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ABSTRACT

Ground Penetrating Radar (GPR) offers in-depth subterranean insights, yet sub-
surface anomaly detection in GPR data remains challenging due to limited train-
ing data, typically confined to some normal data samples free from any subsurface
structures or anomalies, and the variability of subsurface conditions. In response,
this paper introduces practical and accurate subsurface anomaly detection within
the Cubic Decay Reservoir Network (CuDeRes) model space. Our approach em-
ploys commonly available normal GPR data, segmented into blocks. Each data
block is independently fitted using the introduced CuDeRes, which incorporates
three reservoirs with spatial decay to adequately capture the data-inherent multi-
directional dynamics, resulting in a compact fitted readout model. Representing
each data block with the fitted model, together with the distance measurement
between models, the original GPR data blocks are mapped into the CuDeRes
model space, and the fitted models are collected into a “Model Depot”. For subse-
quent anomaly detection in newly collected GPR data, the same segmentation and
CuDeRes fitting approaches are applied, where the data blocks are represented
by fitted models for comparative assessment against the model depot. Anomalies
are detected through model dissimilarities, and subsequently clustered within the
CuDeRes model space, allowing us to accurately identify the data blocks with
potential subsurface anomalies and ascertain their anomaly types. Experiments
on real-world GPR data demonstrate the practical effectiveness of our approach,
notably using only limited normal data.

1 INTRODUCTION

Ground Penetrating Radar (GPR), employing Electromagnetic (EM) waves, serves as a vital tool for
detecting subsurface structures or anomalies beneath urban roadways (Chen & Cohn, 2011). This
technology operates by transmitting high-frequency waves and analyzing the signals reflected back,
which reveal the diverse properties and compositions under the surface (Zhou et al., 2018). The
integration of multi-channel technology in GPR systems facilitates the simultaneous collection of
EM waves across multiple antennas, enabling the generation of 3-dimensional GPR (3D GPR) data1,
essential for assessing subsurface conditions (Goodman et al., 2013).

Detecting underground anomalies in GPR data typically involves segmenting data along the detect-
ing direction, and further identifying sections with potential subterranean issues (Zhou et al., 2023),
a labor-intensive and time-consuming process when performed manually. Algorithms for image or
signal feature extraction and classification aid in categorizing GPR data, but struggle due to the vari-
able characteristics of subsurface anomalies, affected by their composition, size, and surrounding
environment. Recent advances in Deep Learning (DL), particularly Convolutional Neural Networks
(CNNs), have also been applied to object and anomaly detection in GPR data (Liu et al., 2021; Liang
et al., 2022b). Despite their potential, DL methods face significant considerations: 1) The scarcity of
GPR data, particularly in a targeted detection area, often leads to limited training datasets predom-
inantly composed of normal samples; 2) The variability of underground environments undermines
the generalization capabilities of DL models, restricting their adaptability to various or unfamiliar

1For simplicity, unless specifically stated otherwise, the term “GPR data” used in this paper refers to 3D
GPR data. More description about this data is provided in Section 2 Related Work.
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Figure 1: In the training stage, normal GPR data obtained in the detecting area is segmented into
same-size blocks, each fitted by CuDeRes to capture its multi-directional dynamics, with the fitted
models collected into the “Model Depot”. For subsequent anomaly detection, the same segmentation
and fitting approaches are applied to newly collected GPR data, with fitted models compared against
the model depot. Anomalies could be identified based on model dissimilarities, and then clustered.

subsurface conditions; 3) The inherent complexity and extensive parameterization of DL models,
especially those based on 3D-CNNs, necessitate substantial computational resources.

Given the challenges associated with GPR data processing, the framework of Learning in the Model
Space (LMS) offers a viable alternative (Chen et al., 2013). LMS transitions data from data space to
model space by fitting the data with appropriate models that capture and describe the dynamics (i.e.,
changing information) within the data. Consequently, the fitted models serve as more stable and
parsimonious representations of the data, enabling effective implementation of learning algorithms
on the models rather than the original data. Successfully applied to diagnosing the Barcelona water
network (Quevedo et al., 2014) and the Tennessee Eastman Process (Chen et al., 2014), along with
diverse time-series classification tasks (Gong et al., 2018; Wu et al., 2022), LMS has proven its
efficacy in various tasks using the Echo-State-Network-based (ESN-based) methods for sequential
data fitting and representation. Notably, LMS focuses on the data-intrinsic dynamics, which allows
for reduced reliance on training data and diminishes the computational demands compared to many
DL methodologies, particularly when optimally configuring the model (Ma et al., 2020).

While efforts have been made to apply LMS in GPR data processing, the following considerations
persist: 1) LMS typically fits data uni-directionally to capture inherent dynamics, primarily de-
signed for sequential data with contextual relationships. However, GPR data exhibits both vertical
variations and horizontal correlations, stemming from the continuity of the subsurface medium and
EM waves. Effectively capturing these multi-directional dynamics is essential for accurate fitting,
representation, and classification of GPR data. 2) According to the spacing between GPR antenna
channels, the sampling frequency along the detecting direction, and the dielectric constant of the
underground medium, the distances between adjacent points vary across different directions within
GPR data, leading to differing correlations along distinct spatial orientations, with some directions
correlating stronger than others. Such variation necessitates a precise capture of the unique dynam-
ics within each direction. Despite attempts to optimize dynamic capture using accurately labeled
multi-type data, acquiring a sufficiently diverse training dataset often remains impractical.

