom left and right images in Figure 1. However, the resulting
barycenters lack the inward sharp curvature inherited from the heart and cross shape. Thus, the
barycenter obtained by our method offers a clearer and more representative summary of the set.

We report the program run times for computing these barycenters and the corresponding 2-
Wasserstein barycenter functional values F(νest), where νest represents the computed barycenter.
All functional values reported below are estimated using the back-and-forth approach (Jacobs &
Léger, 2020) and are multiplied by 103. All methods were executed on Google Colab with an L4
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Exemplary Digit 8 Exemplary Digit 8 Exemplary Digit 8

WDHA (Ours) WSB (reg=0.005) DSB (reg=0.005)

Wasserstein Barycenter of Handwritten Eight

Figure 2: Top row displays three exemplary digit 8 images. Bottom row displays barycenters com-
puted by different methods using 300 iterations.

GPU. Our method takes 676 seconds, whereas CWB takes 3731 seconds and DSB takes 7249 sec-
onds. Additionally, our method achieves the smallest barycenter functional value (74.5791), com-
pared to CWB and DSB, which yield values of 75.0689 and 74.5804, respectively. The functional
values for the thresholded barycenters are 74.7346 (CWB) and 74.5921 (DSB).

4.2 HIGH-RESOLUTION HANDWRITTEN DIGITS

Here, our method is applied to the high-resolution handwritten digits data (Beaulac & Rosenthal,
2022). By treating the digit images as densities, we aim to compute the barycenter of one hundred
handwritten images of the digit 8, each with a size of 500× 500 pixels. Three exemplary images are
displayed in the top row of Figure 2. To run Algorithm 4, we set τt = exp(−t/T ), and η1i = 0.5 at
iteration t = 1 and decrease it by a factor of 0.95 whenever Iµi

νt (φ
t+1
i ) < Iµi

νt (φt
i). The barycenters

computed by our method, CWB, and DSB using T = 300 iterations are displayed in the bottom
row of Figure 2. The barycenter computed by WDHA exhibits clearer and more detailed textures,
revealing variations of the digits viewed as densities in the Wasserstein space. Furthermore, our
method is more time-efficient, taking 3,299 seconds compared to 10,808 seconds for CWB and
11,186 seconds for DSB.

5 CONCLUSION

In this paper, we introduced a Wasserstein-Descent Ḣ1-Ascent (WDHA) algorithm for computing
the Wasserstein barycenter of n probability density functions supported on a compact subset of Rd.
Our key technique is motivated by the recent progress in nonconvex-concave minimax optimization
problems in the Euclidean space. Compared to existing methods for high-resolution densities, the
WDHA algorithm is computationally more efficient and produces a clearer, sharper, and more de-
tailed barycenter. We believe that our work not only advances computational techniques for Wasser-
stein barycenters but also sheds new light on optimizing nonlinear functionals using a combination
of geometric structures.
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Yoav Zemel and Victor M. Panaretos. Fréchet means and Procrustes analysis in Wasserstein space.
Bernoulli, 25(2):932 – 976, 2019.

Chao Zhang, Piotr Kokoszka, and Alexander Petersen. Wasserstein autoregressive models for den-
sity time series. Journal of Time Series Analysis, 43(1):30–52, 2022.

Changbo Zhu and Hans-Georg Müller. Spherical autoregressive models, with application to distri-
butional and compositional time series. Journal of Econometrics, 239(2):105389, 2024.

Changbo Zhu and Hans-Georg Müller. Autoregressive optimal transport models. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 85(3):1012–1033, 2023.

Yubo Zhuang, Xiaohui Chen, and Yun Yang. Wasserstein k-means for clustering probability distri-
butions. In Proceedings of 36th Conference on Neural Information Processing Systems, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LIST OF NOTATIONS

Notations Meaning
Ḣ1 homogeneous Sobolev space

Ḣ−1 dual space of Ḣ1

Fα,β a subset of Ḣ1 consisting of α-strongly convex and β smooth functions
P2(Ω) space of probability measures with finite second order moment
Pr
2 (Ω) subset of P2(Ω) consisting of absolutely continuous probability measures
T#µ pushforward measure of µ under the map T
Tµ
ν the optimal transport map from ν to µ

Wp(µ, ν) p-Wasserstein distance between µ and ν
Iµ
ν Kantorovich dual functional defined in equation 1

δF
δµ first variation of the functional F : Pr

2 (Ω) → R
∇∇F Wasserstein gradient of the functional F

J (ν,φ) Wasserstein barycenter functional defined in equation 4
Lµ(ν) the maximal functinoal defined in equation 5
Fα,β average of maximal functionals defined as Fα,β = 1

n

∑n
i=1 Lµi

(−∆)−1 negative inverse Laplacian operator with zero Neumann boundary conditions
PFα,β

projection operator onto Fα,β

φ̃µ
ν best α-strongly convex, β-smooth Kantorovich potential defined in Lemma 2

φ∗ convex conjugate of the function φ
∇φ (standard) gradient of the function φ
id identity map

∥φ∥L2 L2-norm of φ, defined as (
∫
Ω
∥φ∥22 dx)1/2

∥φ∥L2(ν) L2(ν)-norm of φ, defined as (
∫
Ω
∥φ∥22 dν)1/2

B TECHNICAL DETAILS

B.1 PROOF OF LEMMA 1

Before proving the lemma, let us demonstrate a technical result for computing the Ḣ1 inner product
first.

