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Abstract

In recipes, contextual understanding of instruc-001
tions depends on temporal interpretation of002
the entities because of their spatio-temporal003
changes. Accordingly, we propose the use of004
reference resolution to find the origin action of005
entities, provided that the entity is an output006
from a previous action, instead of being a raw007
ingredient. Here, we introduce a weak super-008
vision method that exploits syntactic features009
for producing latent links between entities and010
their origin actions. The results show that our011
weak supervision outperforms the previous un-012
supervised studies with %8 F1. In particular,013
our approach indicates %82 resolution perfor-014
mance on pronoun, and %85 on null entities.015

1 Introduction016

Many studies have been using the captions of the017

videos to obtain joint embeddings spaces (Miech018

et al., 2019; Sun et al., 2019; Miech et al., 2020;019

Zhu and Yang, 2020), or utilizing the descriptive020

sentences of the instructions for object grounding021

(Zhou et al., 2018a; Sadhu et al., 2020). Besides,022

multimodal inputs are used in many language tasks023

such as video question answering (Zeng et al.,024

2017; Le et al., 2020), machine translation (Sig-025

urdsson et al., 2020; Gu et al., 2021), and so on.026

Recipe videos provide rich visual and language027

data, however one particular challenge is required028

to be considered: resolving the references of enti-029

ties.030

Linguistic ambiguities (e.g., “the cubes" in Fig-031

ure 1(c)) are presented in cooking instructions of032

videos since the spatio-temporal changes of the033

entities are inevitable. The choose of referring ex-034

pressions might differ with respect to the changes035

of the entities 1. As shown with Figure 1, (a) the036

same nominal phrase refers to a different object (the037

whole salmon piece; and then one of the halves)038

whereas in (b) a coreferential pronoun is used al-039

though the object has changed (c) is in fact the most040

peel the potatoes cut them to halves

chop the bread mix the cubes with mixture

cut the salmon in half slice the salmon into strips

(a)

(b)

(c)

...

...

...

Figure 1: Examples from YouCookII dataset to show
the effects of temporal changes on the entities and the
referring expressions. Three rows display there different
use of expressions of entities.

well-behaved in terms of keeping the language ex- 041

pressions consistent across actions and with the 042

entities being referred to. 043

There has been a few attempts (Kiddon et al., 044

2015; Huang et al., 2017) to address the reference 045

resolution with unsupervised graph optimization 046

problem in order to find the most likely edges be- 047

tween entity and action nodes of recipes. Kiddon 048

et al. (2015) apply the conditional probability with 049

the given predicate-entity pairs of steps, and entity- 050

action pairs of possible references. Additionally, 051

Huang et al. (2017) adapt the likelihood functions 052

from (Kiddon et al., 2015) and make use of the 053

visual inputs of given actions. As an alternative to 054

graph optimization, Huang et al. (2018) propose an 055

entity-action pointer network to find the origin. 056

We argue with the above methods since the or- 057

der of the instructions, utilized ingredients of the 058

same dishes differ according to personal preference. 059

Thus, the assumption of obtaining the same graph 060

for the same dishes breaks the performance of opti- 061

mization of the action graph. However, we leverage 062

syntactic cues of the instructions for annotating the 063

references for weak supervision. 064
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2 Problem Statement065

