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Reproducibility Summary1

Scope of Reproducibility2

We conducted a reproducibility study of the paper Exacerbating Algorithmic Bias through Fairness Attacks [11].3

According to the paper, current research on adversarial attacks is primarily focused on targeting model performance,4

which motivates the need for adversarial attacks on fairness. To that end, the authors propose two novel data poisoning5

adversarial attacks, the influence attack on fairness and the anchoring attack. We aim to verify the main claims of the6

paper, namely that: a) the proposed methods indeed affect a model’s fairness and outperform existing attacks, b) the7

anchoring attack hardly affects performance, while impacting fairness, and c) the influence attack on fairness provides a8

controllable trade-off between performance and fairness degradation.9

Methodology10

We chose PyTorch Lightning to re-implement all of the code required to reproduce the original paper’s results. Our11

implementation enables the quick and easy extension of existing experiments, as well as the integration with the various12

development tools that come with PyTorch Lightning. All of our experiments took about 120 hours to complete on a13

machine equipped with an Intel Core i7 7700k CPU and an NVIDIA GeForce GTX 1080 GPU.14

Results15

Our results slightly deviate from the ones reported by the authors. This could be attributed to the design choices we had16

to make, due to ambiguities present in the original paper. After inspecting the provided codebase along with relevant17

literature, we were able to replicate the experimental setup. In our experiments, we observe similar trends and hence we18

can verify most of the paper’s claims, albeit not getting identical experimental results.19

What was easy20

The original paper is well-structured and easy to follow, with the principle ideas behind the proposed algorithms being21

very intuitive. Additionally, the datasets used in the experiments are publicly available, small in size, and the authors22

provide their code on GitHub.23

What was difficult24

During our study, we encountered a few unforeseen issues. Most importantly, we were not able to identify critical25

technical information required for the implementation of the proposed algorithms, as well as a detailed description of26

the models used, their training pipeline, hyperparameters, and data pre-processing techniques. Furthermore, the publicly27

available code is convoluted and employs out-of-date libraries, making it difficult to set up the necessary environment.28

Communication with original authors29

We contacted the paper’s first author once to confirm our understanding of certain elements of the paper that were either30

not specific enough or missing. Although they responded fairly quickly, their answer prompted us back to the paper and31

the provided codebase, while not encouraging any further communication.32
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1 Introduction33

Adversarial attacks have become popular in the machine learning community since they allow scientists to understand34

and mitigate the weaknesses of the employed models. Current research is primarily focused on adversarial attacks35

targeting the performance of machine learning systems [3, 10], but recent studies indicate that adversarial attacks can36

also be used to target fairness [11, 12, 13]. In the studied paper, the authors propose two novel families of adversarial37

attacks - the influence attack on fairness and the anchoring attack - and demonstrate their effect in exacerbating38

algorithmic bias by evaluating them on three datasets using two well-known fairness metrics.39

Both of the proposed methods belong to the family of data poising attacks, in which the adversary attempts to inject40

malicious data points into the training data. In particular, given a “clean” training dataset Dc, i.e. a dataset containing41

only the original training samples, the adversary generates a “poisoned” dataset Dp and integrates it into the original42

one, resulting in the final train set Dtrain = Dc ∪ Dp. The poisoned dataset Dp is generated in such a way that training43

with Dtrain results in a model with degraded performance or, in our case, a less fair model.44

The paper considers a binary classification scenario, under a common fairness setup with two demographic groups; the45

advantaged Dadv and the disadvantaged Ddisadv. Under this setting and given an adversarial loss that increases when46

the model makes unfair decisions, the influence attack on fairness finds adversarial data points by performing gradient47

ascent on the adversarial loss. On the other hand, the anchoring attack places poisoned points in the close vicinity of48

two target points, one from Dadv and one from Ddisadv, with the opposite labels but the same demographic.49

2 Scope of reproducibility50

In this reproducibility study we aim to verify the following main claims of the paper:51