Lemma 5. For any functions φ1, φ2 ∈ Ḣ1 and µ, ν ∈ Pr
2 (Ω), we have

⟨∇Iµ
ν (φ1), φ2 − φ1⟩Ḣ1 =

∫
Ω

φ1 − φ2 dν −
∫
Ω

[
φ1 ◦ ∇φ∗

1 − φ2 ◦ ∇φ∗
1

]
dµ.

Proof. Let g = ∇Iµ
ν (φ1). By the definition of ∇Iµ

ν in equation 2, we have

∆g = ν − (∇φ∗
1)#µ.

Therefore, we have

⟨∇Iµ
ν (φ1), φ2 − φ1⟩Ḣ1

(i)
=

∫
Ω

⟨∇g,∇φ2 −∇φ1⟩dx
(ii)
= −

∫
Ω

(φ2 − φ1)∆g dx

=

∫
Ω

(φ1 − φ2)
[
ν − (∇φ∗

1)#µ
]
dx

=

∫
Ω

φ1 − φ2 dν −
∫
Ω

φ1 ◦ ∇φ∗
1 − φ2 ◦ ∇φ∗

1 dµ.

Here, (i) is by the definition of inner product in Ḣ1, and (ii) is due to integration by parts.

Let us now prove the lemma.
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Proof of Lemma 1. Note that we have

Iµ
ν (φ2)− Iµ

ν (φ1)− ⟨∇Iµ
ν (φ1), φ2 − φ1⟩Ḣ1

(i)
=
[ ∫

Ω

∥x∥22
2

− φ2(x) dν(x) +

∫
Ω

∥x∥22
2

− φ∗
2(x) dµ(x)

]
−
[ ∫

Ω

∥x∥22
2

− φ1(x) dν(x) +

∫
Ω

∥x∥22
2

− φ∗
1(x) dµ(x)

]
−
[ ∫

Ω

φ1(x)− φ2(x) dν(x)−
∫
Ω

(φ1 ◦ ∇φ∗
1)(x)− (φ2 ◦ ∇φ∗

1)(x) dµ(x)
]

=

∫
Ω

φ∗
1(x)− φ∗

2(x) + (φ1 ◦ ∇φ∗
1)(x)− (φ2 ◦ ∇φ∗

1)(x) dµ(x). (7)

Here, we use the definition of Iµ
ν and Lemma 5 to derive (i). By properties of convex conjugate,

∇φ∗(y) = argmaxx∈Ω⟨x, y⟩ − φ(x), which further implies that

φ∗(y) = ⟨∇φ∗(y), y⟩ − φ(∇φ∗(y)).

Combining the above quality with equation 7 yields

Iµ
ν (φ2)− Iµ

ν (φ1)− ⟨∇Iµ
ν (φ1), φ2 − φ1⟩Ḣ1

=

∫
Ω

∇φ∗
1(x)

⊤x−
[
∇φ∗

2(x)
⊤x− φ2

(
∇φ∗

2(x)
)]

− φ2

(
∇φ∗

1(x)
)
dµ(x)

(i)
= −

∫
Ω

φ2

(
∇φ∗

1(x)
)
− φ2

(
∇φ∗

2(x)
)
−
〈
∇φ2

(
∇φ∗

2(x)
)
,∇φ∗

2(x)−∇φ∗
1(x)

〉
dµ(x)

= −
∫
Ω

Bφ2

(
∇φ∗

1(x),∇φ∗
2(x)

)
dµ(x),

where Bφ2
is the Bregman divergence of φ2 defined as

Bφ2
(x, x′) := φ2(x)− φ2(x

′)− ⟨∇φ2(x
′), x− x′⟩.

Here, in (i), we use the fact that ∇φ2 ◦ ∇φ∗
2 = id. By properties of Bregman divergences,

Bφ2
(∇φ∗

1(x),∇φ∗
2(x)) = Bφ∗

2
(∇φ2 ◦ ∇φ∗

1(x),∇φ2 ◦ ∇φ∗
2(x)) = Bφ∗

2
(∇φ2 ◦ ∇φ∗

1(x), x).

Since φ2 is α-strongly convex and β-smooth, we know φ∗
2 is 1/β-strongly convex and 1/α-smooth.