Addressing the above, this paper introduces learning in the Cubic Decay Reservoir Network (CuD-
eRes) model space for subsurface anomaly detection in GPR data, illustrated in Figure 1. Our
approach only requires some normal GPR data, commonly available from the detecting area, to
support anomaly detection in subsequently collected data. We segment the normal GPR data into
blocks, with data segments in each block, referred to as GPR data blocks, being fitted by CuDeRes2.
Given GPR data’s vertical continuity along EM waves and horizontal correlations due to subsurface
medium consistency, each point in GPR data is correlated with its surroundings in multiple direc-

2In this paper, “CuDeRes” designates the network used for fitting GPR data, resulting in the “CuDeRes
fitted readout model” for data representation, also simplified as the “CuDeRes model” or “fitted model”.
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tions. Different underground structures manifest different dynamics in the GPR data. The proposed
CuDeRes integrates three reservoirs and applies spatial decay in each direction, constructing con-
nections between points within the data across multiple directions, during which it strengthens the
correlation with nearer points while weakening it with those further away. Fitting the data block
with CuDeRes effectively captures the multi-directional dynamics within the GPR data, resulting in
a compact fitted readout model. Representing each block with the fitted model, coupled with the
distance measurement between models, transitions the original GPR data blocks into the CuDeRes
model space. These models, derived from normal data blocks, are collected into a “Model Depot”.

For anomaly detection in subsequent GPR data, we continue with the same segmentation process
and fit each block with CuDeRes, deriving the fitted model for each data block. Given the con-
sistent dynamics within GPR data, blocks originating from identical subsurface structures derive
similar CuDeRes models, whereas models fitted from diverse subsurface structures manifest signif-
icant variations, depicting the unique dynamics captured. Each newly fitted model is then evaluated
against the established model depot, obtaining its anomaly score. Models registering higher anomaly
scores, indicative of potential anomalies, are identified and then grouped, allowing us to precisely
identify the corresponding abnormal block and determine the type of anomaly associated with each
identified abnormal GPR data block. The main contributions of this paper are as follows:

• The introduced CuDeRes incorporates three reservoirs with spatial decay at each direction,
enhancing correlations with nearer data points and diminishing those with distant ones,
adequately and accurately capturing multi-directional dynamics within GPR data.

• Representing GPR data with the compact fitted CuDeRes model, coupled with the directly
computable distance measurement between models, allows for further anomaly detection
to be effectively performed within the category-discriminative CuDeRes model space.

• Our approach focuses on the inherent dynamics present in GPR data, and leverages only
limited normal GPR data, easily obtainable in the detecting area, to support the subsequent
anomaly detection, enabling its practical usability in real-world settings.

2 RELATED WORK

2.1 GPR DATA ANALYZING

GPR data, specifically the multi-channel 3D GPR data, provides an advanced tool for viewing what
lies beneath the surface. As depicted in Figure 2, unlike single-channel GPR which provides two-
dimensional data, multi-channel GPR systems feature arrays of antennas that simultaneously send
and receive EM waves across multiple channels.

The detecting direction

E
M

 w
a
v
e

Using a column of gray values

to represent an EM wave

Detecting Direction

3D GPR data The GPR data in a channel

Figure 2: Single-channel GPR data could be visualized in image format, organizing received EM
waves horizontally by time or space, with wave intensities shown as grayscale values. Due to EM
wave refraction and reflection, GPR data may not directly reflect actual subsurface structures, re-
quiring further analysis. In 3D GPR data, critical changing information is presented both along and
among EM waves, horizontally and vertically with different scales in distinct directions.

Although 2D GPR data could be displayed in image format, and 3D GPR data as image sequences,
essentially, GPR data comprises the collection, arrangement, and representation of EM waves. Each
data point reflects the intensity of EM waves at a specific subsurface location. Given the continuity of
underground media and the presence of anomalies, GPR data display valuable changing information
not only in the vertical direction along the EM waves but also along the detection path and across
various channels. Moreover, the scales differ across various directions within GPR data, resulting in
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variable correlations between each point and its adjacent ones in different directions. For example,
the distance between two adjacent channels could be approximately 15cm, whereas the gap between
two rows of EM waves within a channel ranges from 2 to 6cm. Additionally, the spacing between
two points within a row, affected by the dielectric constant of the subsurface medium, spans from 2
to 5cm. Accurately capturing the multi-directional dynamics inherent in GPR data also necessitates
considering these direction-wise scale differences.

Recent advancements built on DL have mainly delineated two strategies for 3D GPR data analysis.
1) The first entails direct processing of 3D data: Liu et al. (2022) introduced a data augmenta-
tion technique called Multiple Mirror Encoding (MME) to accommodate 3D GPR data, employing
the C3D network (Tran et al., 2015) to facilitate spatio-temporal feature extraction; Similarly, the
3DInvNet leverages a 3D CNN equipped with a feature attention mechanism to mitigate noise, fol-
lowed by a U-shaped encoder-decoder architecture that incorporates multiscale feature aggregation
to generate detailed underground permittivity maps. 2) The second extracts single-channel or cross-
sectional profiles from the 3D data, which are subsequently analyzed and integrated: For instance,
UcNet (Kang et al., 2019) merges CNN with phase analysis to enhance the resolution of GPR data;
Another research (Liang et al., 2022a) investigated and compared the VGG and ResNet frameworks,
focusing on their application in classifying GPR datasets containing subterranean anomalies. For
3D GPR data analysis, DL approaches face critical considerations: the scarcity of multi-type la-
beled GPR data, often results in limited training data predominantly composed of normal samples in
targeted detection areas; the complex and parameter-heavy network, especially the 3D CNNs, while
analyzing channels individually also risks neglecting the inter-channel dynamics.