2.1 Problem Definition066

Each recipe consists of ordered instruction steps,067

where each step s, e.g. pour olive oil on the Italian068

bread cubes and bake them in the oven, includes N069

number of actions, e.g. two actions occur together070

in one step like pour olive oil on the Italian bread071

cubes and bake them in the oven. Accordingly, each072

step s of given recipe is segmented into actions a073

and each action ai defined as the pair of predicate074

pi and the undergoing entity ei. For example, the075

first action of the fourth step on Figure 2 ei denotes076

the the onion rings and pi refer the verb move.077

s = a1, ..., aN , 0 < N, aj = (pj , ej)078

where p specifies the predicate of the action aj ,079

whereas e defines the corresponding entity. Refer-080

ence resolution task is formulated as a function α081

to find a link from the considered entity ei to origin082

action ao that is one of the previous actions and083

outputs the ei.084

ao = α(ei, a1, ..., ai−1)085

The function α of reference resolution links the086

entity ei to most likely action ao, (i.e. ei → ao).087

Thus, the latent link is defined from the correspond-088

ing entity ei, e.g., the dressing, to its origin action,089

e.g., mix yogurt and vinegar. However, the raw090

ingredients need to be neglected linking to any ac-091

tions since the raw ingredients are not produced092

by any of the actions. For example, the entity dry093

bread crumbs of the third action in Figure 2 is a raw094

ingredient which is not produced by any previous095

actions in the recipe.096

2.2 Evaluation097

We compute the F-score for evaluation of reference098

resolution as it is denoted in the previous reference099

resolution studies in recipes (Kiddon et al., 2015;100

Huang et al., 2017, 2018) where precision P indi-101

cates how many of all the resolved references are102

correct with the formula P = tp
tp+fp whereas recall103

R measure how many of the all references are cor-104

rectly resolved with the formula R = tp
tp+fn where105

tp designates the number of references that are cor-106

rectly resolved, fp is the number of references that107

are not reference (e.g. raw ingredients) but recog-108

nized as reference, fn is the number of reference109

that are not detected as reference. The raw ingre-110

dients are out of the evaluation, the references are111

considered to compute the F-score.112

1. crack an egg into a bowl and break it
2. pour dry bread crumbs into the bowl
3. season the egg with salt and spices
4. coat onion rings in batter and transfer them
5. move the onion rings and coat evenly

...

Figure 2: An example of steps in a recipe to present the
difference between single and consecutive actions.

3 The Syntactic Structure of Steps 113

The construction of descriptive sentences of instruc- 114

tions, in Figure 2, differs with respect to single or 115

consecutive actions. The sequential order of single 116

actions may change according to personal prefer- 117

ence. For example, the sequence of chopping the 118

tomatoes and peeling the potatoes differs even in 119

the same dishes. However, consecutive actions 120

need to occur in the same order even in different 121

recipes. Before stirring the onion in the pan of oil, 122

it needs to be chopped into pieces first. The consec- 123

utive actions sequence the actions that are applied 124

to the the same entity. 125

Single actions. Single action applies only one 126

process to an entity in a step and the process con- 127

tinues with an other entity of the recipe. As can be 128

seen with the third step of Figure 2, pour dry bread 129

crumbs into the bowl and season the egg with salt 130

and spices are a sample of single actions. 131

Consecutive actions. Consecutive actions in- 132

clude more than one process applying to the same 133

entities in a step, i.e., N > 1. In the first step of Fig- 134

ure 2, crack is processed on the egg and then break 135

applied on the same entity. Here, we combine these 136

two actions into the same step because the entity is 137

the same potatoes even though the predicates are 138

different. We call this self-preference of combining 139

the actions on the same entities referential tendency 140

of consecutive actions. The use of null entity and 141

pronouns is very common in consecutive actions. 142

The first and fourth steps of Figure 2 shows the use 143

of pronouns whereas the fifth step indicate the ref- 144

erential tendency of null entity with the predicate 145

coat and the first action move the onion rings in the 146

same step. The common occurrence (i.e., 35% of 147

the captions in train data) of consecutive actions 148

arise a need of use for weak annotation. SpaCy 149

(Honnibal et al., 2020) is used for determining the 150

consecutive actions and segmenting the steps into 151

individual actions. 152
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4 Weak Supervision with Syntactic Cues153