Thus, we have

1

2β
∥∇φ2 ◦ ∇φ∗

1(x)− x∥22 ≤ Bφ∗
2
(∇φ2 ◦ ∇φ∗

1(x), x) ≤
1

2α
∥∇φ2 ◦ ∇φ∗

1(x)− x∥22,

Integrating the above inequality with respect to µ and applying change of variable formulas entail

1

2β

∫
Ω

∥∇φ2 −∇φ1(x)∥22 d(∇φ∗
1)#µ

≤
∫
Ω

Bφ∗
2
(∇φ2 ◦ ∇φ∗

1(x), x) dµ ≤

1

2α

∫
Ω

∥∇φ2(x)−∇φ1(x)∥22 d(∇φ∗
1)#µ,

where we used the fact that ∇φ1 ◦∇φ∗
1 = id. The density of (∇φ∗

1)#µ is ρ = µ ◦∇φ1 · |Dx∇φ1|.
Since φ1 is α-strongly convex and β-smooth, we have aαd ≤ ρ(x) ≤ bβd and thus

aαd

2β
∥φ2 − φ1∥2Ḣ1 ≤

∫
Ω

Bφ∗
2
(∇φ2 ◦ ∇φ∗

1(x), x) dµ ≤ bβd

2α
∥φ2 − φ1∥2Ḣ1 .
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B.2 PROOF OF LEMMA 2

Proof. We first show the uniqueness of maximizer. Suppose there exits two maximizers φ1 ̸= φ2,
then for any γ ∈ [0, 1], φt := γφ1 + (1− γ)φ2 is again a maximizer. Applying Lemma 1,

− A(1− γ)2

2
∥φ2 − φ1∥2Ḣ1 ≥ Iµ

ν (φt)− Iµ
ν (φ1)− (1− γ)⟨∇Iµ

ν (φt), φ2 − φ1⟩Ḣ1 (8)

− Aγ2

2
∥φ2 − φ1∥2Ḣ1 ≥ Iµ

ν (φt)− Iµ
ν (φ2)− γ⟨∇Iµ

ν (φt), φ1 − φ2⟩Ḣ1 (9)

Adding equation 8 multiplied by γ and equation 9 multiplied by 1− γ gives

−A(1− γ)γ

2
∥φ2 − φ1∥2Ḣ1 ≥ Iµ

ν (φt)− γIµ
ν (φ1)− (1− γ)Iµ

ν (φ2).

For fixed γ ∈ (0, 1), the right-hand side of above is 0, while the left-hand side is strictly smaller
than 0. This shows a contradiction and the uniqueness is proved.

Next, we show that the first variation is given by δLµ

δν (ν) =
∫
Ω

∥ id ∥2
2

2 − φ̃µ
ν dχ. Note that

d

dϵ
Lµ(ν + ϵχ)

∣∣∣∣
ϵ=0

=
maxφ∈Fα,β

Iµ
ν+ϵχ(φ)−maxφ∈Fα,β

Iµ
ν (φ)

ϵ

≤
Iµ
ν+ϵχ(φ̃

µ
ν+ϵχ)− Iµ

ν (φ̃
µ
ν+ϵχ)

ϵ

=

∫
Ω

⟨id, id⟩
2

− φ̃µ
ν+ϵχ dχ

→
∫
Ω

⟨id, id⟩
2

− φ̃µ
ν dχ as ϵ → 0.

On the other hand, we have

maxφ∈Fα,β
Iµ
ν+ϵχ(φ)−maxφ∈Fα,β

Iµ
ν (φ)

ϵ
≥

Iµ
ν+ϵχ(φ̃

µ
ν )− Iµ

ν (φ̃
µ
ν )

ϵ
=

∫
Ω

⟨id, id⟩
2

− φ̃µ
ν dχ.

Recall that the Wasserstein gradient is just the standard gradient of the first variation. Together, the
Lemma is concluded.

B.3 PROOF OF LEMMA 3

The equality part is direct by applying Lemma 2,

∥∇∇Lµ(ν1)−∇∇Lµ(ν2)∥L2 = ∥∇φ̃µ
ν1

−∇φ̃µ
ν2
∥L2 = ∥φµ

ν1
− φµ

ν2
∥Ḣ1 .

To prove the inequality part, note that Iν,µ is concave by Lemma 1, and Fα,β is a convex set. By the
optimality of φ̃µ

ν2
, φ̃µ

ν1
, for any φ ∈ Fα,β , we have

⟨φ− φ̃µ
ν2
,∇Iµ

ν2
(φ̃µ

ν2
)⟩Ḣ1 ≤ 0, (10)

⟨φ− φ̃µ
ν1
,∇Iµ

ν1
(φ̃µ

ν1
)⟩Ḣ1 ≤ 0. (11)

Substituting φ = φ̃µ
ν1

in equation 10 and φ = φ̃µ
ν2

in equation 11 and summing them together results

⟨φ̃µ
ν1

− φ̃µ
ν2
,∇Iµ

ν2
(φ̃µ

ν2
)−∇Iµ

ν1
(φ̃µ

ν1
)⟩Ḣ1 ≤ 0. (12)