2.2 LMS AND ITS APPLICATION IN GPR DATA PROCESSING

The LMS framework was initially introduced in (Chen et al., 2013) and utilized for fault diagnosis
in sequential data. Typically, LMS methods use Echo State Networks (ESN) to fit individual data
instances. Each data instance, represented by its respective fitted model, is transitioned into the
model space, with a defined distance measurement between models. Learning algorithms could then
be effectively performed within this model space, leveraging the dynamics captured from the data.
The adaptability of LMS has been expanded to include applications in time series classification,
disease diagnosis (Bianchi et al., 2020), and addressing concept drift (Chiu & Minku, 2022).

 

Input Reservoir Output 

 

Figure 3: Typically, an ESN primarily con-
sists of the input layer, a hidden layer con-
taining a reservoir, and the output layer.

Applying LMS to GPR data processing, prior stud-
ies (Zhou et al., 2023; Chen et al., 2024) have ex-
plored anomaly detection of 2D GPR data using an
enhanced ESN-based network, capturing horizontal
and vertical dynamics respectively into fitted mod-
els for further classification. For 3D GPR data, char-
acterized by higher dimensions and more complex
intrinsic dynamics, a prevalent approach has been
to apply LMS independently to each channel, treat-
ing each as 2D data, and then aggregating the results
(Liu et al., 2024). However, this technique does not
account for the dynamics among channels. Build-
ing upon the above, Zhou et al. (2024) proposed augmenting the ESN’s hidden layer with three
reservoirs to better capture multi-directional dynamics in 3D data. Despite this enhancement, this
modification does not fully address the spatial scale variations across various directions within GPR
data. While this study also recommended using labeled data to optimize the fitting accuracy and
classification of fitted models, as introduced above, the scarcity of sufficient, diverse, and accurately
labeled GPR data in specific detecting areas greatly restricts its practical application.

2.3 A BRIEF INTRODUCTION OF ECHO STATE NETWORK

Echo State Networks (ESNs) represent a subclass of Recurrent Neural Networks (RNNs), known
for simplicity and efficiency in processing sequential data. As depicted in Figure 3, an ESN’s ar-
chitecture consists of three primary components: an input layer, a reservoir within the hidden layer,
and an output layer. A notable feature of ESNs is the use of randomized and fixed weights for both
the input and the reservoir weights, also essential to maintain the Echo State Property (ESP).
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In fitting sequential data, ESN first computes the hidden state for each point in the input sequence,
and the output layer maps this onto the target sequence, using ridge regression to determine output
weights. Although effective in fitting data along the processed direction, ESNs fail to adequately
capture dynamics in multi-dimensional data, missing changes in other directions.

3 METHODOLOGY

As illustrated in Figure 1, our approach consists of two stages:

• Training Stage: Normal GPR data, free from subsurface anomaly and easily available
in the detection area, is segmented along the detecting direction into same-size blocks,
each independently fitted by CuDeRes to capture its multi-directional dynamics. The fitted
models, representing their respective data blocks, are collected into a “Model Depot”.

• Anomaly Detection: The same segmentation and fitting procedures are employed on
newly collected GPR data, with the resulting models compared to those in the model depot.
Models that deviate from the norm are identified and clustered, enabling the identification
of data blocks that contain subsurface anomalies and the determination of their types.

In our approach, fitting GPR data and capturing its multi-directional dynamics via CuDeRes are
crucial for data representation and subsequent anomaly detection on the fitted models. Therefore, we
start with a comprehensive introduction to CuDeRes and its fitting process, followed by descriptions
of the training stage and anomaly detection in the mode space.

3.1 DATA FITTING AND REPRESENTATION VIA CUDERES

3.1.1 FITTING GPR DATA BY CUDERES

Akin to ESN, CuDeRes consists of an input layer, a hidden layer, and an output layer. However,
to adequately capture the complex multi-directional dynamics within GPR data, CuDeRes enhances
the hidden layer with three reservoirs, each implementing spatial decay, thus effectively building
correlations among adjacent points in various directions.

Denoting a GPR data block as U ∈ RA×B×C , wherein a data point within this block is localized
by (xa, yb, zc), and the corresponding value at that point is u(xa, yb, zc). The iteration of CuDeRes
begins at the point (x1, y1, z1) and ends at (xA, yB , zC). Sequentially, as shown in Figure 4, each
point is sent into the hidden layer, with their hidden states h ∈ RN×1 calculated as:

h(xa, yb, zc) = g
(
W ·E · h∗(xa, yb, zc) +Winu(xa, yb, zc)

)
, (1)

where3:

• a, b, c ∈ Z represent the indices of the point (xa, yb, zc) in the x-, y-, and z-directions,
respectively. g is the activation function tanh. Win ∈ RN×1 denotes the input weights.

• W ∈ RN×3N contains the reservoir weights for each direction:

W = [Wx Wy Wz] , (2)

where Wx,Wy,Wz ∈ RN×N represent the reservoir weights along the x-, y-, and z-
directions, respectively.