• Both of the proposed attacks impact the fairness of the targeted model, outperforming other attacks in the52

literature, such as Koh’s basic influence attack [9] and Solan’s gradient-based poisoning attack [13].53

• The anchoring attack has little to no impact on the model’s accuracy, making it more difficult to detect.54

• The influence attack on fairness provides a controllable trade-off between the impact on performance and55

fairness via a regularization term λ.56

Additionally, we extend the evaluation set up to test whether current methods can be used to invert the inherent bias of a57

dataset. To this end, we re-implement the entire experimental setup, and hence contribute:58

• an extensive study and evaluation of the adversarial attacks proposed by Mehrabi et al. [11].59

• a modification to the influence attack on fairness which can invert or diminish the inherent bias of a dataset.60

• a comprehensible and easily extensible codebase, which can be used both in the evaluation of current methods61

and as a framework for further research on adversarial attacks on fairness.62

3 Methodology63

3.1 Poisoning Attacks64

Poising attacks are a category of adversarial attacks where the attacker impacts a system by injecting a small portion of65

engineered malicious data into its training set. In particular, we consider that the system is trained on a clean dataset Dc66

and evaluated on a test dataset Dtest. The attacker has knowledge of both sets, as well as of the system’s architecture67

and its training pipeline. With this information, the attacker creates a poisoned dataset Dp, with |Dp| = ϵ|Dc|, so that68

training the attacked system on Dc ∪ Dp impacts its performance, or in our case its fairness. The parameter ϵ controls69

the percentage of poisoned points, which depends on the nature of the application. Finally, we assume that the attacked70

system has a defense mechanism B that possibly removes poisoned data with the use of anomaly detection techniques.71

3.1.1 Influence Attack on Fairness72

The Influence Attack on Fairness (IAF) is a gradient-based data poisoning attack, derived from a combination of the73

works of Koh et al. [8], which introduces the basic influence attack, and Zafar et al. [15], which proposes a novel74

2



fairness loss. The main idea is to build Dp from copies of two datapoints (x̃1, ỹ1) and (x̃2, ỹ2) sampled from Dc, and75

progressively update them to decrease model fairness, as measured by an adversarial loss Ladv. The authors propose to76

use Ladv = Lbc + λ · Lf , where Lbc is any binary classification loss and Lf is the aforementioned fairness loss.77

To update (x̃1, ỹ1) and (x̃2, ỹ2), the paper suggests to perform gradient ascent on Ladv and then update Dp with78

their copies. Since Ladv depends on the trained model’s parameters θ̂, the gradient ascent follows an expectation-79

maximization scheme, where in the expectation step the model is trained on B(Dc ∪ Dp)
1and in the maximization step80

the points move on the gradient direction. Although this idea is very intuitive, calculating the gradient of Ladv w.r.t81

each adversarial point is challenging. The approach presented in [9] is to apply the chain rule as ∂L
∂x̃i

= ∂L
∂θ̂

∂θ̂
∂x̃i

, with82

the later derivatives calculated in Equations 1 and 2. Here, ℓ is the model’s train loss for the single data point and Hθ̂ is83

the Hessian of the train loss at θ̂ w.r.t. the adversarial sample x̃i. More details for the derivation of these formulas, as84

well as how to compute them efficiently, can be found in Section 2.2 of [8] and Section 4.1.1 of [9].85

gθ̂,Dtest

def
=

∂L
∂θ̂

=
1

|Dtest|
∑

(x,y)∈Dtest

∇ℓ(θ̂;x, y) (1)
86

∂θ̂

∂x̃
= −H−1

θ̂

∂2ℓ(θ̂; x̃, ỹ)

∂θ̂∂x̃
(2)

3.1.2 Anchoring Attack87

The anchoring attack places poisoned datapoints, which act as anchors, in the near vicinity of two target points. In88

particular, the attacker samples two target points xtarget−, and xtarget+ from the advantaged Dadv and disadvantaged89