The following two inequalities follow from Lemma 1,

Iµ
ν1
(φ̃µ

ν1
)− Iµ

ν1
(φ̃µ

ν2
)− ⟨∇Iµ

ν1
(φ̃µ

ν2
), φ̃µ

ν1
− φ̃µ

ν2
⟩Ḣ1 ≤ −A

2
∥φ̃µ

ν2
− φ̃µ

ν1
∥2Ḣ1 ,

Iµ
ν1
(φ̃µ

ν2
)− Iµ

ν1
(φ̃µ

ν1
)− ⟨∇Iµ

ν1
(φ̃µ

ν1
), φ̃µ

ν2
− φ̃µ

ν1
⟩Ḣ1 ≤ −A

2
∥φ̃µ

ν2
− φ̃µ

ν1
∥2Ḣ1 .

Summing over the above two inequalities gives

⟨∇Iµ
ν1
(φ̃µ

ν1
)−∇Iµ

ν1
(φ̃µ

ν2
), φ̃µ

ν1
− φ̃µ

ν2
⟩Ḣ1 ≤ −A∥φ̃µ

ν2
− φ̃µ

ν1
∥2Ḣ1 .
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Then, combining the above inequality with equation 12 shows that

A∥φ̃µ
ν2

− φ̃µ
ν1
∥2Ḣ1 ≤⟨∇Iµ

ν1
(φ̃µ

ν2
)−∇Iµ

ν2
(φ̃µ

ν2
), φ̃µ

ν1
− φ̃µ

ν2
⟩Ḣ1

(i)
=

∫
Ω

φ̃µ
ν2

− φ̃µ
ν1

d(ν1 − ν2)

≤∥φ̃µ
ν1

− φ̃µ
ν2
∥Ḣ1∥ν1 − ν2∥Ḣ−1 .

Here, (i) is derived by applying Lemma 5 as

⟨∇Iµ
ν1
(φ̃µ

ν2
), φ̃µ

ν1
− φ̃µ

ν2

〉
− ⟨∇Iµ

ν2
(φ̃µ

ν2
), φ̃µ

ν1
− φ̃µ

ν2
⟩

=
[ ∫

Ω

φ̃µ
ν2

− φ̃µ
ν1

dν1 −
∫
Ω

[
φ̃µ
ν2

◦ ∇(φ̃µ
ν2
)∗ − φ̃µ

ν1
◦ ∇(φ̃µ

ν2
)∗
]
dµ
]

−
[ ∫

Ω

φ̃µ
ν2

− φ̃µ
ν1

dν2 −
∫
Ω

[
φ̃µ
ν2

◦ ∇(φ̃µ
ν2
)∗ − φ̃µ

ν1
◦ ∇(φ̃µ

ν2
)∗
]
dµ
]

=

∫
Ω

φ̃µ
ν2

− φ̃µ
ν1

d(ν1 − ν2).

B.4 PROOF OF LEMMA 4

Proof. Notice that

Lµ(ν2)− Lµ(ν1)−
∫
Ω

⟨id, id⟩
2

− φ̃µ
ν1

dν2 − ν1

=

∫ 1

0

∫
Ω

⟨id, id⟩
2

− φ̃µ
ν1+ϵ(ν2−ν1)

dν2 − ν1 dϵ−
∫ 1

0

∫
Ω

⟨id, id⟩
2

− φ̃µ
ν1

dν2 − ν1 dϵ

=

∫ 1

0

∫
Ω

φ̃µ
ν1

− φ̃µ
ν1+ϵ(ν2−ν1)

dν2 − ν1 dϵ

≤
∫ 1

0

∥φ̃µ
ν1

− φ̃µ
ν1+ϵ(ν2−ν1)

∥Ḣ1∥ν2 − ν1∥Ḣ−1 dϵ

(i)
≤
∫ 1

0

1

A
∥ε(ν2 − ν1)∥Ḣ−1 · ∥ν2 − ν1∥Ḣ−1 dε =

1

2A
∥ν1 − ν2∥2Ḣ−1

(ii)
≤max{∥ν1∥∞, ∥ν2∥∞}

2A
W2

2 (ν1, ν2),

where (i) is due to Lemma 3, and (ii) follows from Theorem 5.34 (Santambrogio, 2015). Since
⟨id,id⟩

2 − φ̃µ
ν1

is (1 + α)-smooth, we have∫
Ω

⟨id, id⟩
2

− φ̃µ
ν1

dν2 − ν1

=

∫
Ω

(
⟨id, id⟩

2
− φ̃µ

ν1
) ◦ T ν2

ν1
− (

⟨id, id⟩
2

− φ̃µ
ν1
) ◦ id dν1

≤
∫
Ω

⟨id−∇φ̃µ
ν1
, T ν2

ν1
− id⟩+ 1 + α

2
∥T ν2

ν1
− id ∥22 dν1.