The main goal of weakly supervised modelling is154

to reduce the need of annotated data for supervised155

training. A particular instance of weak supervision156

is using the heuristic-based labeling with linguistic157

features of data for automatic labeling. In order to158

make use of the linguistic features for training a ref-159

erence resolution model, we leverage the syntactic160

structure of the steps for weak supervised training.161

Let the binary label for each pair is assigned162

either REF for positive instances or a label ¬REF163

for a negative instances depending on whether or164

not the aj is origin for ei. In single actions, there165

is no syntactic cues to find the origin action of the166

entities. Thus, all previous actions are needed to167

be considered positive candidates P (REF|⟨ei, aj⟩)168

where 0 < j < i. To resolve the entity a kettle of169

water in Figure 3, we need to consider the actions170

peel the potatoes and cut them to halves are positive171

candidates or define the entity as a raw ingredient.172

On the other hand, consecutive actions in the173

same steps provide useful referential tendency to174

annotate the latent temporal links between entities175

and their origin actions. In Figure 2, the entity them176

in the second action of fourth step is the output of177

the first action coat onion rings in batter or the178

null entity of the second action of the fourth step179

is the output of the first action move the onion180

rings in the same step. Therefore, we annotate the181

entities with the references by P (REF|⟨ei, ai−1⟩)182

as a positive instance and the negative instances183

P (¬REF|⟨ei, aj⟩) where 0 < j < i− 1.184

5 Experimental Setup185

5.1 Dataset186

The caption annotation of the YouCookII (Zhou187

et al., 2018b) dataset is used for this work. The188

data consists of 2000 cooking videos with the an-189

notation of instruction steps. Each video instruc-190

tion includes 3 to 15 steps, where each step is191

an imperative sentence and temporally aligned to192

the corresponding video segment. The evaluation193

set (Huang et al., 2018) including 90 videos of194

YouCookII.However, the steps are decomposed in195

to actions manually during reference annotation.196

Therefore, we do not observe the step structure in197

the evaluation dataset. Each entity is linked to the198

origin by using the number (i.e., id of action) of the199

origin action, if it is not a raw ingredient.200

peel the potatoes cut them to halves boil a kettle of water use it to boil the potatoes

them it
the potatoes

...

Figure 3: A sample of reference resolution. ⊗ shows
the raw ingredients and the links indicate the reference

.

5.2 Input 201

Train and test instances for the reference resolution 202

are constructed based on entity and the candidate 203

action pairs {ei, aj}. In order to obtain the vector 204

representation (wordEmb(.)) the head of the entity 205

is used for ei and aj . Null entities are presented 206

with one time generated random vector. 207

5.3 Model 208

Reference resolution is the process in which 209

we identify the origin action that is referring 210

the considered entity ei. For each candidate 211

a we first encode the actions with ϕa(aj) = 212

[wordEmb(pj),wordEmb(ej)]). Each e is repre- 213

sented by ϕe(ei) = wordEmb(ei). 214

uij = [we · FFNNe(ϕe(ei)), wa · FFNNa(ϕa(aj))] 215

where FFNN denotes a linear feed-forward layer. 216

The input of the model ϕe(ei) is the vector repre- 217

sentation of i-th entity whereas ϕa(aj) candidate 218

vector of j-th action. we is the weights of entity 219

whereas wa is the weights of action. 220

P (REF|uij) = log(softmax(w · FFNN(uij))) 221

Thus, the cross-entropy loss are averaged for each 222

batch with the given observations across {ei, aj} 223

for training the model. To test the model, we start 224

the iteration with e closest candidate aj and stop the 225

iteration when P (REF|ei, aj) and output ei → aj . 226

If all candidates result ¬REF then the ei is accepted 227

as a raw ingredient. 228

5.4 Experiments 229

Generally speaking, the employed predicates and 230

entities of different recipes are similar. For exam- 231

ple, the predicate chop might be applied to many 232

different entities, e.g., a1 = (chop, onion) and 233

a2 = (chop, greens). For an entity example, onion 234

is also used with many different predicates such as 235

chop and stir. Noted similarities arise a key chal- 236

lenge for reference resolution. Therefore, we anal- 237

yse the use of different word representation such as 238

sub-word, lexical and contextual embeddings. So, 239

we define wordEmb function here. 240
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100 % annot. 60 % annot. 20 % annot. w/o annot. Our Experiments
Previous. F1 F1 F1 F1 Exp. P R F1
VLRR 0.56 0.53 0.53 0.51 RRlexical 0.65 0.52 0.58
PNRR 0.59 0.59 0.53 0.49 RRcontext 0.74 0.47 0.58

Table 1: Results of the reference resolutions. The previous works VLRR and PNRR are presented with different
fraction of used labeled data for training. The works are trained by using YouCookII (Zhou et al., 2018b) and tested
on the reference annotation dataset (Huang et al., 2018). The results of the previous works are delivered from their
own studies. Results of our experiments are produced by the average of three train-test runs.