Ddisadv groups of the train dataset. Subsequently, |ϵn| poisoned datapoints {x̃i}|ϵn|i=1 are generated in the near vicinity90

of the target points, placing them in the same demographic group but on opposite categories ỹi ̸= ytarget. Intuitively,91

this aims to move the decision boundary so that more advantaged points have a positive predictive outcome and more92

disadvantaged points have a negative outcome, hence inducing more biased outcomes.93

The paper proposes two methods to sample xtarget− and xtarget+ from the dataset:94

• Random Anchoring (RAA): xtarget is sampled uniformly for each demographic group.95

• Non-Random Anchoring (NRAA): xtarget is the point close to the most similar points given its label and96

demographic. This aims to affect as many points as possible when placing poisoned points within its vicinity.97

In the latter case, the authors suggest to consider x and x′ neighbors if and only if ||x− x′|| < R, R ∈ R. The choice98

of R and the specific norm || · || is not defined in the paper. After careful examination of the provided code, we found99

that the L1 norm was used and the R values were hard-coded for each dataset. To avoid manual experimentation for100

each dataset’s R, we propose the following definition for the most popular point in a dataset X :101

xpop
def
= argmax

x∈X

∑
x′∈X

exp

(
−d(x,x′)

σ2
d(X )

)
(3)

where d is a distance metric and σ2
d(X ) denotes the variance of the points’ distances to each other under d. Motivation102

for this choice and implementation details can be found in Appendix B.103

3.2 Defenses104

The authors use a defense mechanism B in both of the proposed attacks, along with a corresponding projection function105

that bypasses it, without specifying the actual type of the defense. Although this information is not crucial for the106

comprehension of the attacks, we deem it critical for their reproducibility.107

After inspecting the code and the cited literature, we found that the defense mechanism used is a combination of the L2108

defense and the slab defense [14]. The L2 defense removes points far from their corresponding class’ centroid according109

to the L2 distance: βy = ED[x | y], sβ = ||x− βy||2. The slab defense projects points onto the line between the class110

centroids and then removes the points too far from the centroids: βy = ED[x | y], sβ =
∣∣(β1 − β−1)

⊤(x− βy)
∣∣.111

1In the original paper, the authors mention that training is performed on Dc ∪ Dp, but we deem that using B(Dc ∪ Dp) is more
sensible and congruent with the basic influence attack [9].
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The feasible set Fβ ⊂ X × Y encodes the defenses, as well as the constraints for the input’s features, and contains all112

of the points that would not be discarded by the defender. For the L2 constraint, we apply the LP relaxation technique113

as described in [9] and end up with a feasible set FLP =
{
(x, y) : E

[∥∥x̂− µy

∥∥2
2

]
≤ τ2y ∧ x ∈ R≥0

}
, where µy114

denotes the centroid of the subset of points in class y. The parameter τy is chosen dynamically for each y, such115

that 90% of the points in the Dy subset satisfy the L2 constraint. For the slab constraint, we construct a feasible set116

Fslab =
{
(x, y) : |(µ1 − µ−1)

⊤(x− µy)| ≤ τ ′y ∧ x ∈ R≥0

}
, where µ1 and µ−1 denote the centroids of classes 1117

and −1 respectively. Once again, the parameter τ ′y is chosen dynamically for each y such that 90% of the points in118

the Dy subset satisfy the slab constraint. Our final feasible set is the intersection of the feasible sets under the two119

constraints, plus any additional input constraints imposed by X .120

Projecting points ontoFβ takes the form of an optimization problem, namely argminx∈Fβ
∥x− x̃i∥2, where x̃i denotes121

the poisoned point. We then simply solve the optimization problem using the library CVXPY with the SCS solver. This122

procedure is extensively discussed in [9], Section 3.3.123

4 Experimental Setup124

4.1 Model and training pipeline125

We did not manage to find a detailed description of either the model used or its training pipeline in the original paper.126