Combining the above two results would conclude the lemma.

B.5 PROOF OF THEOREM 1

Lemma 6. For any φt ∈ Fα,β(Ω), let φt+1 = PFα,β
(φt + η∇Iµ

ν (φ
t)). If η ≤ 1/B, then

∥φt+1 − φ̃µ
ν∥2Ḣ1 ≤ (1−Aη)∥φt − φ̃µ

ν∥2Ḣ1 .
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Proof. Recall that φ̃µ
ν = argmaxφ∈Fα,β

Iµ
ν (φ). We have

∥φt+1 − φ̃µ
ν∥2Ḣ1

(i)
≤∥φt + η∇Iµ

ν (φ
t)− φ̃µ

ν∥2Ḣ1

=∥φt − φ̃µ
ν∥2Ḣ1 + η2∥∇Iµ

ν (φ
t)∥2Ḣ1 + 2η⟨∇Iµ

ν (φ
t), φt − φ̃µ

ν ⟩Ḣ1

(ii)
≤∥φt − φ̃µ

ν∥2Ḣ1 + η2∥∇Iµ
ν (φ

t)∥2Ḣ1 + 2η

(
Iµ
ν (φ

t)− Iµ
ν (φ̃

µ
ν )−

A

2
∥φt − φ̃µ

ν∥2Ḣ1

)
.

Here, (i) is due to the property of the projection map, and (ii) is by Lemma 1. Since Ḣ1 is a linear
space and φt +∇Iµ

ν (φ
t)/B ∈ Ḣ1, we have

Iµ
ν (φ̃

µ
ν ) ≥Iµ

ν (φ
t +

1

B
∇Iµ

ν (φ
t))

(i)
≥Iµ

ν (φ
t) + ⟨∇Iµ

ν (φ
t),

1

B
∇Iµ

ν (φ
t)⟩Ḣ1 −

B

2
∥ 1

B
∇Iµ

ν (φ
t)∥2Ḣ1

=Iµ
ν (φ

t) +
1

2B
∥∇I(φt)∥2Ḣ1 .

Again, (i) is due to Lemma 1. Combining the above two inequalities yields

∥φt+1 − φ̃µ
ν∥2Ḣ1

≤∥φt − φ̃µ
ν∥2Ḣ1 + 2Bη2(Iµ

ν (φ̃
µ
ν )− Iµ

ν (φ
t)) + 2η

(
Iµ
ν (φ

t)− Iµ
ν (φ̃

µ
ν )−

A

2
∥φt − φ̃µ

ν∥2Ḣ1

)
=(1−Aη)∥φt − φ̃µ

ν∥2Ḣ1 + 2η(1−Bη)
(
Iµ
ν (φ

t)− Iµ
ν (φ̃

µ
ν )
)
.

If η ≤ 1/B, we have ∥φt+1 − φ̃µ
ν∥2Ḣ1 ≤ (1−Aη)∥φt − φ̃µ

ν∥2Ḣ1 .

Proof of Theorem 1. Since νt+1 = (id−τ(id−∇φt))#ν
t, where φt = 1

n

∑n
i=1 φ

µi

νt , we have from
Lemma 4 that for each i,

Lµi(νt+1)− Lµi(νt) ≤ τ

∫
Ω

⟨id−∇φ̃µi

νt ,∇φt − id⟩dνt + τ2
C1

2

∫
Ω

∥∇φt − id ∥22 dνt,

where C1 = 1 + α+ V
A . Averaging over i yields

Fα,β(ν
t+1)−Fα,β(ν

t)

≤τ

∫
Ω

⟨id−∇φ̃
t
,∇φt − id⟩dνt + τ2

C1

2

∫
Ω

∥∇φt − id ∥22 dνt

=
τ

2

∫
Ω

∥∇φ̃
t −∇φt∥22 dνt −

τ

2

∫
Ω

∥∇φ̃
t − id ∥22 dνt −

τ − τ2C1

2

∫
Ω

∥∇φt − id ∥22 dνt

(i)
≤2τ − τ2C1

2

∫
Ω

∥∇φ̃
t −∇φt∥22 dνt −

3τ − τ2C1

4

∫
Ω

∥∇φ̃
t − id ∥22 dνt

≤ (2τ − τ2C1)V

2

∫
Ω

∥∇φ̃
t −∇φt∥22 dx− 3τ − τ2C1

4

∫
Ω

∥∇φ̃
t − id ∥22 dνt

≤τV

∫
Ω

∥∇φ̃
t −∇φt∥22 dx− 3τ − τ2C1

4

∫
Ω

∥∇φ̃
t − id ∥22 dνt

≤τV

n

n∑
i=1

∫
Ω

∥∇φ̃µi

νt −∇φt
i∥22 dx− 3τ − τ2C1

4

∫
Ω

∥∇φ̃
t − id ∥22 dνt (13)

where (i) is due to the fact 1
2

∫
Ω
∥∇φ̃

t− id ∥22 dνt ≤
∫
Ω
∥∇φ̃

t−∇φt∥22 dνt+
∫
Ω
∥∇φt− id ∥22 dνt.

