
Fairness of Interaction in Ranking under Position, Selection,

and Trust Bias

ZOHREH OVAISI, University of Illinois Chicago, Chicago, United States

PARSA SAADATPANAH, Meta Inc, Washington DC, United States

SHAHIN SEFATI, Meta Inc, New York, United States

MESROB OHANNESSIAN, University of Illinois Chicago, Chicago, United States

ELENA ZHELEVA, University of Illinois Chicago, Chicago, United States

Ranking algorithms in online platforms serve not only users on the demand side, but also items on the supply

side. While ranking has traditionally presented items in an order that maximizes their utility to users, the

uneven interactions that different items receive as a result of such a ranking can pose item fairness concerns.

Moreover, interaction is affected by various forms of bias, two of which have received considerable attention:

position bias and selection bias. Position bias occurs due to lower likelihood of observation for items in lower

ranked positions. Selection bias occurs because interaction is not possible with items below an arbitrary

cutoff position chosen by the front-end application at deployment time (i.e., showing only the top-k items).

A less studied, third form of bias, trust bias, is equally important, as it makes interaction dependent on rank

even after observation, by influencing the item’s perceived relevance. To capture interaction disparity in

the presence of all three biases, in this article, we introduce a flexible fairness metric. Using this metric, we

develop a post-processing algorithm that optimizes fairness in ranking through greedy exploration and allows

a tradeoff between fairness and utility. Our algorithm outperforms state-of-the-art fair ranking algorithms

on several datasets.

CCS Concepts: • Information systems→ Learning to rank;

Additional Key Words and Phrases: Recommender systems, ranking systems, fairness, bias

ACM Reference Format:

Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva. 2024. Fairness of

Interaction in Ranking under Position, Selection, and Trust Bias. ACM Trans. Recomm. Syst. 3, 2, Article 20

(November 2024), 28 pages. https://doi.org/10.1145/3652864

1 INTRODUCTION

Ranking algorithms used in recommender system platforms connect users on the demand side
to ranked items on the supply side. With the expansion of online marketplaces, these algorithms
have become central not only to users seeking to find their desirable items (e.g., rentals, movies,
job applicants), but also to items seeking to get enough visibility and interaction by users. Thus,

Authors’ addresses: Z. Ovaisi, University of Illinois Chicago, Chicago, Illinois, United States; e-mail: zovais2@uic.edu; P.

Saadatpanah, Meta Inc, Washington DC, United States; e-mail: parsasp@fb.com; S. Sefati, Meta Inc, New York, United

States; e-mail: shahinsefati@fb.com; M. Ohannessian and E. Zheleva, University of Illinois Chicago, Chicago, United States;

e-mails: mesrob@uic.edu, ezheleva@uic.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2770-6699/2024/11-ART20

https://doi.org/10.1145/3652864

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

https://orcid.org/0009-0008-7165-4841
https://orcid.org/0000-0002-2629-4495
https://orcid.org/0009-0003-4977-2298
https://orcid.org/0000-0002-6479-9769
https://orcid.org/0000-0001-7662-2568
https://doi.org/10.1145/3652864
mailto:permissions@acm.org
https://doi.org/10.1145/3652864
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652864&domain=pdf&date_stamp=2024-11-28

20:2 Z. Ovaisi et al.

Fig. 1. Impact of biases on fairness of interactionreflecting employment chance for male and female

applicants.

ranking algorithms have an impact on both user satisfaction and the amount of interaction each
ranked item receives. Traditionally, the main focus of ranking algorithms has been to rank items in
decreasing order of their relevance to users, with the aim of maximizing user satisfaction. However,
naïvely ranking items based on their relevance scores may lead to unfairness to some items. This
is because user interaction with items is heavily influenced by the item position in the ranking and
users are less likely to interact with lower ranked items. As a result, more relevant items in upper
positions collect a disproportionately larger number of user interactions than (sometimes slightly)
less relevant items in lower positions. There are three main sources of user-item interaction bias
that contribute to unfairness: position bias, selection bias, and trust bias. We first introduce these
biases with an illustrative example which highlights their impact on the amount of interaction an
item receives in a ranked list.

Consider a toy recommender system that connects employers and applicants for a job position,
as illustrated in Figure 1. We assume that applicants (shown on top of the figure) belong to one
of two groups, female or male, with the first three applicants being female and the other three
male. Each applicant has a resume that has a relevance score (shown under each face) for the
job position. All resumes compete for interaction (e.g., click) by employers, which occurs if the
employers observe them, and find them relevant [3]. The platform ranks resumes in decreasing
order of their relevance to the job, which results in female resumes placed in the first three positions
and male resumes in the last three positions. Position bias refers to the fact that users are more
likely to observe and, therefore, interact with higher-ranked items [4, 22, 44]. In Figure 1, the
observation probability P(O) is shown with the decreasing eye opacity from top to bottom. The
interaction probability P(C) of higher-ranked resumes is higher accordingly. Selection bias refers
to the fact that users may not be able to see the full ranking and only the top-k items may be
displayed by the front-end application (in the example, the cutoff k = 4) [32, 34]. Consequently,
tail items beyond cutoffk will not be observed (e.g., most of the male resumes). Thus, tail items have
interaction probability P(C) equal to zero. Trust bias refers to the fact that users may perceive
top-ranked items as more relevant even after observing all items [3, 33, 41, 42]. This is because
they overtrust the effectiveness of the system to rank relevant items higher. This is shown with
the employers’ perceived relevance relp (trust) of applicant resumes being amplified near the top

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:3

and attenuated near the bottom, relative to their true relevance rel. As a result, the interaction
probability P(C) of higher-ranked resumes is higher. Finally, in practice, all three biases coexist, as
in the fourth column of Figure 1. Note that trust bias is fundamentally different from position bias
and selection bias. Under position bias and selection bias, the user has a realistic perception of the
true relevance score (relp = rel). Thus, after observing an item, the user will choose whether to
interact with it based on its true relevance regardless of its position. Under trust bias, however, the
user perception of the item relevance score is position-dependent and may deviate from the actual
relevance score (relp � rel). That is, after observing a lower ranked item, the user may mistakenly
perceive it as much less relevant than it actually is and skip it. As a result, the top-ranked resumes
get far more clicks than they deserve given their true relevances. We provide more detail on trust
models in Section 3.

As a result of these existing biases, the recommender system causes the average number of
interactions that female resumes receive to be much higher than those of male resumes although
the relevances of male and female resumes are not significantly different, which is arguably unfair
to male applicants. The discrepancies in interaction that items with certain properties (e.g., female
applicants) receive could propagate further through rich-get-richer dynamics [10, 13]. In the case
of two-sided marketplaces, this helps popular and relevant suppliers to receive the majority of
available interaction in the long run, leaving the suppliers in the long tail struggling to attract
users’ interactions. These suppliers may then switch to other platforms, which in turn may limit
user choices and consequently drive users to quit the platform. Besides such dire consequences,
unfairness toward items (suppliers) may expose the online platform to legal and reputation risks,
due to the resulting polarization and monopoly of popular suppliers.

Recent studies propose frameworks that take into account not only user satisfaction but also
fairness toward items, considering item utility, such as exposure or interaction, as a resource pro-
vided by users to items. Most past studies focus on exposure as a resource [17, 35, 36, 47], thus
providing fair exposure opportunity. We focus on interaction as a resource, also studied without
trust bias in [36], thus providing fair interaction opportunity. Note that fairness of interaction
more accurately reflects the effective impact of ranking, compared to fairness of exposure. This
is because an item being interacted with/clicked has a higher chance of having a more effective
engagement by the user (e.g., bought, invited to interview), in contrast to simply being shown to
the user. This is especially prominent in e-commerce systems where the number of interactions of
an item plays a key role in whether this item is further advertised to users in the future.

Once a resource is specified, then fairness can be considered under various scopes. Scope refers
to how we account for the amount of received resource, before we compare whether two groups
received the desired amounts. For example, we could pool across all users, or we could pool per user,
or even per position. The concept of scope is illustrated with the example in Figure 2. Consider the
same platform, with two employers (i.e., users) and multiple female and male applicant resumes
(i.e., items), which aims at minimizing the difference in expected interaction that female and male
applicant resumes would receive. P(C) for a resume decreases down the ranks due to position and
trust bias effects. For each ranking, the aggregated interactions (in terms of expected number of

clicks C) with male and female resumes per user is depicted on the right-hand side. For simplicity,
we assume that the fairness criterion is loosely defined as “both groups receive the same expected
amount of interaction.” One possible scope that characterizes such fairness is by considering the
expected interactions across all users (Figure 2(a)) [6, 35]. According to this scope, the expected

interactions are fair, (female C = 3.06 + 0, and male C = 0 + 3.06 considering rankings shown to
both users). However, this notion of fairness can be problematic when not all users are the same.
For example, if the first employer is less active or plans to hire less people, female resumes would
receive less interaction.

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:4 Z. Ovaisi et al.

Fig. 2. Fairness criterion is met (a) over all users, (b) at each user, and (c) as much as possible at each k for

each user.

One way to overcome this issue is by aiming at ensuring fairness at the user level and consider
per-user fairness criteria [36, 37]. In the example, per-user item fairness is satisfied, as illustrated

in Figure 2(b) where male C is identical to female C for each user. However, if the employer
is presented with a truncated list of resumes, e.g., k = 3, then resumes below the cutoff get
zero exposure, and the proposed fairness solution does not apply because of the large resulting

discrepancy between male and female C. One could argue that if the truncation cutoff is known
in advance, then it could be taken into consideration while designing the ranking. However,
front-end user interfaces where the recommendations appear can have varying truncation cutoffs,
e.g., by device and application type, which requires the back-end recommendation algorithm to be
versatile and handle multiple possible cutoffs k . To address this problem of varying cutoffs, some
ranking algorithms aim at ranking items for each user such that the fairness criterion is satisfied as
much as possible per ranking position [17, 47]. As shown in Figure 2(c), at k = 3 the discrepancies

between male and female C are very small for the rankings shown to either user (0.95 vs. 1 and 0.65
vs. 0.7).

There are three fundamental questions that we aim at addressing in this work:

— Q1: Can a ranking method allow for item interaction fairness as opposed to item exposure
fairness while maintaining high utility for users?

— Q2: Is such a fair ranking algorithm able to adjust the level of tradeoff between utility and
fairness, thus enabling recommender platform decision makers to freely specify how much
utility vs. fairness they desire based on their needs?

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:5

— Q3: How robust can this fair recommender system be to arbitrary selection bias cutoffs,
while addressing interactions under user position and trust bias?