The authors mention that the hinge loss was used, leading us to assume that benchmarked model was a Support Vector127

Machine. However, after examining their code, we identified that the default model used was a Logistic Regression128

model. We also followed this choice, as it allows for an easy calculation of the fairness loss used in the influence129

attack on fairness. Additionally, the authors seem to use SciPy’s fmin_ncg optimizer to train the model, which is a130

second-order optimization algorithm that uses conjugate gradients. In our implementation, we opted for Stochastic131

Gradient Descent, which should be able to converge to the same parameters, as the minimization problem is convex. In132

our reported results, we used the average over three runs to account for any stochasticity in the pipeline.133

4.2 Datasets134

We carry out our experiments on the same three datasets as the original paper and consider “gender” to be the sensitive135

attribute. We use a pre-processed version of each dataset, as provided by the authors, to have a common starting point.136

However, we later discovered a few issues regarding the pre-processing pipeline, which we elaborate on in Appendix A.137

In all cases, the test set consists of 20% of the total data and there is no validation set. A short description of each138

dataset is presented below:139

German Credit Dataset2 [7]. This dataset has 1000 entries of loan applicants. Each applicant is characterized by 13140

categorical and 7 numerical features describing their credit risk and is classified as either “good” or “bad”, in terms of141

their ability to repay the loan.142

COMPAS Dataset3 [1]. This dataset has 7214 entries of criminal defendants. We utilize 8 categorical features from the143

dataset to predict whether a defendant will recommit a crime within 2 years.144

Drug Consumption Dataset4 [5]. This dataset has 1885 entries of people alongside their drug history. Each person is145

described by 13 numerical attributes, which can be used to infer drug usage of 18 different substances. We focused on146

predicting whether individuals have used cocaine in their lifetime, akin to the original paper.147

4.3 Fairness Metrics148

We evaluate the impact of our attacks both in terms of performance and fairness. For performance, we use the accuracy149

error, while for fairness we use the Statistical Parity Difference (SPD) [4] and the Equality of Opportunity Difference150

(EOD) [6]. This evaluation protocol matches the one in the original paper, although our implementation of EOD gives151

different results. We were able to verify our results’ validity by comparing them with the AI Fairness 360 library [2].152

2https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data-numeric
3https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
4https://archive.ics.uci.edu/ml/machine-learning-databases/00373/drug_consumption.data
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Moreover, the original paper used the absolute values of the aforementioned metrics, which we followed for the153

reproduced experiments but not for our extensions, as the metrics’ signs contained the necessary information.154

Statistical Parity Difference. Statistical parity is used to ensure that the demographic distribution of the samples155

being classified positively (or negatively) is similar to the distribution of the entire population. As a result, when we156

measure the difference in statistical parity between the two demographics (advantaged and disadvantaged groups), we157

can deduce whether a model is biased in favoring or harming one of the two groups.158

SPD = | P (ypred = +1 | x ∈ Dadv)− P (ypred = +1 | x ∈ Ddisadv) |

Equality of Opportunity Difference. Equality of opportunity is used to guarantee that samples with a positive ground159

truth label are just as likely to be classified positively, regardless of the demographic group they belong in. By measuring160

the difference in equality of opportunity for the two groups, we can identify whether the model is biased towards161

classifying positively more often for either demographic group, given that they have a positive ground-truth label.162

EOD = | P (ypred = +1 | x ∈ Dadv, ylabel = +1)− P (ypred = +1 | x ∈ Ddisadv, ylabel = +1) |

4.4 Hyperparameters163

For all of our experiments, we trained the models for 300 epochs with early stopping based on the train accuracy.164

We chose an SGD optimizer with a learning rate of 0.001, weight decay of 0.09, and batch sizes of 10, 50, and 10165

for the German Credit, Drug Consumption, and COMPAS datasets respectively. Regarding the adversarial attack166

hyperparameters, we used 100 iterations and a step size η = 0.01 for the IAF, and τ = 0 for both anchoring attacks.167