Set δti =
∫
Ω
∥∇φ̃µi

νt −∇φt
i∥22 dx. By Young’s inequality,

δti ≤
[
1 +

1

2( 1
Aη − 1)

] ∫
Ω

∥∇φ̃µi

νt−1 −∇φt
i∥22 dx+

[
1 + 2

( 1

Aη
− 1
)] ∫

Ω

∥∇φ̃µi

νt −∇φ̃µi

νt−1∥22 dx.
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For the first term above, applying Lemma 6 yields[
1 +

1

2( 1
Aη − 1)

] ∫
Ω

∥∇φ̃µi

νt−1 −∇φt
i∥22 dx ≤

(
1− Aη

2

)
δt−1
i .

For the second term, Lemma 2 and Theorem 5.34 (Santambrogio, 2015) implies that∫
Ω

∥∇φ̃µi

νt−1 −∇φ̃µi

νt∥22 dx = ∥φ̃µi

νt−1 − φ̃µi

νt∥2Ḣ1

(i)
≤ 1

A2
∥νt−1 − νt∥2Ḣ−1

(ii)
≤ V

A2
W2

2 (ν
t−1, νt)

(iii)
≤ V

A2

∫
Ω

∥∥(id−τ∇∇J (νt−1,φt−1))− id
∥∥2
2
dνt−1 =

τ2V

A2

∫
Ω

∥ id−∇φt−1∥22 dνt−1

≤ 2τ2V

A2

(∫
Ω

∥∇φ̃
t−1 −∇φt−1∥22 dνt−1 +

∫
Ω

∥∇φ̃
t−1 − id ∥22 dνt−1

)
≤ 2τ2V

A2

(
V

n

n∑
i=1

δt−1
i +

∫
Ω

∥∇φ̃
t−1 − id ∥22 dνt−1

)
.

Here, (i) is due to Lemma 3, (ii) is due to equation 6 (Theorem 5.34, Santambrogio, 2015), and
(iii) is because id−τ∇∇J (νt−1,φt−1) is a transport map from νt−1 to νt. Combining above pieces
together yields

δti ≤
(
1− Aη

2

)
δt−1
i +

[
1 + 2

( 1

Aη
− 1
)]2τ2V

A2

(
V

n

n∑
i=1

δt−1
i +

∫
Ω

∥∇φ̃
t−1 − id ∥22 dνt−1

)
.

Set δ̄t = 1
n

∑n
i=1 δ

t
i and γ = 1 − Aη

2 + 2τ2V 2(2−Aη)
A3η . Averaging the above inequality for i ∈

{1, · · · , n} yields

δ̄t ≤ γδ̄t−1 +
2τ2V (2−Aη)

A3η

∫
Ω

∥∇φ̃
t−1 − id ∥22 dνt−1

≤ γt−1δ̄1 +
2τ2V (2−Aη)

A3η

t−1∑
k=1

γt−k−1

∫
Ω

∥∇φ̃
k − id ∥22 dνk. (14)

Putting all pieces together yields

Fα,β(ν
T+1)−Fα,β(ν

1) =

T∑
t=1

[
Fα,β(ν

t+1)−Fα,β(ν
t)
]

(i)
≤

T∑
t=1

[
τV δ̄t − 3τ − τ2C1

4

∫
Ω

∥∇φ̃
t − id ∥22 dνt

]
(ii)
≤

T∑
t=1

[
τV γt−1δ̄1 +

2τ3V 2(2−Aη)

A3η

t−1∑
k=1

γt−k−1

∫
Ω

∥∇φ̃
k − id ∥22 dνk

− 3τ − τ2C1

4

∫
Ω

∥∇φ̃
t − id ∥22 dνt

]
= τV δ̄1 · 1− γT

1− γ
+

T∑
t=1

[2τ3V 2(2−Aη)

A3η
· 1− γT−t

1− γ
− 3τ − τ2C1

4

] ∫
Ω

∥∇φ̃
t − id ∥22 dνt

(iii)
≤ 4τV δ̄1

Aη
+
[2τ3V 2(2−Aη)

A3η
· 4

Aη
− 3τ − τ2C1

4

] T∑
t=1

∫
Ω

∥∇φ̃
t − id ∥22 dνt

=
4τV δ̄1

Aη
+
[8τ3V 2(2−Aη)

A4η2
− 3τ − τ2C1

4

] T∑
t=1

∫
Ω

∥∇φ̃
t − id ∥22 dνt.
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reg Wasserstein distance L2-distance F(νest)

WDHA 3.758× 10−8 0.4869 9.001× 10−2

CWB 0.003 2.98× 10−4 1.321 9.031× 10−2

0.002 2.538× 10−2 3.041 0.1154

DSB 0.005 1.2× 10−4 0.8219 9.013× 10−2

0.004 1.164× 10−2 2.281 0.1016

Table 1: Simulation results for uniform distributions supported on round disks.