The perspective of the current article is that by refining the scope of interaction resource and
simultaneously taking into account each user, each ranking index, and the effect of each position
in terms of both observation and perceived relevance, we can achieve an effective exploration of
the fairness-utility landscape. We place a more realistic model of interaction at the core of the
notion of item fairness and offer the following main contributions:

— A per-user item fairness metric that captures position, selection, and trust bias (Section 3).
— A post-processing fair ranking algorithm, Fairness Optimization for Ranking via

Greedy Exploration (FORGE), that improves item fairness while maintaining high user
utility (Section 4.1).

— Theoretical (Sections 4.2) and empirical insight (Section 5.6) for FORGE’s near-optimality at
all selection cutoffs.

— Experimental evidence that incorporating all three types of biases achieves fairer ranking
than the state-of-the-art algorithms that focus on a subset of them (Section 5).

We provide public access to our experimental implementation to enhance the reproducibility of
the reported results.1

2 RELATED WORK

Controlling unfairness in ranking has been extensively studied in past literature [29, 36, 37, 47].
Some studies focus on in-processing algorithms, where fairness is incorporated in the learning
algorithm [37, 48], while others focus on post-processing algorithms where they re-rank the final
ranking produced by the ranking system to remove discrimination [17, 36]. We can categorize
these by the scope of exposure resources.

First, there is work that considers wide exposure resource, namely all users. That is, fairness
criteria are defined based on the exposure that is provided by all rankings for all users. Biswas and
Barman [6] study the problem of fair recommender system and propose a greedy post-processing
algorithm that ranks items in a round-robin fashion such that the fairness criterion is satisfied for
both items and users when ranking top-k items to users. Later, Patro et al. [35] propose a slightly
modified approach for the same goal, improving upon Biswas and Barman [6]. This study, while
addressing the impact of selection bias, neglects to consider the influence of position bias. Wu et al.
[45] tackles the same goal but proposes a fair method that accounts for position bias. Zhu et al.
[49] proposes fair ranking using adversarial learning for top-k recommendation, handling a form
of selection bias. The claimed performance of wide exposure methods is, however, arguable when
there are inactive users, as items shown to them would get lower attention. In contrast, our method
handles such scenarios by aiming at removing discrepancy at each user (in addition to accounting
for all the biases).

Indeed, this is the theme of work that considers a narrower exposure resource where the fair-
ness criterion is defined per user. That is, fairness is based on the exposure provided by the ranking
for each user. These works account for position bias effects. Singh and Joachims [36] introduce a
post-processing framework that maximizes the utility of ranking system subject to fairness con-
straints where fairness of interaction is defined in addition to fairness of exposure, but without
accounting for trust bias. Basu et al. [5] extend [36] and present a framework that is fair to both
users and items. Later, Zehlike and Castillo [48] propose an in-processing algorithm based on List-
Net [8], a well-known ranking algorithm to minimize the inequality of opportunity in ranking,

1https://github.com/edgeslab/FORGE

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

https://github.com/edgeslab/FORGE

20:6 Z. Ovaisi et al.

but focuses only on the first position in ranking. Singh and Joachims [37] propose a novel in-
processing policy-gradient approach that maximizes an objective function defined based on utility
and fairness. Wang and Joachims [43] present a ranking algorithm that enforces user fairness, item
fairness, and diversity. Singh et al. [38] propose a novel definition of fairness that incorporates un-
certainty about items’ merit, and present a fairness framework that maximizes utility subject to
the fairness definition. These methods fail to incorporate the selection bias effect.

Lastly, there is literature that considers a highly limited exposure resource and thus accounts
for selection bias. Zehlike et al. [47] present a post-processing fair top-k ranking algorithm that
guarantees a required representation for the under-represented group. But their method is limited
to binary attributes. Later, Geyik et al. [17] presents an efficient post-processing fair top-k ranking
that meets fairness criteria at each ranking index and allows for multiple attributes. Celis et al.
[9] proposes a theoretical analysis of fair ranking computation that similarly meets fairness re-
quirements at each ranking index. More recently, Naghiaei et al. [30] propose a post-processing
two-sided fairness method that accounts for both user and item fairness, but without considering
position bias (they assume binary exposure, such that all shown items have the same exposure
score). These lines of work do not account for trust bias, as they consider that items at different
positions, once observed, get the attention they deserve. In contrast, we provide an algorithm that
accounts for all three types of biases. It is also worth mentioning the work of Steck [39], where
recommendations are calibrated to that the selection list reflects the various interests of users, as
interpreted from their past interaction history. The goal of that work is not to directly impose
fairness to items, though it may indirectly lead to it. Thus it is not expressly guaranteed to achieve
fairness toward item groups. Note that [39] does not solve a ranking problem, but rather a selection
problem. That said, the analysis of the approach relies on submodular optimization, and in that
respect has some commonality with the theoretical insights that we provide in the present article.

Recent work also considers real-time recommender systems where users enter the system
dynamically [15, 18, 40, 46]. These define and study fairness with the goal of satisfying the
fairness of items over a time window, which is thematically related but outside the scope of the
current article. Lastly, within the literature, there are studies exploring fairness in relation to
users, whereas our work is distinctly concentrated on ensuring fairness towards items [24, 25].

3 PROBLEM SETUP

Consider the problem of fairly ranking items—such as movies, songs, search results, resumes, and
so on.— to deliver to a user u based on a specific user query. Without loss of generality, in the rest
of the article, we call these items documents and denote them byD. A ranking of these documents
is a permutation σ : {1, . . . , |D|} → D that assigns to each position � ∈ {1, . . . , |D|} a distinct
document σ� . For each d ∈ D let rel(d) ∈ R+ be its relevance to user u. The front-end application
may arbitrarily truncate the ranking consideration to only up to position k , we refer to this as
selection cutoff k . Lastly, user u has a function relp that captures their perceived relevance of a
document based on its position. This function has an unobserved trust parameter t , which thus
influences how the ranked and selected documents are interacted with. Our goal is to achieve
fairness of documents for any given useru, even if different users have different relevance vectors,
selection cutoffs, and trust parameters. We formalize this in Section 3.4. In what follows, unless
needed for clarity, we omit specifically referring to useru since they are fixed. Table 1 summarizes
the notation we use in the article.

3.1 Biases

The quality of a ranking is whether or not each document is interacted with / clicked. We model
this by describing the click probability based on each document’s position and relevance, and how

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:7

Table 1. Glossary of Notations

Symbol Description

u user
D set of documents to be ranked for user u
d a document to be ranked
σ a ranking function that assigns to each position a document
� position in a ranking
σ� document positioned at position �
k cutoff (only top k documents are displayed to user)
relp user-document perceived relevance score: P(σ� trusted | trust t)
rel user-document true relevance score
r possible value of relevance score
t possible value of trust parameter
T population of trusts
ϵ+
�

perceived relevance at rank � of an observed relevant document
ϵ−
�
(t) perceived relevance at rank � of an observed non-relevant document

C expected number of clicks for a group of documents

Gi ith document group
α interpolation level for trading off fairness and utility
P relative number of interactions of each document group
Q relative merit of each document group

the user finds documents relevant (trusts them). In recent work (see [3] and [42], for example), it is
customary to assume that a click occurs when a document is both observed and trusted (perceived
to be relevant) and that trust is independent of observation. We formalize this through the model

P(σ� clicked | trust t) = P(σ� observed)P(σ� trusted | trust t). (1)

where P(σ� trusted | trust t) = relp captures the perceived relevance of the user. Here we will
clarify how this model portrays observation bias, selection bias and trust bias.

Position bias. Under this bias, the observation probability is document-position dependent,
where P(σ� observed) = f (�), with the choice f (�) = 1/log(� + 1) (customarily in base-2) com-
monly used. The user’s perceived relevance, however, is independent of document position, and
is simply the same as the true relevance score. Thus P(σ� trusted | trust t) = relp = rel(σ�).

Selection bias. selection bias voids observation probability beyond cutoff k . A statistical model
is not appropriate for this cutoff, because it is arbitrarily set at deployment time (e.g., depending on
front-end application or device) and not reflected in user data. Following the approach of Ovaisi
et al. [34] and Oosterhuis and de Rijke [32], we adopt an adversarial model, by characterizing
performance at each k . Under this bias P(σ� observed) = 1 for all documents that appeared in top
k results, and P(σ� observed) = 0 otherwise. The user’s perceived relevance is simply the same as
the true relevance score. Thus P(σ� trusted | trust t) = relp = rel(σ�).

Trust bias. When dealing only with trust bias, observation probability is position-independent,
which leads P(σ� observed) = 1. However, it effectively alters the perceived relevance of docu-
ments across positions. Thus perceived relevance now depends on both the true relevance and
position, as opposed to position bias where it only depends on the true relevance. We can write
this as P(σ� trusted | trust t) = relp (rel(σ�), �; t). We can understand the function relp (r , �; t) as

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:8 Z. Ovaisi et al.

taking in a specific relevance value r and modifying it per position �, according the the trust pa-
rameter t of the user. We use a semicolon before t , to remind us that this describes a conditional
quantity, that changes with the amount of trust. Our methodology applies for general relp , but
for concreteness, we consider a realistic trust bias empirically determined by [3] and expressed in
simplified form by [42], cf. Equation (11) and Equation (45):

relp (r , �; t) = rϵ+
�
+ (1 − r)ϵ−

�
(t), where ϵ+

�
= 1 − min{�,25}+1

100 and ϵ−
�
(t) = t

min{�,10} . (2)

This simultaneously captures two forms of distortions to the perceived relevance: reduced
trust in relevant documents at larger � and increased undeserved trust in irrelevant documents at
smaller �.

Position, selection, and trust bias. Finally, we incorporate all biases in a single interac-
tion/click model:

P(σ� clicked | trust t) =

{
P(σ� observed)P(σ� trusted | trust t), for � ≤ k

0, otherwise

where P(σ� observed) = 1/log(�+1) and P(σ� trusted | trust t) = relp is derived from Equation (2).

3.2 Fairness

What is a meaningful notion of fairness in this model? Recall that we wish for rankings to give fair

interaction across groups of documents. Denote these groups by Gi ⊂ D, for i = 1, . . . ,n. These
partition the set of documents D. At a high level, fairness is measured by comparing the inter-
action provided by the ranking to a given notion of parity or equity across groups. For example,
demographic parity aims at affecting — provide interaction with — each group equally [7, 19, 36].
Alternatively, one may aim at affecting groups proportionally to their utility to offer treatment
parity [12, 27, 36].