• E ∈ R3N×3N represents exponential spatial decay factors applied to each direction:

E =

e−θ(xa−xa−1)IN 0 0
0 e−θ(yb−yb−1)IN 0
0 0 e−θ(zc−zc−1)IN

 , (3)

where θ > 0 is the decay rate parameter, IN ∈ RN×N represents the identity matrix,
(xa − xa−1), (yb − yb−1), and (zc − zc−1) refer to the distances between a point and its

3The parameters in CuDeRes, denoted by Θ = (Win,Wx,Wy,Wz), are randomly initialized and fixed.
The input weights Win span [−1, 1], the reservoirs Wx,Wy,Wz satisfy the Echo State Property (ESP). The
initial hidden state h(x0, ·, ·) = h(·, y0, ·) = h(·, ·, z0) = 0 in each of the three directions.
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adjacent points in the x-, y-, and z- direction, respectively. The introduced spatial decay
reduces the influence of distant points and assigns greater importance to nearby points,
emphasizing local spatial relationships for more accurate dynamic capture.

• h∗ ∈ R3N×1 is the concatenation of the previous hidden states from the three directions:

h∗(xa, yb, zc) =

[
h(xa−1, yb, zc)
h(xa, yb−1, zc)
h(xa, yb, zc−1)

]
.

During the iteration described in Equation 1 and Figure 4, the hidden state at a point is influenced by
both the current point and previous hidden states, creating correlations among neighboring hidden
states across three directions. Furthermore, the spatial decay E appropriately modulates the corre-
lation strength in different directions: correlations between closer data points are amplified, while
those between more distant points are diminished. This allows CuDeRes to automatically adapt to
varying scales within 3D GPR data, avoiding the interference caused by standardizing data scales.
As iterations progress, the ongoing multi-directional correlations form a network, linking each data
point to those processed earlier, effectively capturing data-inherent multi-directional dynamics.

Reservoirs
Spacial 
Decay

Iteration in three directions

1 1 1( , , )x y z

1( , , )a b cx y z

1( , , )a b cx y z

( , , )A B Cx y z

1( , , )a b cx y z 

( , , )a b cx y z

Figure 4: The CuDeRes iteration processes
data points sequentially, starts at (x1, y1, z1),
moves to (xA, y1, z1), then continues from
(x1, y2, z1) to (xA, y2, z1), and so forth, until
reaching the end (xA, yB , zC). Each point cor-
relates with its predecessors across three direc-
tions, with the correlation exponentially dimin-
ishing via spatial decay.

After computing the hidden states for all data
points within the block, the output value v for each
point is calculated from the previous hidden states:

v(xa, yb, zc) = Wouth∗(xa, yb, zc) + β, (4)

where Wout ∈ R1×3N denotes the output weights,
and β is the bias.

The fitting process is accomplished using the “next
point prediction” task (Chen et al., 2013). It aims
to predict the value of the subsequent point based
on processed ones, establishing a mapping be-
tween hidden states and corresponding input data
points. Explicitly, each output value v(xa, yb, zc),
derived from the hidden states, is required to
closely match the input u(xa, yb, zc). To achieve
this, the output weights Wout and the bias β are
determined using ridge regression:

[Wout β]
T
= (H̃H̃T + λ2I3N )−1H̃u, (5)

where H̃ is the augmentation of the hidden state
matrix H, extended by a row of ones to include bias terms; H ∈ R3N×ABC is obtained by collect-
ing the previous hidden states of all data points in sequence and column-wise, with each column
representing a specific h∗(x, y, z); u ∈ RABC×1 is a vectorized form of the input values u(x, y, z),
arranged in the same order as h∗(x, y, z) in H; I3N ∈ R3N×3N represents the identity matrix; and
λ serves as a regularization.

During the fitting process, CuDeRes’s unique iteration adeptly establishes the correlation between
adjacent points in the data block, and the spatial decay effectively adjusts the influence across dif-
ferent directions, capturing the data-intrinsic changing information. The fitting approach integrates
multi-directional dynamics within the data block into a compact fitted CuDeRes readout model:

f(x) = Woutx+ β. (6)

This readout model provides a compact representation of the original data block. When an anomaly
arises in a data block, it introduces atypical dynamics, causing the readout model to exhibit distinct
compared to those derived from normal GPR data blocks. As a result, representing the data blocks
by readout models enhances category discrimination, which in turn improves the effectiveness of
model classification compared to using the original data blocks.

3.1.2 DISTANCE MEASUREMENT BETWEEN FITTED MODELS

After fitting the data via CuDeRes, it is crucial to establish a distance to measure the differences
between the fitted models, aiding subsequent anomaly detection on the models. Instead of directly

6
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using parameter vectors, which are highly sensitive to specific model parameterizations, the p-norm
distance (Chen et al., 2013) between models f1(x) and f2(x) is adopted:

Dp(f1, f2) =

(∫
C

∥f1(x)− f2(x)∥pdµ(x)
)1/p

. (7)

Here, f1 and f2 represent the simplified forms of f1(x) and f2(x), respectively; µ(x) denotes the
probability density over the input domain, and the integral range C is [−1, 1]3N . For the sake of
simplicity, p is set to 2 by default, and we assume x follows a uniform distribution.

Given the two blocks fitted using CuDeRes, the models derived for each are denoted as follows:{
f1(x) = Wout

1 x+ β1,

f2(x) = Wout
2 x+ β2.

(8)

Substituting Equation 8 into Equation 7 results in:

D2(f1, f2) ∝
1

3
∥Wout

1 −Wout
2 ∥2 + (β1 − β2)

2
. (9)

Such direct-measured pair-wise distance measurement specified in Equation 9 facilitates the usage
of distance-based learning algorithms on the fitted models4.