4.5 Implementation Details168

We implemented the data poisoning attacks described above in Python, using PyTorch Lightning to train our models5.169

Each attack, along with its helper functions, is implemented in a separate file under the attacks folder. We also placed170

a utils.py file under the same folder, which implements essential utilities that are leveraged by all adversarial attacks.171

We defined two abstract classes, Dataset and Datamodule, in the corresponding files under the datamodules folder,172

which enable our framework to process a dataset from a given file and construct the required PyTorch DataLoader173

objects. Consequently, each dataset mentioned in Section 4.2 corresponds to a separate file under the same folder,174

deriving from the Datamodule class. Our models are placed under the models folder, deriving from the LinearModel175

class, while the training pipeline is described in trainingmodule.py. Finally, our fairness metrics and losses are176

available in fairness.py.177

In this way, besides providing a well-structured and easy-to-follow code, we also allow fellow researchers to extend178

our experiments by easily incorporating different models, attacks, datasets, and fairness metrics. To implement a new179

attack, one can simply create a separate file under the attack folder and leverage the implemented attack utilities,180

such as the projection and defense mechanisms. To test existing attacks with a different dataset, one can create a new181

PyTorch Lightning LightningDatamodule that extends our Datamodule class. Finally, in order to test a different182

model, one needs to create a PyTorch Module that extends the LinearModel class and update the BinaryClassifier183

class accordingly.184

4.6 Computational requirements185

All of our experiments required a total of 120 hours on a machine with an Intel Core i7 7700k CPU and an NVIDIA186

GeForce GTX 1080 GPU. We found the most computationally expensive part to be the training of the models, and187

hence the influence attack, which requires multiple train iterations. This makes it significantly slower than the anchoring188

attack. However, it is worth noting that a GPU is not strictly necessary. GPU speedups were in the vicinity of 20% over189

a CPU-only setup since we only have a single-layer linear model.190

5Our code is available at https://anonymous.4open.science/r/mlrc-2021-exacerbating/
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5 Results191

5.1 Results reproducing the original paper192

In this Section, we are reporting the results for the two experiments conducted in the original paper.193

5.1.1 Impact of the proposed attacks on fairness194

First, we evaluate the effectiveness of the proposed adversarial attacks on the three datasets mentioned in Section 4.2195

using the metrics discussed in Section 4.3, for varying ϵ values. We perform the anchoring attack, using both random196

(RAA) and non-random sampling (NRAA). We additionally reproduce Koh’s influence attack [9] and Solan’s attack [13],197

using our implementation. Our results are presented in Figure 1 and correspond to Figure 2 of the original paper.198

Figure 1: Impact on performance and fairness of a logistic regression classifier, using the attacks proposed in [11] and
other state-of-the-art methods, for increasing ϵ values.

We observe that the IAF is the most versatile attack on fairness, as it can raise the test error by 20% and push the SPD199

and EOD values close to 1. This general trend matches the results of the original paper, although it appears that the200

effectiveness of the attack diminishes for higher values of ϵ. As a result, we see cases where the fairness is impacted201

less than other attacks, which is contradictory to the results of the original paper.202

The NRAA appears to be the second most effective fairness attack, especially for the COMPAS dataset, where it can203

reach the performance of the IAF, at the cost of using a significantly higher percentage of poisoned data ϵ. However, it204

also appears to increase the model’s test error up to 20%, which contradicts the findings of the original paper, that the205

NRAA attack does not affect performance.206

Finally, the RAA appears to be less effective when compared to the NRAA. The test error was preserved, as in the207

original paper, but its impact on fairness was inconsistent depending on the value of ϵ and the dataset. It is worth208

mentioning that this attack exhibited the most variance in our results when using different seeds, which can be explained209

by the method’s inherent stochasticity.210

5.1.2 Regulation of the trade-off between impacting performance and fairness211

We evaluated the regulation of the trade-off between impacting fairness and performance using the IAF on the same212

datasets and metrics as previously. Our results are presented in Figure 2 and, apart from our extra experiment for213

λ = 0.5, correspond to Figure 3 of the original paper.214
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Figure 2: Impact on performance and fairness of a logistic regression model using the IAF, for increasing λ values.