In the present context, any flexible group fairness metric needs three components: a descrip-
tion of the actual interaction each document group receives from the ranking, a description of the
desired parity (the ideal interaction), and a distance to compare them. Most importantly, the way
interaction is measured needs to (a) account for the three highlighted types of bias (position, se-
lection, and trust) and (b) be at the scope of users and not of the entire population, i.e., per-user

fairness. To highlight the importance of (b), one scenario where it is critical is when some users
have wildly different activity levels, resulting in actual interaction with the document groups that
is very different from the one assuming everyone actively interacts.

Interaction. Building on prior work [36], we propose using the relative interaction to describe
differences across groups. This can be represented as a probability measure P over all groups,
which is a vector:

P(σ ,k) :=
(

interaction(G1,σ ,k)
interaction(k)

, . . . , interaction(Gn,σ ,k)
interaction(k)

)
. (3)

Here, the total expected interaction resource up to position k is defined as

interaction(k) :=

k∑
�=1

1
log(�+1)︸�︷︷�︸

P(σ� observed)

relp (rel(σ�), �; t)︸����������������︷︷����������������︸
ET [P(σ� trusted | trust T)]

, (4)

where relp is specifically given by Equation (2) and t = E[T] is the ensemble-averaged trust pa-
rameter. Intuitively, interaction(k) represents the expected number of interactions/clicks received

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:9

by documents if the ranking is cut off at k , paralleling C̄ in the introductory example of Figure 2.
Similarly, the restriction of this for each group Gi is

interaction(Gi ,σ ,k) :=
∑k

�=1 1{σ� ∈ Gi }
relp (rel(σ�), �;t)

log(�+1) .

This measures the total interaction received by group Gi , which represents the expected number

of documents interacted with in that group. Thus, interaction(Gi ,σ ,k)
interaction(k)

indicates the fraction of total

interactions the ranking allocates to Gi .
Note how: (a) the interaction resource depends on all three types of biases, position bias

through the 1
log(�+1) term, selection bias through the cutoff at k , and trust bias through the per-

ceived relevances, and (b) the scope is per-user, owing to the use of individual relevances.

Parity. We represent parity via a base measure Q , which is a probability vector that we aim for
P to resemble. As particular examples, we can parallel the notions used in [36]:

— Demographic parity can be represented by choosing Qi proportionally to the size |Gi | of
group Gi ,

Q = 1
|D |
(|G1 |, . . . , |Gd |) .

— Treatment parity can be represented by choosing Qi proportionally to the the merit∑
d ∈Gi

rel(d) of group Gi :

Q = 1∑
d∈D rel(d)

(∑
d ∈G1

rel(d), . . . ,
∑

d ∈Gn
rel(d)

)
. (5)

Although fairness in this article is illustrated mainly through these two notions, the choice ofQ
allows for flexible modeling. We particularly adhere to treatment parity, as it aligns fairness with
the user’s preferences.

Distance. To compare P in (3) to a choice of Q , we choose a distance dist(P ,Q) between prob-
ability measures, which we assume to be bounded, dist(P ,Q) ≤ 1 without loss of generality. We
consider two distances:

— Jensen-Shannon Distance — This is the main distance used in our algorithm and experimental
results. Let M = 1

2 (P +Q) be the arithmetic midpoint of P and Q , then the Jensen-Shannon
distance is defined as [14]:

distJSD(P ,Q) := JSD(P ‖Q) = 1
2 KL(P ‖M) + 1

2 KL(Q ‖M) .

Recall that KL-Divergence between μ and ν is defined as KL(μ‖ν) =
∑

i μi log2
μi

νi
.

— L1 Distance — This distance lends itself more easily to analysis, and is used for theoretical
insight. It is equivalent to (twice) the total variation distance, and is defined as

distL1 (P ,Q) := ‖P −Q ‖1 =
∑n

i=1 |Pi −Qi |.

Both distances are straightforward to implement and the observed behavior in terms of fairness-
utility tradeoffs is very similar. This can be attributed to the fact that JSD is (up to constant factors)
upper bounded by L1 and lower bounded by L1-squared (cf. Pinsker’s inequality). The L1 distance
is very beneficial to simplifying the theory. But we focus only on JSD for experimental evaluations,
since it more closely relates to other reference fairness notions.

Fairness Metric. We now define the fairness of a ranking at cutoff k as follows:

fairness(σ ,k) := 1 − dist (P(σ ,k),Q) . (6)

This gives us a number in [0, 1], as both distances are in the [0, 1] range. Note that the closer the
relative interaction of each group is to the desired parity—the smaller the distance between P (at
k) and Q—the larger is this fairness metric.

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:10 Z. Ovaisi et al.

We end by mentioning that this notion of fairness is grounded in and extends—notably by si-
multaneously accounting for all three types of biases per-user—prior suggestions in the literature
(cf. the use of clickthrough rate for fairness as in Equation (9) of [36], the use of JSD in [28], and
the use of selection bias with arbitrary cutoffs in [17].)

3.3 Utility

The goal of recommender systems is to maximize the utility of ranking for users by exposing them
to relevant documents. In the present context, this continues to be a key objective, along with
providing the desired fairness toward documents. We adhere to classical measures of utility. For
each d ∈ D let rel(d) ∈ R+ be its relevance. For every cutoff k , the utility of ranking is given by
the discounted cumulative gain of the ranking σ :

DCG(σ ,k) :=
∑k

�=1
2rel(σ�)−1
log(�+1) .

It is customary to normalize DCG by its largest achievable value, to get the normalized dis-
counted cumulative gain:

nDCG(σ ,k) := DCG(σ ,k)
I(k)

, I(k) := maxσ DCG(σ ,k). (7)

If document relevances are accurately predicted, and sorted from most to least relevant, nDCG

reaches its highest value. That is, nDCG(σ ,k) = 1, which translates to the highest user satisfaction
from ranking.

3.4 Fairness-utility Tradeoff

Now that we have defined the fairness and utility objectives, we are ready to define the main goal
of our article, obtaining a ranking that achieves an optimal tradeoff between fairness and utility.
At each cutoff k , there is a multi-objective optimal Pareto frontier which can be characterized in
one of two dual forms: (1) by fixing one of fairness/utility and optimizing the other, or (2) by
interpolating between fairness and utility and optimizing the resulting objective. Most prior work
attempting to achieve such a tradeoff in fair ranking adhere to (1). Here we propose form (2), as it
lends itself to an elegant algorithmic solution.

Optimal tradeoff. Given an interpolation level α ∈ [0, 1], a ranking that achieves an optimal
tradeoff at cutoff k is

σ�,k ∈ arg max
σ
(1 − α) nDCG(σ ,k) + α fairness(σ ,k), (8)

where α = 0 and 1 respectively correspond to ignoring fairness or utility entirely, and 0 < α < 1
achieves a certain desired tradeoff between the two objectives. The optimal algorithm is a brute-
force algorithm that considers all possible permutations of |D| documents, and at each cutoff k ,
chooses a permutation that has the highest desired combination of nDCG(σ ,k) and fairness(σ ,k).
However, the best permutation at cutoff k and cutoff k ′ > k may order documents differently in
the range 1, . . . ,k . Thus, there may not be a single ranking that is optimal at every cutoff k . The
full Pareto optimality frontier is indeed over 2|D| objectives, i.e., the utility and fairness at every
possible cutoff k = 1, . . . , |D|. Yet, the algorithm we present next produces a single ranking. While
we can’t expect it to achieve the tradeoff of σ�,k at every k , the theoretical insight in Section 4.2 as
well as empirical results in Section 5 suggest that one could at least hope to be within a constant
factor of this optimal tradeoff with a single ranking.

4 FORGE: FAIRNESS OPTIMIZATION FOR RANKING VIA GREEDY EXPLORATION

We now propose our fair ranking algorithm that aims at approaching the optimal fairness-utility
tradeoff. It is a post-processing fairness-aware re-ranking method, which we call FORGE.

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:11

ALGORITHM 1: FORGE

Input: D,u, (Gi),Q,α , t;

rel← Run the base-ranker to get predicted relevance scores for user-document pairs;

for i = 1, . . . ,n do

interaction(Gi) = 0;

end

k = 0; σ = 	;

for k = 1, . . . , |D| do

d� = arg maxd ∈D\σ (1 − α) nDCG([σ ,d],k) + α fairness([σ ,d],k);

σ ← [σ ,d�];

for i = 1, . . . ,n do

if d� ∈ Gi then

interaction(Gi)+ =
relp (rel(d�),k ;t)

log2(k+1)
;

break;

end

end

end

σ ← Final fair ranking;

Return σ

4.1 Algorithm

In addition to not producing a single ranking at all cutoffsk , the optimization in (8) is combinatorial
in nature. A brute-force search is not feasible unless we have small values of k and |D|. Instead,
we give a greedy ranking algorithm that iterates over cutoffs k and works as follows: it chooses
only one of the remaining documents which, when appended to the current ranking, maximizes
the interpolated objective. It then updates the interaction of the corresponding group, allowing
fairness and nDCG to be calculated at the next cutoff. The iterations can continue either to the
end of documents |D|, or may be stopped at a specified maximal ranking index. We describe
this formally in pseudocode in Algorithm 1. Note that brackets [,] indicate concatenation. In this
pseudocode, σ is represented as a list, which can be interpreted in this article’s equations as a
function mapping each position to the corresponding document in the list.

The arg max in Algorithm 1 is written in terms of the main tradeoff objective as in (8). But
because the search only affects ranking index k , and cumulative terms 1 through k −1 in nDCG (7)
and fairness (6) only depend on the (unchanging) ranking indices up to k − 1, we can equivalently
write it as

arg maxd ∈D\σ
1−α
I(k)

2rel(d)−1
log2(k+1) + α fairness([σ ,d],k).

By maintaining a non-normalized P , this objective can be computed in O(1) time for every re-
maining document, by updating only one coordinate of P and its normalization. The algorithm
thus runs only in O(|D|2) time.

4.2 Theoretical Insight

The position and trust bias aspects of the FORGE algorithm are straightforwardly optimized. The
main question about its usefulness is whether a single ranking can compete with an optimal rank-
ing at every cutoff k , and thus account for selection bias as well. The goal of this section is to
support the insight that a greedy heuristic as in Algorithm 1 is reasonable for this purpose. We
later also support this empirically in Section 5.6.

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:12 Z. Ovaisi et al.