Here, (i) is from equation 13, (ii) is due to equation 14, and in (iii) we use the fact that

1− γ =
Aη

2
− 2τ2V 2(2−Aη)

A3η
>

Aη

4

when τ < A2η

2V
√

2(2−Aη)
. Therefore, we have

1

T

T∑
t=1

∫
Ω

∥∇φ̃
t − id ∥22 dνt ≤

1

T
·

4τV δ̄1

Aη + Fα,β(ν
1)−Fα,β(ν

T+1)

3
4τ − C1

4 τ2 − 8V 2(2−Aη)
A4η2 τ3

<

4τV δ̄1

Aη + Fα,β(ν
1)−Fα,β(ν

T+1)

Tτ/2
,

where the last inequality holds when τ < 1

C1+2

√
8V 2(2−Aη)

A4η2

= A2η
Aη(Aα+A+V )+4V

√
4−2Aη

.

C ADDITIONAL EMPIRICAL STUDIES

C.1 UNIFORM DISTRIBUTIONS WITH GROUND TRUTH

Here, the goal is to compute the barycenter of four uniform distributions supported on round disks
of radius 0.15, centered at (0.2, 0.2), (0.2, 0.8), (0.8, 0.2), (0.8, 0.8) respectively. It’s clear that the
true barycenter is uniform on the disk of radius 0.15 centered at (0.5, 0.5). The computed barycenter
densities by WDHA, CWB and DSB are shown in Figure 3. We note that regularization parameters
reg= 0.003 and reg=0.005 are the optimal choices for CWB and DSB respectively. Smaller regular-
ization parameters lead nonconvergent and worse results for both CWB and DSB. We report in Table
1 the Wasserstein distance between computed barycenter distribution and the truth, L2-distance be-
tween computed barycenter densities and the true density, and the barycenter functional value. Our
method is uniformly the best, and in particular, the improvement in the Wasserstein distance is of
orders of magnitude.

C.2 EXPERIMENTS ON 1D DISTRIBUTIONS

In this empirical study, we compare the performance of Algorithm 3 (with projection onto Fα,β)
and Algorithm 4 (with double convex conjugates) on 1D distributions. For each repetition t and
i = 1, 2, 3, we let µi,t be the truncated version of N(ai, σi

2) on the domain [0, 1], where ai ∼
uniform [0.3, 0.7] and σi ∼ uniform [0, 1]. Let νt, ν1,t, ν2,t be the true barycenter, computed baryc-
ernter from Algorithm 3, computed barycernter from Algorithm 4 respectively. We repeat the exper-
iment 300 times and report two types of average distances between the groundtruth and each com-
puted barycenters : average W2-distance 1

T

∑T
t=1 W2(νt, νj,t) and average L2-distance between

densities 1
T

∑T
t=1(

∫
(νt(x) − νj,t(x))

2dx)1/2, j = 1, 2. Algorithm 3 (with α = 10−3, β = 103)
performs slightly better with W2-distance 7.610 × 10−5 (standard deviation: 3.367 × 10−5) and
L2-distance 0.608 (standard deviation: 0.194), while Algorithm 4 has W2-distance 7.771 × 10−5

(standard deviation: 3.32× 10−5) and L2-distance 0.6434 (standard deviation: 0.451). In addition,
CWB has W2-distance 0.0022 (standard deviation: 5.85 × 10−4) and L2-distance 0.082 (standard
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Uniform Densities WDHA (Ours) CWB (reg=0.003)

CWB (reg=0.002) DSB (reg=0.005) DSB (reg=0.004)

Wasserstein Barycenter Uniform Densities

Figure 3: Illustration of Wasserstein barycenters computed using WDHA, CWB and DSB.

deviation: 0.039). DSB achieves W2-distance 1.225×10−5 (standard deviation: 2.644×10−5) and
L2-distance 0.0699 (standard deviation: 0.034). DSB performs the best in Wasserstein distance for
this example.

C.3 L2-DESCENT H1-ASCENT ALGORITHM

Let ν(x), µi(x) be density functions, we can write

J (ν, ϕ) =
1

n

n∑
i=1

∫
Ω

(
∥x∥22
2

− φi(x)

)
ν(x) dx+

∫
Ω

(
∥x∥22
2

− φ∗
i

)
µi(x) dx.

Let L2(λ) = {h :
∫
h(x)2dλ < ∞} be the space of functions that are L2-integrable with re-

spect to the Lebesgue measure λ and D = {f ∈ L2(λ) : f(x) ≥ 0,
∫
f(x)dλ = 1} be the set

of density functions. Notice that the L2-gradient of J with respect to ν(x) is ∇νJ (ν, ϕ) :=
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Figure 4: Plot of output from Algorithm 5 to uniform distributions on round disks.