We notice that the IAF drops the model’s performance by 10% to 20%. The hyperparameters λ and ϵ seem to not have215

a strong correlation with the test error, as every pair of them leave it intact. This comes in contrast to the results of216

the original paper, where higher λ and ϵ values affect the performance less. We also observe that higher λ values have217

a greater impact on fairness, which is in accordance with the original paper’s results. However, in the original paper,218

higher ϵ values also increase the rate at which λ affects the fairness of the targeted model, while in our results very high219

values, such as ϵ = 1, seem to have the opposite effect.220

5.2 Results beyond the original paper221

In this section, we report our results for an additional experiment we conducted. Although there were many interesting222

directions we wanted to investigate, we focused on just one due to limited time and resources.223

5.2.1 Inversion of the dataset’s bias direction224

The experiments of Section 5.1.1 made us question whether it is possible to use the principle idea behind the IAF to225

inverse the bias present in the datasets, instead of always exacerbating it in favor of the advantaged group. To this226

end, we changed the sign of λ, according to the intrinsic bias of the dataset. Our results are presented in Figure 3 and227

indicate this approach does indeed shift the bias of the dataset towards the other extreme.228

An important byproduct of this technique is that it can be used to mitigate the existing bias of the datasets. We observe229

in Figure 3 that for λ = 0.2, the fairness metrics approach zero while the performance remains on the same level.230

Hence, tuning the value of λ in a held-out validation set would allow us to augment the existing datasets to be fairer231

without sacrificing performance. Do note that in this experiment we used the actual differences of the SPD and EOD to232

better capture the direction of the bias. For more details, refer to Appendix C.233

6 Discussion234

Based on the results of the first experiment, we are able to partially verify the first two claims of the paper. More235

specifically, both the IAF and the NRAA are indeed the most effective attacks on fairness, under most of the evaluated236

settings. However, the RAA performs poorly compared to the existing methods, such as Koh’s and Solan’s, which237

contradicts part of the first claim. What is more, although the RAA does not affect the performance of the targeted238

system, the NRAA can, which contradicts part of the paper’s second claim. Similarly, the results of our second239
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Figure 3: Reversing the intrinsic bias of the Drug Consumption dataset using a modified version of the IAF.

experiment suggest that although λ is able to control the impact on fairness, it is not as effective in doing so with240

performance. Based on this, we can partially verify the third claim of the paper. In summary, although we were not able241

to fully verify the original claims based on our results, we can confirm the methods’ effectiveness in attacking fairness.242

6.1 What was easy243

One of the things we found welcoming was the overall presentation of the paper which is nicely structured and has244

cohesive sections. The provided pseudo-code condenses the principal ideas of both attacks very intuitively, and the245

datasets used in the paper are publicly available and small in size. The latter welcomes everyone to reproduce the246

results, regardless of their computational budget. Additionally, the authors provide their code on GitHub where missing247

details can be found easily. All these elements hint at an easy reproduction of the results.248

6.2 What was difficult249

As we got familiarized with the concepts behind the attacks, we identified some issues which were not apparent at250

first. To begin with, even though the principle ideas are intuitive, the notation used is not always self-sufficient. The251

algorithms depend on other utilities (such as the projection of data in the feasible set) and non-trivial calculus operations,252

which are not discussed. Additionally, information about the model, training pipeline, hyperparameters, and data253

pre-processing used is absent. For these elements, we tried consulting the code provided by the authors, but it turned254

out to be convoluted. We encountered a structure that was hard to follow, non-intuitive variable names, absence of255

comments and docstrings, and large portions of unused code. All these elements made the reproduction of the results256

challenging and required some assumptions and critical decisions on our part.257

6.3 Communication with the authors258

We contacted the first author with a list of questions to resolve the existing ambiguities. Although the response was259

fairly quick, we were prompted to check the existing code in-depth, while further communication was discouraged.260