To focus on selection bias, we simplify the interaction in the fairness notion to take only expo-

sure into account, i.e., we let Pi (σ ,k) ∝
∑k

�=1
1{σ� ∈Gi }
log2(�+1) in Equation (3). What makes our task chal-

lenging is the combinatorial nature of the problem. To alleviate this, we turn the ranking problem
to a choice problem by assuming oracle access to the optimal ranking, once the best k documents
for the task are chosen. The question becomes: how well can greedy choice compete with op-

timal choice at every cutoff k? To simplify, we work with a proxy objective that lends itself to
easier analysis, while retaining key properties of the original objective.

Proxy Objective. Assume documents D are partitioned into two groups of equal size, G and Gc.
Let β > 0 and γ > 0 be two constants, used to abstract both normalizations and tradeoff parameter
α . Define two set-valued functions F+ and F− on subsets A ⊆ D:

F±(A) := maxσ ∈perm(A)

∑ |A |
�=1

[
β 2rel(σ�)−1

log2(�+1) ± γ
(
1{σ� ∈G }
log2(�+1) −

1{σ��G }
log2(�+1)

)]
.

Using these, define also F (A) := min {F+(A), F−(A)}. For the remainder of this section, let the

maximization of F be a proxy to the original tradeoff objective. To justify this choice, let us establish
a qualitative relationship between the two. Lower bounding min max by max min:

F (A) ≥ maxσ ∈perm(A) β
∑ |A |

�=1
2rel(σ�)−1
log2(�+1) − γ

���∑ |A |�=1

(
1{σ� ∈G }
log2(�+1) −

1{σ��G }
log2(�+1)

)��� .
The first term in the bound is the cumulative discounted gain. The second term is our fairness

notion with the L1 distance between P andQ =
(

1
2 ,

1
2

)
, the special case of demographic parity with

equal-sized groups. This is because:��P1 −
1
2

�� + ��P2 −
1
2

�� = ��P1 −
1
2 (P1 + P2)

�� + ��P2 −
1
2 (P1 + P2)

��
= 2

�� 1
2P1 −

1
2P2

�� = |P1 − P2 | .

Note that nDCG and fairness with the chosen P have the same normalization I(k), which varies
with k . However, this affects neither the greedy choice nor the constant-factor guarantee of Theo-
rem 1, which is why we can consider β and γ to be constants throughout. As a result F is an upper
bound on the objective function in this special case, and can be thought of as a proxy objective.

Proxy Algorithm. Assume oracle access to F : this places the onus of the ranking algorithm on
choice rather than permutation, by making the latter ‘free’. Namely, for any given cutoff k , the best
ranking up to position k can be determined by first selecting the best subset A, by maximizing F ,
and then finding the best permutation σ onA. Towards this goal, consider the following procedure:

— Start with A0 = 	

— Iterate over � = 1, . . . ,kmax:

A� = A�−1∪
{
arg maxd ∈D\A�−1

F (A� ∪ {d})
}

This procedure maintains the spirit of Algorithm 1 but idealizes it, namely selecting greedily
but allowing to re-rank after every new choice. Even in this idealized form, because the choice is
performed greedily, we can formally pose the key question: at every cutoff k , how close is F (Ak)

to the true maximal objective maxA: |A |=k F (A)?

Submodularity. Observe that if the objective were to maximize either F+ or F−, then greed would
be sufficient (see proof of Lemma 1.) The same cannot be done with F . However, the construction
of F from F+ and F− confers it key desirable properties, as given by Lemma 1:

Lemma 1. F is submodular, i.e., all A ⊂ B ⊆ D and every d � B, F (A ∪ {d}) − F (A) ≥ F (B ∪
{d}) − F (B). F is also monotone, i.e., for all d ∈ D, F (A ∪ {d}) − F (A) > 0.

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:13

Proof. (Sketch) The key to this property is to rely on the fact that F+ and F− can be optimized by
sorting the elements of A, then using the telescoping properties of the sum to compare the impact
of an addition to the set. In place of a sketch, we illustrate this by proving that F+ is monotone and
submodular. The proof for F is more elaborate but follows the same essential steps. (Of course the
steps trivially extend to F−, but it’s not sufficient to stop there because in general the minimum
of two submodular functions is not itself submodular). Consider two nested choices A ⊂ B. The
optimizing permutation σ for each is obtained by sorting documents d ∈ A or B according to
decreasing

u(d) := β(2rel(d) − 1) + γ (1{d ∈ G} − 1{d � G}) .

Consider next a new document d � B, and write Δ(A) := F+(A ∪ {d}) − F+(A) and Δ(B) := F+(B ∪
{d}) − F+(B). Since documents ranked higher than d do not affect Δ, it suffices to compare the
contributions of all documents at the position of d and lower. Number such documents in A as
(d0 ≡ d),d1, . . . ,dm in their u-sorted order. Say the optimal position of d in A ∪ {d} is j, then that
of d� would be j + �. We then have that:

Δ(A) = u(d)
log(j+1) +

∑m
�=1

(
u(d�)

log(j+�+1) −
u(d�)

log(j+�)

)
.

By using the fact that these documents are sorted, we can telescope this sum to obtain that Δ(A) ≥
0, thus establishing monotonicity. Next, let φ(�) indicate the optimal position of d� in B, φ(0) being
that of d by convention. Since B ⊃ A, we have φ(�) ≥ j + �. By telescoping between successive
φ(�) positions, we get that:

Δ(B) ≤ u(d)
log(φ(0)+1) +

∑m
�=1

(
u(d�)

log(φ(�)+1) −
u(d�)

log(φ(�−1)+1)

)
.

Finally, by telescoping the difference and taking advantage of the decay of the logarithmic dis-
counts, we obtain that Δ(A) − Δ(B) ≥ 0, thus establishing submodularity. This approach extends
to F . �

Intuitively, submodularity means that a new addition is more valuable to a smaller than a larger
set and monotonicity means that every new addition increases the objective.

Near-Optimality of Greed. The submodularity property of this proxy objective means that the
corresponding greedy algorithm is near-optimal.

Theorem 1. At every k = 1, . . . ,kmax, we have: F (Ak) ≥
(
1 − 1

e

)
maxA: |A |=k F (A).

This follows directly from classical submodularity results [31]. See also Theorem 1 in [23] for a
more recent use in computer science. What is remarkable in this setting is that despite the fact that,
generally, entirely different (non-nested) choices may be needed to achieve the optimal solution at
every cutoff k , yet growing (nested) choices are sufficient for a constant-factor approxima-

tion to the optimal solution. As our experiments demonstrate, the same appears to also hold
for rankings. In general, an entirely different ranking is needed to achieve the optimal tradeoff at
each cutoff. But Algorithm 1, which produces a single ranking, performs well across all cutoffs.
Thus, while the proxy objective and procedure presented here do not correspond to this algorithm
exactly, they do validate its overall qualitative behavior.

5 EXPERIMENTS

We now provide experimental results to demonstrate how our methodology navigates the fairness
and utility landscape. We introduce datasets, the base-rankers employed in post-processing
fair rankings, summarize the baselines that we compare against, discuss the significance of our

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:14 Z. Ovaisi et al.

results compared to the baselines, and assess optimality empirically by comparing to brute-force
search.

5.1 Datasets

We perform evaluations using datasets tailored to various use cases, encompassing both personal-
ized and non-personalized datasets. Personalized datasets focus on individual users’ preferences
for tailored recommendations, while non-personalized datasets emphasize general trends and
patterns, making them suitable for ranking tasks. Specifically, we employ MovieLens1M, Movie-
Lens100K, and Epinion as examples of personalized datasets, while the German Credit Dataset
[11] and COMPAS datasets [21] serve as illustrations of non-personalized datasets. Further details
about each dataset are presented below.

MovieLens1M Dataset. This publicly available dataset contains 1, 000, 000 ratings (1–5 stars)
from 6, 000 users on 4, 000 movies collected from the MovieLens website [2, 20]. This data also
includes user demographic features such as age, gender, occupation, and so on, as well as movie
features including movie title, release date, action, and so on. We binarize the interaction such that
it is 1 if the user rated the movie and 0 otherwise. Also, to reduce the sparsity, we drop users and
movies with less than 150 number of interactions.

MovieLens100k Dataset. This dataset is smaller than MovieLens1M dataset that contains
100, 000 ratings (1–5 stars) from 943 users on 1, 682 movies. Similar to the MovieLens1M dataset,
we binarize the interaction such that it is 1 if the user rated the movie and 0 otherwise. Also, to
reduce the sparsity, we drop users and movies with less than 80 number of interactions.

Epinion Dataset. This is a publicly available dataset that contains 664, 824 ratings (1–5 stars)
from approximately 40, 163 users on 139, 738 items collected from the shopping website [1]. We
binarize the interaction such that it is 1 if the user rated the item and 0 otherwise. Also, to reduce
the sparsity, we drop users and items with less than 24 interactions.

German Credit Dataset. We use the German Credit dataset, which is publicly available [11].
This dataset contains 1, 000 applicants with corresponding non-PII features, including age, gender,
job, marital status, and so on. Each applicant is assigned a binary credit rating based on their set
of features by a German credit agency. This data reveals that, on average, women receive a lower
credit score [47]. Motivated by this fact, we use gender as the protected attribute.

COMPAS Dataset. This dataset is also publicly available [21]. It contains 6, 167 criminal defen-
dants with corresponding non-PII features, including age, gender, race, offense date, arrest date,
and so on. Each defendant is assigned a binary two-year recidivism score based on their set of fea-
tures. This data reveals that, on average, African-American defendants were far more likely than
white defendants to be incorrectly judged to be at a higher risk of recidivism. Motivated by this
fact, we use race as the protected attribute.

Table 2 illustrates the datasets used in this article

5.2 Base-rankers

We conduct evaluations using different base-rankers customized for diverse scenarios, covering
both personalized and non-personalized domains. Specifically, we utilize VAECF [26], a base-
ranker designed for personalization and recommender systems. Additionally, we employ FeatNet,
which can serve both personalization and non-personalization purposes based on whether user
features are included as input or not. Below, we provide descriptions for each of the base-rankers
used in our evaluations:

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:15

Table 2. Datasets used in Experimental Analysis

Dataset MovieLens1M MovieLens100K Epinion German Credit COMPAS

Protected attribute popularity popularity popularity gender race

Public/Private public public public public public

Personalized/
Non-personalized

Personalized Personalized Personalized Non-Personalized Non-Personalized

Size
1, 000, 000 ratings

4, 000 movies
6, 000 users

100, 000 ratings
1, 682 movies

943 users

664, 824 ratings
139, 738 items
40, 163 users

1, 000 applicants 6, 167 defendants

VAECF [26]. This base-ranker is specifically designed for personalization and recommender
systems. It extends variational autoencoders to collaborative filtering. It introduces a generative
model with a multinomial likelihood and employs Bayesian inference for parameter estimation.
This model enables us to forecast relevance scores for user-item pairs within the test dataset, which
can subsequently be utilized by post-processing baselines to construct a fair ranking.