RRlexical : Reference resolution with lexical fea-241

tures. The input words are represented with the242

concatenated average embeddings FastText (Bo-243

janowski et al., 2017) and GLoVe (Pennington244

et al., 2014) to capture sub-word and lexical simi-245

larities respectively.246

RRcontext : Reference resolution with contextual247

features. Base BERT (Devlin et al., 2018) is used248

to represent the contextual features of the entities249

whereas FastText used for sub-word representation.250

In order to encode sub-word with contextual fea-251

tures, we concatenate BERT and FastText of words.252

6 Results and Analysis253

Results. The aim of this study is to investigate the254

use of syntactic cues in weak supervision for refer-255

ence resolution in recipes. Table 1 shows the results256

of reference resolution for previous studies and our257

experiments. Visual-linguistic reference resolution258

(VLRR) (Huang et al., 2017) proposes an unsu-259

pervised method by using a joint visual-linguistic260

features to train expectation-maximization model261

to optimize the recipe graph. The Pointer network262

reference resolution (PNRR) (Huang et al., 2017)263

applies a pointer network (Vinyals et al., 2015)264

with hierarchical/sequential encoder of the action265

representation. VLRR and PNRR both use GloVe266

(Pennington et al., 2014) embedding to represent267

predicates and entities for inputs. The fraction of268

labels on the table indicates the fraction of used269

labeled data. The full size 1.0 includes 60 recipes.270

Typically, we need to compare our results with the271

results of a model trained without annotated data272

(the column w/o label). However, the others are273

also included in the Table 1 to show effectiveness274

of our study.275

As can be seen Table 1, our lexical (RRlexical)276

and context (RRcontext) reference resolution meth-277

ods outperform the both previous studies with %8278

F1 score when the w/o label column considered.279

Additionally, the use of annotated data with the280

VLRR and PNRR, also our results of weak supervi- 281

sion show the significant improvement on the per- 282

formance when we compare with the unsupervised 283

methods. The performance difference of RRlexical 284

and RRcontext can be observed when the precision 285

(P) and recall (R) scores are compared, even though 286

the results of F1 scores are the same. 287

Analysis. Our methods present significant per- 288

formance of resolving references of referring ex- 289

pression of pronouns and null entities. RRlexical 290

gives %82 of all pronouns are resolved correctly, 291

while RRcontext indicates %97.5 of all pronouns 292

are linked to correct source action. Moreover, 293

%90.9 of null entities resolved correctly with lexi- 294

cal model, and it is %85 with context model. 295

Both RRlexical and RRcontext show higher per- 296

formance for the similar noun phrases are presented 297

in entity and the origin action like the the bowl ex- 298

ample in Figure 2 when they refer the same entity. 299

However, the entity the juice of the action linked to 300

the origin Add the clam juice to the pan correctly 301

resolved with the RRcontext, whereas it is missed 302

by the RRlexical. 303

On the other hand, different entities with the 304

same noun phrases create a key problem since the 305

lexical and contextual similarities of strong do- 306

main bias. For example, water used for boiling 307

egg and water for noddle are different entities but 308

our method fail to distinguish them and define as 309

a raw ingredient. Additionally, mixture entity is 310

constantly resolved as a raw ingredient when the 311

predicate add is used to combine the ingredients. 312

7 Conclusion and Future Work 313

To conclude, we propose a weak supervision 314

method for reference resolution in recipes and show 315

the way of annotation by leveraging the syntactic 316

cues of instructions for training. Proposed weak 317

supervision method outperforms the previous unsu- 318

pervised studies. For the future work in recipes we 319

analyze the effect of visual features for resolution. 320
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8 Ethical and Legal Consideration321

In this study, there is no concern with identity char-322

acteristics, intellectual property, privacy rights, ad-323

dress of possible harms in any section. The claims324

in this study match results and the results can be325

expected to generalize in the same experimental326

setup. Automatic annotation of the data (section 4)327

to make use of weak supervision method, prepa-328

ration of the input (section 5.2) of the model (sec-329

tion 5.3) are clearly defined.330
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