7 Conclusion261

In this reproduction study, we extensively reviewed the paper Exacerbating Algorithmic Bias through Fairness Attacks.262

We provided a clear foundation, upon which we described the proposed data poisoning attacks, namely the influence263

attack on fairness and the anchoring attack, as well as the experimental setup of the original paper. We filled in264

numerous details that we considered crucial for the reproducibility of the results. We evaluated the effectiveness of265

the proposed attacks both in terms of performance and fairness, and even though we did not manage to get the exact266

results of the original paper, our experiments show similar trends. Hence, we can verify the superiority of the proposed267

methods compared to the rival ones. Finally, we examined the regulation of the trade-off between impacting fairness268

and performance and found that while the impact on performance cannot be directly controlled, the impact in fairness269

can be. These findings suggest that although the original paper is not reproducible, its claims are valid.270
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A List of inconsistencies, assumptions and corrections312

After studying the original paper and the provided code, we spotted a few inconsistencies between the two. In order to313

deal with them, we had to make some assumptions that better aligned with the methods presented in the original paper.314

Regarding the influence attack on fairness, Koh et al. [9] suggest that the train set during the attack is not Dc ∪ Dp, but315

B(Dc ∪ Dp), i.e. the set that passes from the defense mechanism B. Hence, we assume that when the authors mention316

that they update the feasible set Fβ ← B(Dc ∪ Dp), they mean that they update the parameters β of the feasible317

set. Additionally, pre-computing H−1

θ̂
is computationally expensive and is avoided in the authors’ code. Instead the318

computational trick introduced in Koh et al. [8] is used.319

Regarding the anchoring attack, we noticed two issues in the paper and the accompanied code. The anchoring attack320

with non-random sampling is deterministic and thus each iteration of attack will result in the same poisoned dataset Dp321

discarding the need to have multiple iterations. Moreover, the anchoring attack with random sampling is a stochastic322

method, yet in the existing implementation, the random number generator is seeded with the same number in every323

iteration, resulting in the same poisoned dataset Dp. As a result, the attack’s output will be deterministically generated324

as the method’s stochasticity is discarded with the iterations being redundant.325

Regarding the helper functions for both attacks and defenses, it seems that the authors use the LP relaxation technique326

implemented in [9] by default in their experiments. However, we could not find an explicit mention of this in paper.327

Additionally, we did not find any suggestion for choosing the neighbor cutoff radius σ, which seems to be hard-coded328

for every dataset. Finally, the choice of radii for the L2 constraint and slab cutoff are not discussed in the paper, although329

the authors seem to use similar techniques to the ones discussed in 3.2.330

Regarding the pre-processing pipeline applied to the original data, we noticed it is neither mentioned in the paper nor331

provided in the GitHub repository of the authors. After contacting them, they pointed us to another repository that332

included a similar pre-processing pipeline to the one applied for the paper. Observing the code, we noticed two issues.333

Categorical data were converted to one-hot encoded and then standardized with the quantitative features, which is not334

the most efficient technique. Also, the test data were normalized along with the train data, allowing information from335

the test set to be utilized for training.336

Regarding the experimental setup, the reported results in the paper are the output of a single seed for the random337

generator. As a consequence, there was only a single split of the data between training and testing leading to results338

with high variance.339

B Finding the most popular point in a dataset340

Let x1,x2, . . . ,xn ∈ Rm be points in a dataset X . Our goal is to define the most popular point xpop in a meaningful341

way, such that it is dataset agnostic, i.e. it does not require manual input of parameters, such as a manually defined342

radius for each dataset. We mainly experimented with two methods.343

• Method A: Percentile Radius: We define the most popular point344

xpopA
def
= argmax

x∈X
CountN (x, R) (4)

where CountN(x, R) is a function that returns the number of points xi ∈ X such that d(x,xi) ≤ R, R ∈345