1
n

∑n
i=1

∥x∥2
2

2 − φi(x), we may consider the L2-descent H1-ascent algorithm described below

Algorithm 5: L2-Descent Ḣ1-Ascent Algorithm

Initialize ν1,φ1;
for t = 1, 2, · · · , T − 1 do

for i = 1, 2, . . . , n do
φ̂t+1
i = φt

i + ηti∇φi
J (νt,φt);

φt+1
i = (φ̂t+1

i )∗∗;
end
ν̃t+1 = νt − τt∇νJ (ν, ϕ);;
νt+1 = PD(ν̃

t+1);
end
return {(νt,φt)}Tt=1;

Here, PD(ν̃
t+1) is the projection of ν̃t+1 onto D, which can be computed using Python function

pyproximal.Simplex in the library PyProximal. We apply this algorithm to the uniform distri-
butions supported on round disks, and observe that it diverges leading to a wrong result. Neverthe-
less, we plot the output in Figure 4.

D ADDITIONAL DETAILS

D.1 WASSERSTEIN GRADIENT

To compute ∇∇J (ν, φ), we apply the definition in subsection 2.3. Note that

d

dε
J (ν + εχ, ϕ)

∣∣∣∣
ε=0

=
d

dε

{
1

n

n∑
i=1

∫
Ω

∥x∥22
2

− φi(x) d(ν + εχ) +

∫
Ω

∥x∥22
2

− φ∗
i dµi(x)

}∣∣∣∣∣
ε=0

=
d

dε

{
ε
1

n

n∑
i=1

∫
Ω

∥x∥22
2

− φi(x) dχ

}∣∣∣∣∣
ε=0

=
d

dε

{
ε

∫
Ω

∥x∥22
2

− φ(x) dχ

}∣∣∣∣
ε=0

=

∫
Ω

∥x∥22
2

− φ(x) dχ,

which implies that δJ
δµ (µ)(x) =

∥x∥2
2

2 − φ(x). By the definition of Wasserstein gradient, ∇∇J =

∇ δJ
δµ (µ) = id−∇φ.
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D.2 IMPLEMENTATION

Let Ω = [0, 1]2 and {(xi, yj)}mi,j=0 be the equally spaced grid points, we have x0 = 0, y0 = 0 and
xi = i/m, yj = j/m for i, j ̸= 0. Given the evaluations {φi,j = φ(xi, yj)} of function φ on these
grid points, we compute the gradient at point (xi, xj), i, j ̸= 0 as

∇φ(xi, yj) =

( φi,j−φi−1,j

h
φi,j−φi,j−1

h

)
,

where h = 1/m. For the computation of convex conjugates of φ, we note that for the 1D case,
convex conjugate can be computed efficiently using the method in Corrias (1996). For the 2D case,
notice that

φ∗(y1, y2) : = sup
x1,x2

(x1 − y1)
2/2 + (x2 − y2)

2/2− φ(x1, x2)

= sup
x1

(
(x1 − y1)

2/2 + sup
x2

{
(x2 − y2)

2/2− φ(x1, x2)
})

= sup
x1

(
(x1 − y1)

2/2 + [φ(x1, ·)]∗(y2)
)
.

Thus, the convex conjugate in the 2D case can be computed by iteratively applying the 1D
solver to each row and column. To discuss the implementation of (∇φ)#ν, we describe
how the mass ν(xi, yj) (density value of ν at a point (xi, yj)) is splitted and mapped (Ja-
cobs & Léger, 2020) as follows. Since φ is convex, we observe that ∇xφ(xi, yj) ≤
∇xφ(xi+1, yj) and ∇yφ(xi, yj) ≤ ∇yφ(xi, yj+1). Let R(xi, yj) be the quadrilateral formed
by 4 points ∇φ(xi, yj),∇φ(xi+1, yj),∇φ(xi, yj+1),∇φ(xi+1, yj+1) and pick the mesh grids
{(x̃i′ , ỹj′)}ki′,j′=1 ⊂ R(xi, yj), where

(x̃i′ , ỹj′) = (1− αi′)(1− βj′)∇φ(xi, yj) + αi′(1− βj′)∇φ(xi+1, yj)

+ (1− αi′)βj′∇φ(xi, yj+1) + αi′βj′∇φ(xi+1, yj+1)

with 0 = α0 ≤ α1 ≤ · · · ≤ αk = 1, 0 = β0 ≤ β1 ≤ · · · ≤ βk = 1. The mass of ν(xi, yj)
is first uniformly distributed to the meshed grids {(x̃i′ , ỹj′)}ki′,j′=1. Then, the mass at each point
(x̃i′ , ỹj′) is distributed to 4 nearest grid points in {(xi, yj)}, inversely proportional to their distances.
If (∇φ)#ν exceeds the grid specified, the mass will be distributed to the boundary points instead.
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