3.2 TRAINING STAGE: GIVEN NORMAL DATA ONLY

For the normal 3D GPR data gathered from the detection area, we first segment them into same-size
data blocks along the detection direction. This segmentation could be performed using a sliding
block technique that progresses along the detection direction (Zhou et al., 2024). Each block is
individually fitted by CuDeRes, resulting in a respective readout model. The models obtained from
these normal data blocks are collected into a “Model Depot”. This process is represented as:

M =
⋃

ri∈R
{F(U) | U ∈ S(ri)} , (10)

where R is the collection of normal GPR data samples; ri denotes a data sample in R; S represents
the segmentation process; U is a specific data blocks; and F refers to CuDeRes fitting process.

3.3 ANOMALY DETECTION IN CUDERES MODEL SPACE

Given the “Model Depot”, anomaly detection on the newly collected GPR data is performed through
the following three steps: 1) Data Segmentation and CuDeRes Fitting: Apply the same segmen-
tation and fitting procedures used during training, obtaining the fitted CuDeRes model for each data
block. 2) Model Discrimination: For each model, find the closest normal model in the model depot
through the distance measurement given in Equation 9, examining its anomaly score, with overly
high scores indicating anomalies. 3) Model Clustering: Cluster the abnormal models identified in
the previous step, where each cluster signifies a type of anomaly.

The first step, previously described and the same as the training stage, thus would not be repeated
here. Details for the subsequent steps are provided as follows.

3.3.1 DISTANCE-BASED MODEL DISCRIMINATION

For anomaly detection with newly collected GPR data, the segmentation and CuDeRes fitting pro-
cesses generate a set of data blocks, along with their corresponding fitted models. Each model is
subjected to a Nearest-Neighbor (NN) search within the model depot to estimate an anomaly score,
which helps determine its abnormality.

If an extracted block contains an underground anomaly, owing to the distinct changing information
along and among the collected EM waves, there exhibits differing dynamics in GPR data compared
to the normal. As a result, models fitted from such blocks stand out markedly from those fitted from

4Derivation from Equation 7 to Equation 9 refer to Appendix.
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normal data, according to the distinct dynamics captured. Specifically, models derived from normal
data tend to cluster tightly, while those derived from anomalies are distinctly separated from the
normal ones, and positioned far from the normal models.

To assess the anomaly score for a model f , the distance to its nearest neighbor in the model depot is
computed and the anomaly score is defined as:

score(f) = min
f∗∈M

D2(f
∗, f). (11)

A binary classifier then evaluates whether model f is normal or not, based on its anomaly score
score(f). If the score exceeds a specified threshold, the model is deemed abnormal; otherwise, it is
considered normal.

3.3.2 MODEL CLUSTERING

Through the above steps, models fitted from abnormal data blocks are identified. Different under-
ground anomalies exhibit distinct changing information along and among the collected EM waves,
resulting in unique dynamics presented in GPR data. Consequently, models fitted from various
types of anomalies show noticeable differences, while blocks segmented from the same type of
anomaly derive similar fitted models due to their consistent inherent dynamics. This results in a
category-discriminative CuDeRes model space, where clustering5 is performed to group the identi-
fied abnormal models, and each cluster corresponds to a specific type of anomaly.

4 EXPERIMENTAL STUDY

Experiments are conducted on real-world 3D GPR datasets subsequently introduced. All experi-
ments are conducted using Python 3.6 on a desktop with an Intel Core i5-11500 2.70-GHz CPU,
16-GB RAM, and a GeForce RTX 3080Ti 12G graphics card. For the implementation of the pro-
posed method, we initialize the input weights and reservoir weights of CuDeRes randomly following
a standard normal distribution. The size of each reservoir is default set as 50, the spectral radii are
set to 0.9, the decay rate θ and the regularization parameter λ are set to 1 by default. The threshold
of the anomaly score is set to be the average of the pairwise distances between normal models. As
for the clusters, we use the official implementation from scikit-learn6. To ensure reliability and sta-
bility, we report the mean metric under five different random seed settings. The experimental results
demonstrate the effectiveness of our approach.

4.1 THE UTILIZED 3D GPR DATA

The GPR data is gathered along cement and asphalt roads, the most prevalent and extensively utilized
road types. A 3D GPR system equipped with a 16-channel antenna is utilized. The collected data
is segmented into GPR data blocks measuring 16×200×200, which approximately equates to a
physical area of 2.5m (width) × 4m (detecting direction) × 4m (depth). Each data block, except for
the normal ones, contains an anomaly. The number of blocks for each category is given in Table 1.

Table 1: Distribution of normal and abnormal
GPR data blocks by type.

Normal Cavity Looseness Crack Pipeline Manhole

200 192 203 191 201 192

Three major types of subsurface anomalies are
observed: cavities, looseness, and cracks. Ad-
ditionally, the collected GPR data includes signa-
tures from pipelines and manhole covers, which
are also essential to identify. Figure 5 provides
several examples of GPR data blocks.

4.2 ANOMALY DETECTION OF GPR DATA

In subsurface anomaly detection, the initial focus involves identifying anomalies in newly collected
GPR data using only previously acquired normal data free from subsurface anomaly or other objects.

5Clustering techniques, such as K-Means (Hartigan & Wong, 1979), Agglomerative clustering (Ackermann
et al., 2014), or Fuzzy C-Means (Bezdek et al., 1984) can be applied based on model distance measurements.