FeatNet. This base-ranker employs a neural network model to predict user-item relevance
scores, utilizing their features as inputs, with a focus on optimizing for nDCG. We refer to it as
‘FeatNet’ for convenient reference throughout the article. To ensure a fair assessment alongside
Fair-PG Rank [37], we adopt the same model architecture to the one used in Fair-PG Rank.
However, note that the model used by Fair-PG Rank is designed to predict a hybrid score for
user-item pairs, taking both fairness and nDCG into account. To obtain the FeatNet base ranker,
we deactivate its fairness component (λ = 0) to solely optimize for nDCG. This gives us relevance
scores for user-item pairs without any fairness consideration, which can then be utilized by the
post-processing baselines to achieve a fair ranking. Note that when provided with both user and
item features, this base-ranker can consider individual preferences, resulting in a personalized
ranking algorithm. Without this input, it is unable to generate personalized rankings and can
only produce pure rankings.

5.3 Baselines

Here, we present fair baselines in both in-processing and post-processing domains for fair rank-
ing. In-processing fair ranking baselines can be divided into two categories: those originating
from the recommender system domain and those from the pure ranking domain. The former per-
tains to personalized ranking, while the latter pertains to non-personalized ranking. Conversely,
post-processing fair ranking baselines are generally applicable to both recommender systems and
pure ranking domains. The reason for this adaptability is that post-processing fair rankings do
not directly aim at predicting user-item relevance labels themselves as opposed to in-processing
fair ranking baselines. Post-processing methods focus on the final stage of ranking, where they
utilize the predicted user-item relevance values (obtained either through personalized or non-
personalized approaches using the base-ranker) to re-rank the items and achieve a fairer final
ranking.

Fairness-aware ranking. [17]: This is a post-processing method, and thus is applicable to both
the recommender system and pure ranking domain. We use the exact same learned relevance score
function on test queries. Similarities: This method addresses selection bias, by providing as much
fairness as possible at each cutoffk . The fairness metric can be chosen to represent treatment parity.
Differences: The fairness metric does not address position bias and trust bias, relying merely
on counts (size of groups) to measure exposure differences across groups. This method does not
explicitly explore tradeoffs, and produces only a single feasible ranking, with specific fairness and
utility at each cutoff k .

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:16 Z. Ovaisi et al.

PostProc. [36]: This is also a post-processing method which is applicable to both the recom-
mender system and pure ranking domain. We use the exact same learned relevance score function
on test queries. Similarities: The fairness metric takes into account position bias. It is chosen to
represent treatment parity. We follow the lead of [37] that enables this method to strive to explore
utility-fairness tradeoffs by adjusting the level ζ of linear combination with the fairness metric.
Differences: Fairness is accounted for only at the last position, as it focuses on full ranking. That
is, it relies on exposure resources over the whole spectrum of ranking, meaning that selection bias
is not addressed. This approach also does not account for trust bias.

CPFair. [30]: This is also a post-processing approach that is relevant to both the domain of
recommender systems and the domain of pure ranking. We use the exact same learned relevance
score function on test queries. This method is a two-sided fairness re-ranking method rooted in
optimization principles, which simultaneously incorporate fairness constraints from both the con-
sumer and producer perspectives within a unified objective framework. To have a fair comparison
with our approach, we deactivated its consumer fairness component to focus solely on producer
fairness (fairness toward items). Similarities: The fairness metric takes into account selection bias
where a truncated ranking might be displayed to the user. Differences: The underlying goal of
this method is to rank S items from a pool of D items, where |S | < |D |. Consequently, it relies on
the user interface to display k = |S | items to the user. Due to this reliance, it may encounter chal-
lenges in upholding fairness requirements if fewer items are presented to the user on the front-end.
Additionally, the approach does not consider position bias and trust bias.

Fair-PG Rank. [37]: This is an in-processing method: instead of learning relevances, this ap-
proach learns how to rank by using a parametrized distribution over rankings, conditionally on
the features of the query/user. Learning occurs via empirical risk minimization on the training
data, where the risk, as in this article, is also a linear combination of both the utility of the ranking
and its fairness. While not inherently originating from the realm of recommender systems, it can
still offer personalized prediction if equipped with both user and item features. Similarities: The
fairness metric takes into account position bias. It can also be chosen to represent treatment parity.
By adjusting the level λ of linear combination with this metric, this method also strives to explore
utility-fairness tradeoffs. Differences: Fairness is accounted for only at the last position, as it fo-
cuses on full ranking. That is, it relies on exposure resources over the whole spectrum of ranking,
meaning that selection bias is not addressed. This approach also does not account for trust bias.

DELTR. [48]: This is also an in-processing method, which reduces unfairness at training time. It
extends ListNet [8], a well-known listwise learning-to-rank method, with a fairness objective that
reduces discrimination by focusing on the top position in the ranking. Although not originating
from the recommender system field, it possesses the ability to provide personalized prediction
when user and item features are available. Similarities: The fairness metric takes into account
position bias. By adjusting the level γ of linear combination with this metric, this method also
strives to explore utility-fairness tradeoffs. Differences: It does not consider selection bias and
trust bias effects.

Table 3 provides information about these baselines.

5.4 Conducting Ranking Tasks for each Dataset

In order to rank documents for each ranking task, we need to predict a score for all documents un-
der a query/user, and rank them accordingly. In-processing baselines (Fair-PG Rank and DELTR)

2As opposed to FORGE and Fairness-aware ranking, CPFair does not aim at producing a fair ranking at each cutoff k , but

rather to achieve fairness in ranking at a specific cutoff k

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:17

Table 3. Fair Ranking Algorithms Evaluated in Experimental Analysis

Fairness method FORGE Fairness-aware ranking CPFair PostProc Fair-PG Rank DELTR

In-processing/
Post-processing

post-processing post-processing post-processing post-processing in-processing in-processing

Bias considered
position bias
selection bias

trust bias
selection bias selection bias 2 position bias position bias position bias

Interpolation level
for fairness and utility

α — β ζ λ γ

use training data to learn a fair ranking function. This function predicts a hybrid score that ac-
counts for both fairness and utility, which can be applied to the test set.

Unlike in-processing methods, post-processing fair rankings (FORGE, Fairness-aware ranking,
CPFair, and PostProc) require pre-existing relevance scores. Consequently, a base-ranker is es-
sential to generate these scores. The relevance score can be learned through FeatNet or VAECF,
depending on the specific dataset. We then use the predicted relevance score for ranking the test
queries using FORGE as well as other post-processing baselines.

Below we describe how we conduct ranking tasks for each dataset:

MovieLens1M Dataset. We randomly split each dataset into train and test sets by 4 : 1. We cate-
gorize items into two groups. Following the lead of [30], we select the top 5% of movies according
to the number of interactions they received from the training set as the popular movies, i.e., short-
head movies, and the rest as the unpopular items or long-tail movies for which we aim at imposing
fairness. Finally, for the re-ranking experiment, we aim at providing a fair ranking for the top 50
movies with the highest number of ratings which potentially include movies from both short-head
and long-tail groups. To achieve this, we train the base-ranker VAECF to forecast user-movie rele-
vance scores specifically for these 50 movies within the test dataset. Subsequently, these predicted
relevance scores are utilized for the FORGE algorithm and other post-processing baselines. We
repeat this experiment 5 times and report the average, minimum, and maximum results.

Epinion Dataset. We take a similar approach as with the MovieLens1M dataset, and randomly
split each dataset into train and test sets by 4 : 1. We categorize items into two groups i.e., popu-
lar (short-head) movies, and unpopular (long-tail) movies. We train base ranker VAECF to predict
user-movie relevance labels for the top 30 movies with the highest number of ratings in test data.
Similarly, we later use these predicted relevance scores for FORGE and other post-processing base-
lines. We repeat this experiment 5 times and report the average, minimum, and maximum results.

MovieLens100K Dataset. For this dataset, we apply both VAECF and FeatNet as the base-rankers.
When predicting user-movie relevance score with VAECF, we take a similar approach as with

the MovieLens1M dataset, and randomly split each dataset into train and test sets by 4 : 1. Items are
classified into two distinct groups: popular (short-head) movies, and unpopular (long-tail) movies.
The base ranker VAECF is trained to anticipate user-movie relevance labels for the top 30 movies
with the highest number of ratings within the test data. Analogously, these forecasted relevance
scores are subsequently applied in FORGE and other post-processing baselines. We repeat this
experiment 5 times and report the average, minimum, and maximum results.

When predicting user-movie relevance score with FeatNet, we randomly choose 150 users and
150 movies, and for each user and for each movie, we concatenate user and movie features, and
assign label 1 if the user interacted with the document, and 0 otherwise. This helps FeatNet predict
personalized relevance scores. Finally, for each user, we split the movies into training and testing
sets by 4 : 1, which leads to test data having 30 movies to be ranked for each user. Following
the work of [16], we assign each movie a popularity score based on the number of interactions it

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:18 Z. Ovaisi et al.

received in total and use movie popularity as the protected attribute. We select the bottom 20% of
movies with the lowest number of interactions as unpopular and the rest as the popular movies.
We repeat this experiment 5 times and report the average, minimum, and maximum results.

German Credit Dataset. The dataset lends itself naturally to a binary (credit-worthy or not) clas-
sification task. We follow the lead of [37] to create a synthetic ranking task from this data. We
do this by learning to rank, on random queries generated as follows. Each query consists of 25
random applicants, sampled at a ratio of 4:1 of credit-worthy or not. Training data has 500 such
queries, while test has 100. As previously stated, we consider gender as the protected attribute. We
repeat this experiment 5 times and report average, minimum, and maximum results.

COMPAS Dataset. Similarly to the German Credit dataset, this data lends itself naturally to a
binary (two-year recidivism or not) classification task. We create a synthetic ranking task from
this data analogous to the German Credit dataset, where train and test data have 500 and 100
queries each with 25 randomly chosen defendants respectively. As previously stated, we consider
race as the protected attribute. We repeat this experiment 5 times and report the average, minimum,
and maximum results.