R+ ∀xi ∈ X for some distance metric d. The problem of picking a fitting radius R is not trivial as the radius346

has to be neither too small nor too big as either all or no points would be considered neighbors, respectively.347

The method we propose is to pick a radius R such that at least α% of x ∈ X satisfy ||x− µ|| ≤ R, where µ348

the centroid of X . In our experiments, α = 15 has proved to be decent for all three datasets.349

• Method B: Exponentially decayed distances: We define the most popular point350

xpopB
def
= argmax

x∈X

∑
x′∈X

exp

(
−d(x,x′)

σ2
d(X )

)
(5)

where d is a distance metric and σ2
d(X ) denotes the variance of all the distances of the points in the dataset to351

each other under d. We define σ2
d(X )

def
= Var (vec(d(X ))), where [d(X )]ij := d

(
[X ]i: , [X ]j:

)
.352

10



In Method A, we still define neighbors based on balls surrounding datapoints. Even though we still have to pick an α,353

the choice is easier, as we don’t have to manually check the distances in the dataset.354

In Method B, we discard the idea of neighbors based on radii around points and we turn our focus on finding a datapoint355

in a very dense area of the dataset. To ensure that the sum is higher for points with a lot of other points in their close356

vicinity, we exponentially decay the distances. This forces points close to our point in question to contribute more357

to the sum. We also need the method to be dataset agnostic, thus we need to scale the wideness of the exponential358

kernel. If the variance6of the distances is high, we need to widen the kernel such that points further away still contribute359

to the sum. In contrast, if distances have low variance we need to sharpen the exponential kernel to make sure that360

only points close enough to the point in question contribute to the sum. We define the variance of the dataset X as361

σ2
d(X ) = Var (vec(d(X ))), where [d(X )]ij := d

(
[X ]i: , [X ]j:

)
. We opted for this method since it requires the least362

amount of arbitrary assumptions about the dataset. Preliminary experiments hinted towards method B achieving slightly363

better results in our task, but this wasn’t pursued further.364

In the Anchoring Attack, we need to sample a negative sample xtarget− from the advantaged class Dadv and a positive365

sample xtarget+ from the disadvantaged class Ddisadv. In the non-random sampling setting (NRAA), we simply366

calculate the most popular point in the negative but advantaged class Dadv ∩D− ⊂ D and the most popular point in the367

positive but disadvantaged class Ddisadv ∩ D+ ⊂ D.368

C Data Augmentation369

As it has been demonstrated through experimental evaluation, the IAF can deteriorate a model’s fairness. However,370

we argue that the same approach can be applied for data augmentation to increase a model’s fairness resulting in an371

unbiased classifier.372

The use of the fairness metrics with absolute values, as described in Section 4.3, fails to highlight the bias direction.373

However, by using the actual differences of the metrics, we can utilize this information. Therefore, knowing the initial374

bias of the data by inspecting the sign of P (ylabel | x ∈ Dadv) − P (ylabel | x ∈ Ddisadv), we can assume that the375

model’s bias will be in the same direction, i.e., the SPD and EOD will have the same sign. To this end, to direct a376

model’s bias towards zero, we have to use the opposite sign of the aforementioned quantity for the values of λ.377

Moreover, as the altered method is used for augmentation, the test dataset Dtest should not be utilized, in contrast with378

the IAF. Finally, we could use a validation set to halt the data augmentation process in order to find the optimal value of379

λ where the SPD and EOD would be close to zero.380

6The mean of the dataset or some other statistic could also be used, which intuitively makes more sense. Basic experiments
hinted that dividing by the variance performed better, but the mean method can not be completely discarded as we didn’t conduct
thorough experiments due to time constraints.
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