6https://scikit-learn.org/
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(a) Normal (b) Cavity (c) Looseness (d) Crack (e) Pipeline (f) Manhole

Figure 5: Several examples of 3D GPR data blocks containing different subsurface objects.

For training, we randomly select 100 normal data blocks. For testing, we use the remaining 100
normal blocks and randomly select 20 blocks from each type of anomaly. The objective of anomaly
detection is to develop a classification approach only using the training normal blocks, and then
determine the normality or abnormality of each data block in the test set.

We evaluate our approach against recent baselines, which solely utilize some normal data for
anomaly detection in subsequently collected data7: 1) Voxel-based anomaly detection methods,
which treats 3D DPR data as a three-dimensional matrix: Patchcore-3D (Frolova et al., 2023), Syn-
thetic Temporal Anomaly Guided End-to-End Video Anomaly Detection (STEAL) (Astrid et al.,
2021), 3D-VAE (Brock et al., 2016), and MemAE (Gong et al., 2019). 2) Image-based anomaly
detection approaches, in which 3D DPR data is considered as a multi-channel image: f-AnoGAN
(Schlegl et al., 2019), and SimpleNet (Liu et al., 2023). 3) We also evaluate CuDeRes without spatial
decay, denoted as CuDeRes(w/o E), while keeping all other settings identical.

In our experiment, we exclude the experiment with the traditional LMS method that employs ESN to
fit 3D GPR data blocks uni-directionally and processes the ESN readout model, primarily due to the
impractical size of the ESN readout model. Fitting the data block along the detecting direction, the
size of the ESN readout model is 200×16×reservoir size and fails to be directly classified. As for
the CuDeRes, along with a comprehensive capture of multi-directional dynamics, a more compact
readout model size 3×reservoir size is obtained, facilitating efficient learning on the fitted models.

Table 2: Comparative performance of our ap-
proach against baselines in anomaly detection.

Methods Precision(Pre) Recall(Rec) F1-Score

Patchcore-3D 83.2% 86.0% 84.6%
STEAL 84.8% 82.7% 83.7%
3D-VAE 86.0% 84.6% 85.3%
MemAE 79.2% 81.6% 80.4%
f-AnoGAN 81.6% 79.8% 80.7%
SimpleNet 80.9% 79.3% 79.6%
CuDeRes(w/o E) 87.9% 87.3% 87.6%

Our Approach 92.2% 91.7% 91.9%

The results8 are presented in Table 2. Voxel-
based methods like Patchcore-3D, STEAL, 3D-
VAE, and MemAE treat 3D GPR data as three-
dimensional matrices, but struggle with insuf-
ficient normal data for effective optimization,
failing to accurately capture normal changing
information and thus diminishing their capabil-
ity to distinguish variations among normal and
abnormal patterns in our application. Image-
based methods, such as f-AnoGAN and Sim-
pleNet, designed for two-dimensional image
format, overlook effective changing informa-
tion of a certain dimension and do not ade-
quately capture the internal dynamics in 3D
GPR data. Building correlations along and among EM waves, fitting GPR data via CuDeRes ade-
quately and accurately capturing the data-inherent multi-directional dynamics. Introducing spatial
decay also improves the F1-Score by about 4%, enabling a more accurate and balanced capture
of dynamics within different directions. Consequently, the CuDeRes models, fitted from abnormal
blocks, markedly differ from those derived from normal data. Focusing on the data-inherent chang-
ing information, our approach demonstrates superior anomaly detection performance compared to
baselines, even with the given minimal normal data support.

Subsequent experiments further reveal that our approach not only distinguishes between normal and
abnormal models but also enables effective clustering in the CuDeRes model space, reflecting the
distinct dynamics within various anomaly types.

7To our knowledge, no existing research specifically tailored for 3D GPR data performs anomaly detection
on newly collected data with only limited normal data training. These baselines are able to process and analyze
3D GPR data, despite not being specially designed for it.

8All evaluated methods show a standard deviation of less than 2% across 5 repeats, indicating stable results.
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4.3 THE MODEL/FEATURE CLUSTERING RESULTS

After identifying abnormal models, our approach employs clustering to categorize these models,
grouping data blocks originating from the same type of anomalies. The introduced CuDeRes fits
and captures the multi-directional dynamics within the GPR data without offline iterative training.
The fitted models thus serve as representations of the original data blocks.
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Figure 6: CuDeRes demonstrates enhanced category discrimination: 1) Marked separation between
normal and abnormal models ensures reliable anomaly detection; 2) Smaller distances within classes
and larger distances between classes allow for effective clustering of different anomaly types.

We use feature extractors pre-trained on the Kinetics dataset (Carreira & Zisserman, 2017), including
3D Convolutional Neural Networks (C3D) (Tran et al., 2015), 3D ResNet (R3D) (Hara et al., 2017),
(2+1)D Convolutional Networks (R(2+1)D) (Tran et al., 2018), Mixed Convolutions 3D and 2D
(MC3) and Inflated 3D ConvNet (I3D) (Carreira & Zisserman, 2017) on the identified abnormal
blocks. These models/features are clustered by three widely used clustering algorithms: K-Means,
Agglomerative clustering (AC), and Fuzzy C-Means (FCM).

Table 3: The models/features clustering results:
Accuracy (Acc), Adjusted Rand Index (ARI), and
Normalized Mutual Info (NMI).