5.5 Evaluation

To highlight the ability of our approach to tradeoff utility with a fairness metric that takes into
account position bias, trust bias, and selection bias, we plot average 1− fairness (fairness violation)
and average nDCG achieved by each method. We report these results when α ∈ [0, 1] for FORGE,
when λ ∈ [0, 100] for Fair-PG Rank, and γ ∈ [0, 106] for DELTR, when β ∈ [0, 0.01] for CPFair, and
when ζ ∈ [0, 0.1] for PostProc. Fairness-aware ranking does not aim for a tradeoff and is plotted
as a single point, i.e., a single pair (nDCG, 1 − fairness). Similarly to [42], we set the average trust
parameter t = 0.65.Q is chosen to address treatment parity, as defined in Equation (5). We segment
our evaluation into two sections: one where we employ FeatNet as the base-ranker, and the other
where we use VAECF as our base-ranker.

When FeatNet is used as the base ranker, Figures 3, 4, and 5 illustrate the results on the German
Credit dataset, COMPAS dataset, and MovieLense100K dataset respectively at the intermediate
cutoff (k < |D|) and maximal cutoff (k = |D|).

When VAECF is used as the base ranker, Figures 6, 7, and 8 illustrate the results on the Movie-
Lens100K dataset, Epinion dataset, and MovieLense1M dataset respectively.

We now elaborate on how each type of bias may promote some amount of unfairness, and on
why fair algorithms that do not take into account each of these biases have undesirable perfor-
mance.

5.5.1 When FeatNet is the Base-ranker. Here, we evaluate fair baselines when we choose Feat-
Net as our base-ranker.

Impact of position bias and trust bias. Fairness-aware ranking accounts for selection bias but
fails to account for position bias and trust bias. Thus, to highlight the effect of these two biases, we
compare the performance of our approach with Fairness-aware ranking for all datasets. Figures 3, 4,
and 5 show that FORGE provides an effective tradeoff between utility and fairness. In addition, a
good performance at both intermediate and maximal cutoffs is achieved for both our algorithm and
Fairness-aware ranking. Thus if the front-end application shows a truncated list of documents to a
user, we can expect a strong fairness vs. utility guarantee. In contrast, since Fairness-aware ranking
does not take into account position bias and trust bias, our approach dominates it (outperforms it
in both nDCG and 1−fairness) both at intermediate and maximal cutoff k within a certain range of
α . More specifically, FORGE outperforms Fairness-aware ranking in both nDCG and 1 − fairness

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:19

Fig. 3. German credit data with FeatNet as base-ranker— average nDCG vs. average 1− fairness at interme-

diate and maximal cutoff k on test data. Variance is shown in gray.

Fig. 4. COMPAS data with FeatNet as base-ranker — average nDCG vs. average 1− fairness at intermediate

and maximal cutoff k on test data. Variance is shown in gray.

Fig. 5. MovieLens100K data with FeatNet as base-ranker— average nDCG vs. average 1 − fairness at inter-

mediate and maximal cutoff k on test data. Variance is shown in gray.

for German Credit dataset when α ∈ [0.5, 0.9] at k = 5 and when α ∈ [0.1, 0.9] at k = 25, for
the COMPAS dataset when α ∈ [0.1, 0.3] at k = 5 and when α ∈ [0.3, 0.9] at k = 25, and for
the MovieLense dataset when α ∈ [0.2, 0.9] at k = 5 and when α ∈ [0.2, 0.9] at k = 30. Also,
Fairness-aware ranking is not designed to achieve a tradeoff between utility and fairness, and

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:20 Z. Ovaisi et al.

Table 4. Fairest Results Targeting a Specified Desirable Fairness (Fairness Violation < 0.01), at

Intermediate Cutoff k when FeatNet is the Base-ranker

Method

Dataset German Credit

nDCG fairness violation

COMPAS

nDCG fairness violation

MovieLens100K

nDCG fairness violation

FORGE 0.8950 0.00553 0.611 0.0087 0.6331 0.00758

Fair-PG RANK 0.826 0.0378 0.527 0.0427 0.48939 0.04097

DELTR 0.8718 0.0541 0.645 0.0741 0.6411 0.04602

Fairnes-Aware Ranking 0.8645 0.0185 0.624 0.038 0.630 0.0201

Only FORGE achieves this (in blue), while its nDCG (in red) remains comparable to all the baselines.

cannot, as FORGE does, significantly improve fairness for only a small reduction in utility. Thus, if
highly-ranked applicants are over-trusted, this baseline would not only be less fair across groups
but would also not achieve the highest utility possible, for the amount of fairness it provides.

Impact of selection and trust bias. Fairness-PG Rank and DELTR account for position bias
but do not account for selection bias and trust bias. Thus to highlight the effect of selection bias
and trust bias, we compare the performance of our approach with these two algorithms for all
datasets. We chose a fairness metric for these approaches to closely match the choice of treatment
parity in FORGE.

For all datasets (Figures 3, 4, and 5) and for both intermediate and maximal cutoff k , FORGE
achieves a good tradeoff between utility and fairness, and outperforms Fair-PG Rank in both nDCG

and 1 − fairness. In other words, for a minimal change in nDCG, FORGE improves the fairness
noticeably. Also, although Fair-PG Rank falls behind FORGE in both nDCG and 1 − fairness for
both intermediate and maximal cutoff k , the worse performance of Fair-PG Rank over FORGE is
more pronounced at the intermediate cutoff. This is because, at the intermediate cutoff (k = 5),
we introduce selection bias, while Fair-PG Rank ignores selection bias, and assumes all ranking
indices are shown by the user’s interface. Thus it relies on the whole ranking spectrum to achieve
fairness across all documents. In contrast, we aim at accounting for the fact that documents below
a certain cutoff may (arbitrarily) not be shown to the user. We believe that the reason Fair-PG
Rank still lags behind FORGE at maximal cutoff k , where no selection bias exists, is that it does
not account for the effect of trust bias.

To compare FORGE with DELTR, DELTR fails to achieve a reasonable tradeoff between utility
and fairness. While it illustrates a more reasonable tradeoff for the COMPAS dataset, it shows an
unreasonable counter-trade-off behavior for other datasets. This counter-trade-off behavior was
also observed in Figure 3(b) in [37]. DELTR also lags behind FORGE significantly in the fairness it
achieves. In other words, it fails to improve fairness noticeably. Also, although DELTR falls behind
FORGE for both intermediate and maximal cutoffk , the performance gap reduces at maximal cutoff,
illustrating once again that it is not sufficient to optimize over the full range to guarantee good
performance when the ranking is cut off due to selection bias.

Next, to evaluate how fair each baseline is, we report the minimum fairness violation (1 −
fairness) and its corresponding nDCG at both intermediate and maximal cutoff k for each algo-
rithm on each dataset. This aims at capturing the practical use of this algorithm when it is required
to guarantee fairness, up to a threshold. Table 4 and Table 5 show the results for this evaluation at
intermediate and maximal cutoff k respectively. In blue, we highlight the lowest fairness violation
achieved by these methods. In red, we highlight the nDCG values achieved when fairness violation
is below a given threshold, which we set to fairness violation < 0.01 for intermediate cutoff k and
fairness violation < 0.001 for maximal cutoff k . FORGE outperforms all baseline methods in terms
of fairest results while it maintains its high nDCG for the given fairness violation threshold.

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:21

Table 5. Fairest Results Targeting a Specified Desirable Fairness (Fairness Violation < 0.001), at Maximal

Cutoff k when FeatNet is the Base-ranker

Method

Dataset German Credit

nDCG fairness violation

COMPAS

nDCG fairness violation

MovieLens100K

nDCG fairness violation

FORGE 0.9396 0.00048 0.821 0.0010 0.8113 0.00039

Fair-PG RANK 0.83818 0.00068 0.758 0.0024 0.76917 0.00162

DELTR 0.93959 0.00371 0.8334 0.0073 0.81545 0.00397

Fairnes-Aware Ranking 0.9325 0.0025 0.814 0.0025 0.8055 0.0018

FORGE achieves this (in blue) every time, and its nDCG (in red) remains comparable to all the baselines. The only

baseline and dataset pair where the fairness target is achieved is Fair-PG RANK on German Credit, but nDCG is then

markedly lower.

Fig. 6. MovieLens100K data with VAECF as base-ranker— average nDCG vs. average 1 − fairness at k = 5,

and k = 10 on test data. Variance is shown in gray.

5.5.2 When VAECF is the Base-ranker. Here, we evaluate fair baselines when we choose VAECF
as our base-ranker. The primary objective here is to exclusively compare FORGE as a post-
processing baseline with other post-processing baselines, ensuring a direct and fair comparison
specific to this category of fair methods. Additionally, since post-processing fair ranking baselines
are generally relevant to the personalization and recommender systems domain, this section ex-
clusively addresses the realm of personalization.

Impact of position bias and trust bias. Fairness-aware ranking and CPFair address selection
bias, yet overlook position bias and trust bias. To emphasize the impact of these two biases, we
conduct a performance comparison between FORGE and these two baselines across the Movie-
Lens1M, MovieLens100K, and Epinion datasets, each requiring sorting of 50, 30, and 30 movies
per user, respectively.

Note that, CPFair is designed to rank S items out ofD, with unfairness quantified as the disparity
in the number of items from each group among the top S items. Similar to [30], we choose S = 10.
While CPFair considers selection bias, its assumption of predefined truncation criteria can lead to
limitations: If truncation on the user end occurs at a lower cutoff (k ≤ S), it may not effectively
mitigate selection bias. Thus, we present results at intermediate cutoffs of k = 5 and k = 10. We
omit evaluation at maximal cutoffs (k = 30 and k = 50) as CPFair’s objective does not extend to
sorting all D items.

Figures 6, 7, and 8 show that FORGE provides an effective tradeoff between utility and fair-
ness. In addition, a good performance at both k = 5 and k = 10 cutoffs is achieved for both our

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:22 Z. Ovaisi et al.

Fig. 7. Epinion data with VAECF as base-ranker— average nDCG vs. average 1− fairness at k = 5, and k = 10

on test data. Variance is shown in gray.