Methods K-Means AC FCM

Acc ARI NMI Acc ARI NMI Acc ARI NMI

C3D 0.57 0.36 0.55 0.69 0.57 0.67 0.64 0.46 0.60
MC3 0.85 0.72 0.76 0.93 0.83 0.85 0.85 0.74 0.77
R(2+1)D 0.76 0.58 0.68 0.81 0.64 0.74 0.60 0.44 0.57
I3D 0.74 0.69 0.79 0.76 0.72 0.83 0.75 0.69 0.78
R3D 0.82 0.62 0.67 0.73 0.61 0.72 0.83 0.65 0.69

CuDeRes 0.96 0.91 0.90 0.97 0.93 0.93 0.95 0.89 0.91

Table 3 shows that CuDeRes outperforms oth-
ers in anomaly clustering effectiveness. Using
t-SNE (Van der Maaten & Hinton, 2008), we
visualized the fitted models and other features
in 2D space (Figure 6). Each point corresponds
to a fitted model or feature associated with a
GPR data block. Although image-like, GPR
data essentially represents EM wave collec-
tions, and exhibits unique dynamics due to vari-
ations among and along EM waves caused by
different underground anomalies. Pre-trained
deep neural networks, typically designed for vi-
sual feature extraction, struggle to effectively
capture and distinguish such dynamics. CuDeRes focuses on the data-inherent changing informa-
tion, thoroughly capturing its multi-directional dynamics by establishing connections within the
data block in multiple directions. Owing to the distinct dynamics captured, the models derived from
CuDeRes exhibit superior clustering performance on different types of subsurface anomalies.

5 CONCLUSION

This study introduces learning in the Cubic Decay Reservoir Network (CuDeRes) for anomaly de-
tection within 3D GPR data, specifically: 1) We introduce a novel CuDeRes, featuring three reser-
voirs and spatial decay in each direction, designed to adequately and accurately capture the multi-
directional dynamics within GPR data, resulting in a compact fitted readout model; 2) Representing
GPR data using the fitted CuDeRes model, along with a computable distance measurement between
models, enables effective anomaly detection within the category-discriminative CuDeRes model
space; models fitted from different anomalies show noticeable differences owing to the distinct dy-
namics captured, while same-type data blocks derive similar fitted models due to their consistent
inherent dynamics; 3) Our approach concentrates on the inherent dynamics present in GPR data,
and leverages only limited normal GPR data, easily obtainable in the detecting area, to support
the subsequent anomaly detection, enabling its practical usability. Our future work will focus on
reconstructing anomaly regions for intuitive visualizations of target anomalies, aiding repair efforts.
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A APPENDIX

A.1 DISTANCE MEASUREMENT BETWEEN MODELS

Following the data fitting through CuDeRes, the distance between the fitted models should be de-
fined. A possible choice is to identify parameterized models with their parameter vectors, but this
makes further learning highly dependent on the specific model parameterization used. In this paper,
the p-norm distance between models f1(x) and f2(x) is adopted:

Dp(f1, f2) =

(∫
C

∥f1(x)− f2(x)∥pdµ(x)
)1/p

. (12)

where µ(x) is the probability density function of the input domain, and C is the integral range. In
this paper, we adopt p = 2 and firstly assume x is uniformly distributed. Supposing two GPR data
blocks are fitted by CuDeRes, and each reservoir in the CuDeRes has N neurons, the two readout
models could be represented by: {

f1(x) = Wout
1 x+ β1,

f2(x) = Wout
2 x+ β2.

(13)

where Wout
1 ,Wout

2 ∈ R1×3N , and x ∈ R3N×1.

Substituting Equation 13 into Equation 12, it could be obtained that:

D2(f1, f2) = (

∫
C

∥f1(x)− f2(x)∥2dx)1/2

= (

∫
C

∥(Wout
1 −Wout

2 )x+ (β1 − β2)∥2dx)1/2

= (

∫
C

∥Wout
12x∥2 + 2β12W

out
12x+ β2

12dx)
1/2,

(14)

where Wout
12 = Wout

1 − Wout
2 , β12 = β1 − β2. Here, f1 and f2 are simplified representations of

f1(x) and f2(x).

Note that for any fixed β12 and Wout
12 , there is∫

C

β12W
out
12xdx = 0 (15)

in the integral range C = [−1, 1]3N .

Therefore

D2(f1, f2) = (

∫
C

∥Wout
12x∥2 + β2

12dx)
1/2

= (
23N

3

3N∑
j=1

w2
j + 23Nβ2

12)
1/2,

(16)

where wj is the (1, j)th element of Wout
12 .

We then scale of the squared model distance D2(f1, f2) by 2−3N , and obtain

D2(f1, f2) ∝
1

3

3N∑
j=1

w2
j + ∥β12∥2 =

1

3
∥Wout

1 −Wout
2 ∥2 + (β1 − β2)

2, (17)

serving as the directly measured distance between two models, enabling the utilization of distance-
based learning algorithms on these models.

A.2 INTRODUCTION OF THE GPR DATASET

In our experiments, three major subsurface diseases appear: cavities, looseness, and cracks
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• “Cavity” beneath experimental roads refers to a space predominantly filled with air. These
cavities can vary in shape and may have either smooth or rough boundaries. They are a pri-
mary factor leading to the subsidence observed in urban roadways. Due to the significantly
lower dielectric constant of air compared to surrounding materials, EM waves encountering
these cavities produce a pronounced reflection. Furthermore, these EM waves can undergo
multiple reflections within the cavity, occasionally accompanied by diffraction effects.