Fig. 8. MovieLens1M data with VAECF as base-ranker— average nDCG vs. average 1− fairness at k = 5, and

k = 10 on test data. Variance is shown in gray.

algorithm and Fairness-aware ranking. Thus if the front-end application shows a truncated list
of documents to a user, we can expect a strong fairness vs. utility guarantee. In contrast, since
Fairness-aware ranking does not take into account position bias and trust bias, our approach can
dominate it in nDCG and 1− fairness within a certain range of α in most cases. Specifically, across
the MovieLens100K dataset, FORGE exhibits superior performance to Fairness-aware ranking in
both nDCG and 1 − fairness metrics when α falls within the range of [0.4, 1] at k = 5, and within
[0.6, 0.8] at k = 10. Within the MovieLens1M dataset, FORGE mainly demonstrates a comparable
nDCG score with Fairness-aware ranking, while it surpasses it in terms of 1 − fairness when α
lies within [0.6, 0.8] at both k = 5 and k = 10. In the context of the Epinion dataset, when k = 5,
FORGE and Fairness-aware ranking yield similar nDCG and 1 − fairness values at α = 0.8, with
FORGE outperforming Fairness-aware ranking in 1 − fairness at the expense of a minor reduc-
tion in nDCG. At k = 10, FORGE exhibits a moderate superiority over Fairness-aware ranking
solely in the 1 − fairness metric, albeit with a moderate reduction in the nDCG metric. In general,
Fairness-aware ranking showcases a satisfactory performance, yet it is surpassed by FORGE in
most scenarios. Nevertheless, it is not designed to achieve a tradeoff between utility and fairness,
and cannot, as FORGE does, allow us to adjust the level of desired nDCG and fairness.

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:23

Table 6. Fairest Results Targeting a Specified Desirable Fairness (Fairness Violation < 0.02), at

Intermediate Cutoff k = 5 for Post-processing Fair Methods when VAECF is the Base-ranker

Method

Dataset MovieLens100K

nDCG fairness violation

Epinion

nDCG fairness violation

MovieLens1M

nDCG fairness violation

FORGE 0.1680 0.0139 0.2170 0.0199 0.1668 0.0134

CPFair 0.1652 0.1181 0.2060 0.1543 0.1679 0.1060

PostProc 0.1809 0.1367 0.2118 0.1606 0.1736 0.1060

Fairnes-Aware Ranking 0.1673 0.0397 0.2211 0.0364 0.1689 0.0299

Only FORGE achieves this (in blue), while its nDCG (in red) remains comparable to all the baselines.

Table 7. Fairest Results Targeting a Specified Desirable Fairness (Fairness Violation < 0.02), at

Intermediate Cutoff k = 10 for Post-processing Fair Methods when VAECF is the Base-ranker

Method

Dataset MovieLens100K

nDCG fairness violation

Epinion

nDCG fairness violation

MovieLens1M

nDCG fairness violation

FORGE 0.2485 0.0134 0.2645 0.0162 0.1878 0.0129

CPFair 0.2372 0.0701 0.2781 0.0915 0.1896 0.0734

PostProc 0.2581 0.0964 0.2892 0.1375 0.1939 0.0763

Fairnes-Aware Ranking 0.2501 0.0236 0.2943 0.0243 0.1938 0.0228

Only FORGE achieves this (in blue), while its nDCG (in red) remains comparable to all the baselines.

When it comes to CPFair, FORGE outperforms CPFair in both nDCG and 1 − fairness. In other
words, for a minimal change in nDCG, FORGE improves the fairness noticeably, a result that
CPFair fails to replicate. This is because CPFair does not account for position and trust bias.

Impact of selection and trust bias. PostProc accounts for position bias but does not account
for selection bias and trust bias. Thus to highlight the effect of selection bias and trust bias, we
compare the performance FORGE with it for MovieLens100K, Epinion, and MovieLens1M datasets.
PostProc concentrates on optimizing a fairness metric that, while excluding trust bias, closely
corresponds to FORGE’s emphasis on treatment parity.

Figures 6, 7, and 8 illustrate that unlike FORGE which reduces disparity with increasing α , Post-
Proc does not produce a better ranking in terms of 1− fairness when ζ is increased (in subsection
5.5.4 we will show that PostProc produces a ranking that becomes even worse in terms of its
fairness metric as ζ is increased). While it demonstrates a slightly higher nDCG, its significant
deficiency in fairness emphasizes FORGE’s superiority over it. This poor performance can be at-
tributed to the neglect of selection and trust bias.

Next, to evaluate how fair each baseline is, we report the minimum fairness violation (1 −
fairness) alongside its corresponding nDCG atk = 5 andk = 10 for post-processing fair algorithms
across the MovieLens100K, Epinion, and MovieLens1M datasets. This evaluation aims at reflecting
the practical utility of the algorithm, demonstrating its ability to ensure fairness within a specified
threshold. Table 6 and Table 7 show the results for this evaluation at cutoff k = 5 and k = 10
respectively. In blue, we highlight the lowest fairness violation achieved by these methods. In red,
we highlight the nDCG values achieved when the fairness violation is below a given threshold,
which we set to fairness violation < 0.02. Likewise, FORGE outperforms all baseline methods in
terms of fairest results while it maintains its high nDCG for the given fairness violation threshold.

5.5.3 Decomposing Bias Effects in FORGE (Isolating and Combining Variations). Thus far, our
evaluations of FORGE’s performance have demonstrated the impact of considering all three biases
simultaneously. In this section, we provide an illustration of how FORGE would have performed in
terms of fairness if it had not accounted for the effect of each bias when re-ranking. This analysis

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:24 Z. Ovaisi et al.

Fig. 9. MovieLens1M data with VAECF as base-ranker— performance of FORGE variations in 1 − fairness

with comparable nDCG at k = 10.

aims at revealing the effects of ignoring each bias when providing a fair ranking, and how it would
have influenced FORGE’s overall performance.

As FORGE is a greedy-based algorithm, it inherently incorporates considerations for selection
bias issues. Consequently, we cannot prevent it from doing so. Hence, we make modifications
to the FORGE algorithm to account for different scenarios: (i) accounting for only trust bias and
selection bias while ignoring position bias, which translates to P(σ� observed) = 1 for top-k
items, (ii) accounting for only position bias and selection bias while ignoring trust bias, which
translates to P(σ� trusted | trust t) = rel(σ�) for top-k items, and (iii) accounting for only the
selection bias and ignoring position and trust bias, which translates to P(σ� observed) = 1 and
P(σ� trusted | trust t) = rel(σ�). We then compare each of these cases individually against the
scenario where FORGE accounts for all three biases simultaneously, including position, trust,
and selection bias. In order to demonstrate the impact of disregarding each bias on fairness, we
identify a specific value for α that yields comparable (or nearly comparable) nDCG across all the
cases. Subsequently, we report the corresponding fairness metrics obtained for the same nDCG in
each instance. Figure 9 visually presents the described FORGE variations using the MovieLens1M
dataset at k = 10. As shown, disregarding the position bias effect raises unfairness by 19%, while
ignoring the trust bias effect results in a 23% increase in unfairness. Furthermore, the omission of
both position bias and trust bias effects leads to a notable 42% rise in unfairness.

5.5.4 Exploring an Alternative Fairness Metric in Evaluation. So far, we evaluated all fair base-
lines with the fairness metric that we optimize the FORGE with (Equation (6)), which other base-
lines do not optimize for. While it is wise to optimize the ranking for the same metric as the one
used in the evaluation, we illustrate the performance of our algorithm FORGE under other circum-
stances. Specifically, we evaluate FORGE and other fairness baselines on a fairness metric used by
Fair-PGRANK [37] and PostProc [36]. This is a disparate treatment (DT) constraint that enforces
the exposure of the two groups to be proportional to their average utility:

DT :=
��� Exposur e(G0,σ ,k)

U til ity(G0 |u)
−

Exposur e(G1,σ ,k)
U til ity(G1 |u)

��� . (9)

where Exposure(Gi ,σ ,k) :=
∑k

�=1 1{σ� ∈ Gi }
1

log(�+1) , and Utility(Gi |u) =
1
|Gi |

∑
d ∈Gi

rel(d)

Figure 10 illustrates the performance of fair methods on MovieLens100K at both k = 5 and
k = 10. Surprisingly, PostProc becomes even less fair as ζ is increased though it optimizes for DT,

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:25

Fig. 10. MovieLens100K data with VAECF as base-ranker— average nDCG vs. average disparate treatment

(DT) at k = 5, and k = 10 on test data. Variance is shown in gray.

Fig. 11. FORGE vs. optimal brute-force algorithm.

the metric that it is evaluated with. This unexpected behavior corroborates what has already been
reported in the literature, e.g., in Figure 3 of [37]. Similarly, CPFair illustrates a poor performance
when evaluated with this fairness metric. Conversely, both FORGE and Fairness-aware ranking
excel in performance, despite being evaluated with a metric different from their respective opti-
mization objectives. This highlights the remarkable resilience of FORGE’s good performance even
when evaluated using a distinct fairness metric.

5.6 Comparison with Optimal Brute-Force Search

Figure 11 illustrates the performance of FORGE versus the optimal brute-force algorithm for the
German Credit dataset at cutoffs k = 2, . . . , 5 and for α = 0, 0.5, 1, when |D| = 10. Note that a
brute-force search over all permutations is only tractable with such modest choices ofk and |D|. As
expected, the greedy algorithm is optimal forα = 0, since it results in sorting documents in order of
decreasing relevance. More interestingly, when α > 0, the algorithm still maintains an acceptable
margin from the optimal ranking in terms of the combined objective (1− α) · nDCG+ α · fairness.
This is true despite the optimal ranking at different k’s being different as explained in Section 4.1.
These results experimentally illustrate the insights of Section 4.2.

5.7 Main Takeaways from Experimental Results

— Comparing FORGE with in-processing baselines, FORGE offers a more favorable tradeoff
in terms of both nDCG and fairness, compared to Fair-PG Rank and DELTR. Furthermore,

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

20:26 Z. Ovaisi et al.

FORGE exhibits exceptional fairness performance in comparison to PostProc. This difference
stems from the fact that Fair-PG Rank, DELTR, and PostProc do not address selection bias
or trust bias. The performance gap between FORGE and Fair-PG Rank, as well as DELTR,
narrows at maximal cutoffs due to the absence of selection bias effects. The remaining per-
formance gap at maximal cutoffs can be attributed to the unaddressed trust bias effect in
DELTR and Fair-PG Rank.

— Comparing FORGE with in-processing baselines, FORGE outperforms Fairness-aware rank-
ing in nDCG and fairness across most scenarios, and it outperforms CPFair in all cases due
to Fairness-aware ranking and CPFair not addressing position bias or trust bias.

— FORGE provides the overall highest amount of fairness compared to all baselines while re-
taining high nDCG. We can quantify this by being stringent in our fairness requirement. We
then see that FORGE is often the only method that meets these requirements. Furthermore,
its nDCG is always comparable to the fairest of the baselines, which themselves do not meet
the fairness requirement. (Tables 4 and 5).

— FORGE performance is experimentally verified to be near optimal, by comparing to the brute-
force exhaustive search algorithm.

6 CONCLUSION

In this article, we considered the problem of fair ranking by introducing a fairness metric that
incorporates position and trust bias, and proposed a greedy ranking algorithm (FORGE) that aims
for a fairness-utility tradeoff when the ranking is cut off arbitrarily, thus addressing selection bias.
We gave theoretical insight on why a greedy algorithm could provide a single ranking that com-
petes with the optimal ranking despite the latter being possibly different at different cutoffs. We
demonstrated our approach on six datasets, highlighting the effectiveness of FORGE in contrast
to state-of-the-art baselines that either fail to account for some of these biases. This work paves
the way for exploring the interplay between trust behavior and fairness, as well as developing
algorithms with robust fairness-utility tradeoffs.

On the applied side, measurement and validation of trust behavior by users is crucial to achieve
the true potential of this work. This can parallel and extend some of the validation methodologies
for position bias. On the theoretical front, direct guarantees for greedy ranking would be most wel-
come, by shedding light on how one can efficiently approach the high-dimensional Pareto frontier
across all cutoffs.

Some of the basic aspects of this methodology may be readily extended. For example, to adapt
to non-disjoint groups, a few different approaches may be taken. A principled but inefficient
approach is to work with the partition that refines the groups. These would be disjoint, and though
the dimensionality increases, the exposure distributions remain well-defined. A less principled
but more efficient possibility is to normalize the exposures over the overlapping groups, and
compare them the same way. The disadvantage is that groups with areas of large overlap will be
disproportionately represented. Lastly, if groups can be embedded in a meaningful way (e.g., as
in topic models), then exposure distribution over the embedding space can be used instead.

While the focus is on enhancing fairness in ranked items, altering the fairness metric (e.g.,
favoring privileged groups with Q) could lead to unintended adverse effects. This fundamentally
alters the message of the article and motivates the need to audit ranking systems for such
malicious manipulation. In the interim, imposing benevolent fairness in post-processing could
combat existing biases, malicious or otherwise.

REFERENCES

[1] Epinion dataset. Retrieved 3 February 2023 from https://www.shopping.com/. (n.d.).

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

https://www.shopping.com/

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias 20:27

[2] MovieLens dataset. Retrieved 3 February 2023 from https://movielens.org/. (n.d.).

[3] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork. 2019. Addressing trust bias for

unbiased learning-to-rank. In Proceedings of the Web Conference.

[4] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbiased learning to rank with unbiased

propensity estimation. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in

Information Retrieval (2018).

[5] Kinjal Basu, Cyrus DiCiccio, Heloise Logan, and Noureddine El Karoui. 2020. A framework for fairness in two-sided

marketplaces. arXiv:2006.12756. Retrieved from https://arxiv.org/abs/2006.12756

[6] Arpita Biswas and Siddharth Barman. 2018. Fair division under cardinality constraints. In Proceedings of the Interna-

tional Joint Conferences on Artificial Intelligence.

[7] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. 2009. Building classifiers with independency constraints. In

Proceedings of the 2009 IEEE International Conference on Data Mining Workshops.

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to rank: From pairwise approach to

listwise approach. In Proceedings of the 24th International Conference on Machine Learning.

[9] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. 2018. Ranking with fairness constraints. International Collo-

quium on Automata, Languages and Programming (2018).

[10] Allison J. B. Chaney, Brandon M. Stewart, and Barbara E. Engelhardt. 2018. How algorithmic confounding in rec-

ommendation systems increases homogeneity and decreases utility. In Proceedings of the 12th ACM Conference on

Recommender Systems.

[11] Dua Dheeru and Efi Karra Taniskidou. 2017. UCI machine learning repository. 12 (2017). Retrieved 3 February 2023

from http://archive.ics.uci.edu/ml

[12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness through awareness.

In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.

[13] Francesco Fabbri, Maria Luisa Croci, Francesco Bonchi, and Carlos Castillo. 2022. Exposure inequality in people rec-

ommender systems: the long-term effects. In Proceedings of the 12th ACM conference on year=Proceedings of the Inter-

national AAAI Conference on Web and Social Media.

[14] Bent Fuglede and Flemming Topsoe. 2004. Jensen-Shannon divergence and Hilbert space embedding. In Proceedings

of the 2004 International Symposium on Information Theory.

[15] Y. Ge, S. Liu, R. Gao, Y. Xian, Y. Li, X. Zhao, C. Pei, F. Sun, J. Ge, W. Ou, and Y. Zhang. 2021. Towards long-term fairness

in recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 445–453.

[16] Y. Ge, X. Zhao, L. Yu, S. Paul, D. Hu, C.-C. Hsieh, and Y. Zhang. 2022. Toward pareto efficient fairness-utility trade-off

in recommendation through reinforcement learning. In Proceedings of the Fifteenth ACM International Conference on

Web Search and Data Mining. 316–324.

[17] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-aware ranking in search & recommen-

dation systems with application to LinkedIn talent search. In Proceedings of the 25th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining.

[18] Ananya Gupta, Eric Johnson, Justin Payan, Aditya Kumar Roy, Ari Kobren, Swetasudha Panda, Jean-Baptiste Tristan,

and Michael Wick. 2021. Online post-processing in rankings for fair utility maximization. In Proceedings of the 14th

ACM International Conference on Web Search and Data Mining.

[19] Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of opportunity in supervised learning. In Proceedings of

the 30th International Conference on Neural Information Processing Systems.

[20] F. Maxwell Harper and Joseph A. Konstan. 2015. The movielens datasets: History and context. ACM Trans (2015).

[21] Lauren Kirchner Jeff Larson, Surya Mattu and Julia Angwin. 2016. How we analyzed the compas recidivism algorithm.

In ProPublica.

[22] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased learning-to-rank with biased feedback.

In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.

[23] Andreas Krause and Carlos Guestrin. 2007. Near-optimal observation selection using submodular functions. In Pro-

ceedings of the AAAI. . 1650–1654.

[24] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2021. User-oriented fairness in recommen-

dation. In Proceedings of the Web Conference 2021.

[25] Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2021. Towards personalized fairness

based on causal notion. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development

in Information Retrieval.

[26] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational autoencoders for collabo-

rative filtering. In Proceedings of the 2018 World Wide Web Conference.

[27] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2019. A survey on bias and

fairness in machine learning. ACM Computing Surveys (2019).

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

https://movielens.org/
https://arxiv.org/abs/2006.12756
http://archive.ics.uci.edu/ml

20:28 Z. Ovaisi et al.

[28] Natwar Modani, Deepali Jain, Ujjawal Soni, Gaurav Kumar Gupta, and Palak Agarwal. 2017. Fairness aware recom-

mendations on Behance. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining.

[29] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. 2020. Controlling fairness and bias in dynamic

learning-to-rank. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval.

[30] Mohammadmehdi Naghiaei, Hossein Rahmani, and Yashar Deldjoo. 2022. CPFair: Personalized consumer and pro-

ducer fairness re-ranking for recommender systems. In Proceedings of the International ACM SIGIR Conference on

Research & Development in Information Retrieval.

[31] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. 1978. An analysis of approximations for maximizing

submodular set functionsI. Mathematical programming (1978).

[32] Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-aware unbiased learning to rank for top-k rankings. In Proceed-

ings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.

[33] Harrie Oosterhuis and Maarten de Rijke. 2021. Unifying online and counterfactual learning to rank: A novel counter-

factual estimator that effectively utilizes online interventions. In Proceedings of the 14th ACM International Conference

on Web Search and Data Mining.

[34] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva. 2020. Correcting for selection bias

in learning-to-rank systems. In Proceedings of the 29th International Conference on World Wide Web.

[35] Gourab K. Patro, Arpita Biswas, Niloy Ganguly, Krishna P. Gummadi, and Abhijnan Chakraborty. 2020. FairRec: Two-

sided fairness for personalized recommendations in two-sided platforms. In Proceedings of the Web Conference 2020.

[36] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining.

[37] Ashudeep Singh and Thorsten Joachims. 2019. Policy learning for fairness in ranking. In Proceedings of the Conference

on Neural Information Processing Systems.

[38] Ashudeep Singh, David Kempe, and Thorsten Joachims. 2021. Fairness in ranking under uncertainty. Advances in

Neural Information Processing Systems (2021).

[39] Harald Steck. 2018. Calibrated recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems.

[40] Tom Sühr, Asia J. Biega, Meike Zehlike, Krishna P. Gummadi, and Abhijnan Chakraborty. 2019. Two-sided fairness

for repeated matchings in two-sided markets: A case study of a ride-hailing platform. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining.

[41] Ali Vardasbi, Maarten de Rijke, and Ilya Markov. 2021. Mixture-based correction for position and trust bias in coun-

terfactual learning to rank. In Proceedings of the 30th ACM International Conference on Information & Knowledge Man-

agement.

[42] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. 2020. When inverse propensity scoring does not work: Affine

corrections for unbiased learning to rank. In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management.

[43] Lequn Wang and Thorsten Joachims. 2021. User fairness, item fairness, and diversity for rankings in two-sided mar-

kets. In Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval. 23–41.

[44] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork. 2018. Position bias estimation

for unbiased learning to rank in personal search. In Proceedings of the 11th ACM International Conference on Web Search

and Data Mining.

[45] Yao Wu, Jian Cao, Guandong Xu, and Yudong Tan. 2021. TFROM: A two-sided fairness-aware recommendation model

for both customers and providers. In Proceedings of the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval.

[46] Tao Yang and Qingyao Ai. 2021. Maximizing marginal fairness for dynamic learning to rank. In Proceedings of the Web

Conference 2021.

[47] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and Ricardo Baeza-Yates. 2017.

Fa* ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management.

[48] Meike Zehlike and Carlos Castillo. 2020. Reducing disparate exposure in ranking: A learning to rank approach. In

Proceedings of The Web Conference 2020.

[49] Ziwei Zhu, Jianling Wang, and James Caverlee. 2021. Fairness-aware personalized ranking recommendation via

adversarial learning. arXiv:2103.07849. Retrieved from https://arxiv.org/abs/2103.07849

Received 7 March 2023; revised 22 November 2023; accepted 28 January 2024

ACM Trans. Recomm. Syst., Vol. 3, No. 2, Article 20. Publication date: November 2024.

https://arxiv.org/abs/2103.07849