• “Looseness” describes a soil condition characterized by increased porosity and reduced
density, especially when compared to adjacent soil with comparable water content. This
state leads to diminished particle cohesion, rendering the soil structure less compact. Such
a scenario can potentially lead to soil collapse and subsequent formation of underground
cavities. Essentially, loose soil can be conceptualized as a mixture of soil and air. The
heterogeneity in soil properties within areas of looseness results in erratic reflected waves
in GPR data, as waves traverse through these zones.

• “Crack” in road infrastructures refers to horizontal gaps within the previously dense un-
derground layers, typically air-filled. These gaps create a distinct scenario where wave
reflections are observed as the waves encounter the delamination. This interaction results
in notable alterations and sharp discontinuities in the waveform. When detecting such hori-
zontal delaminations, the collected waves exhibit changes nearly simultaneously, indicative
of this specific underground anomaly.

In addition, our collected GPR data also encompasses signals influenced by pipelines and manhole
covers. These types are also considered as “Anomaly” in our experiments. To display the GPR data
more intuitively, Figure 7 shows examples of image-format single-channel GPR data. Figure 5 in
our paper gives some examples of the 3D GPR data blocks collected by multi-channel GPR.

(a) Normal (b) Cavity (c) Looseness (d) Crack (e) Pipeline (f) Manhole

Figure 7: Several examples of different subsurface conditions in the single-channel GPR data.

A.3 MANIPULATIONS ON THE RAW GPR DATA

We have executed specific manipulations on the 3D GPR data to eliminate noise and accentuate sub-
surface objects. This process involves three key tasks: removing undesired surface echoes, reducing
noise, and offsetting propagation losses. Initially, reflectance from the ground surface is eliminated.
Subsequently, a standard median filter is employed on the data to diminish electromagnetic noise
and interference. The final step involves applying a time-variant gain adjustment to counteract the
propagation losses due to medium attenuation and the dispersion of signal energy radially. Our
approach to gain manipulation involves two main stages:

• Considering that targets like manhole covers can lead to data oversaturation, we isolate
these sections by setting a threshold for wave intensity significantly above the average.
Post this, we apply gain adjustments to the rest of the data.

• The time-variant gain technique is utilized to progressively increase the gain exponent rel-
ative to the depth of detection, thus amplifying variations without causing oversaturation.
In instances where oversaturation is observed in data collected from roads, we modify the
gain for all corresponding data, ensuring the preservation of variable information. This
fine-tuning process requires manual intervention.

These manipulations are designed to maintain and highlight the dynamic information in the data
while avoiding oversaturation. All adjustments are conducted using the Matgpr Matlab package,
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specifically tailored for GPR data analysis. It’s crucial to note that these modifications are consis-
tently applied across data from similar underground environments to ensure uniform treatment of all
data gathered from the same road.

A.4 ANALYSIS ABOUT THE SIZE OF DATA BLOCK

In discussing the block size in GPR data analysis, it should be noted that the depth and width are
primarily determined by the GPR system used. Our focus here is on the block length in the detection
direction. 1) The CuDeRes treats the GPR data within a block as a unified entity, fitting the data
and capturing its internal dynamics. This process is akin to ESN and other reservoir computing
techniques, necessitating iterative processes in CuDeRes to fully capture the GPR data dynamics
and to ensure model stability. Consequently, the block length should not be too short. 2) An overly
long block may result in an excessively large range of detected abnormalities. Additionally, a larger
block size can increase the iterations required for fitting. Also, the block length selection may also
take into account the accuracy of the positioning device for further localizing the detected anomaly.

Table 4: The Anomaly Detection Result
with Different Block Length

Block Length Precision Recall F1-score

100 89.92% 90.18% 90.05%
200 92.23% 91.71% 91.92%
300 90.85% 89.23% 90.03%
400 88.68% 89.23% 88.95%

Anomaly detection tests on various block lengths, de-
tailed in Table 4, demonstrate the effectiveness of our ap-
proach that remains stable across different block sizes.
This stability can be attributed to CuDeRes’s comprehen-
sive capture and distinction of the data-inherent multi-
directional dynamics. Adjusting the block size to suit the
specific requirements of a given scenario is unlikely to
compromise the effectiveness of our method.

A.5 DISCUSSION ABOUT THE RESERVOIR SIZE IN
CUDERES

Table 5: The Anomaly Detection Result
with Different Reservoir Size

Reservoir Size Precision Recall F1-score

5 86.43% 82.25% 84.29%
10 90.71% 90.08% 90.39%
30 92.01% 91.72% 91.86%
50 92.23% 91.71% 91.92%
70 91.90% 91.39% 91.59%
90 91.74% 91.22% 91.42%

Similar to other reservoir computing networks, like ESN,
the reservoir size in CuDeRes plays a role in performance.
In line with other methods involving reservoir comput-
ing, it is observed that larger reservoirs typically enhance
the fitting accuracy to capture more complex dynamics.
However, there are a few considerations: 1) Upon ex-
ceeding a specific threshold, the enhancement in fitting
accuracy gained by increasing the reservoir size becomes
incrementally minimal; 2) Larger reservoirs may result
in a longer fitting process due to more iterative paths, al-
though it’s noteworthy that the fitting process in CuDeRes
typically requires only a single iteration.

To evaluate the impact of reservoir size on CuDeRes’s performance, we conducted tests with various
sizes, the results of which are presented in Table 5. These findings indicate that reservoir sizes below
10 are not very effective. However, choosing a reservoir size around 50 tends to yield relatively
stable and satisfactory results.
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