
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DERIVATIVES ARE ALL YOU NEED FOR LEARNING
PHYSICAL MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) explicitly incorporate Partial Differ-
ential Equations (PDEs) into the loss function, thus learning representations that
are inherently consistent with the physical system. We claim that it is possible
to learn physically consistent models without explicit knowledge about the un-
derlying equations. We propose Derivative Learning (DERL) to model a physical
system by learning its partial derivatives, as they contain all the necessary informa-
tion to determine the system’s dynamics. Like in PINNs, we also train the learning
model on the initial and boundary conditions of the system. We provide theoreti-
cal guarantees that our approach learns the true solution and is consistent with the
underlying physical laws, even when using empirical derivatives. DERL outper-
forms PINNs and other state-of-the-art approaches in tasks ranging from simple
dynamical systems to PDEs. Finally, we show that distilling the derivatives en-
ables the transfer of physical information from one model to another. Distillation
of higher-order derivatives improves physical consistency. Ultimately, learning
and distilling the derivatives of physical systems turns out to be a powerful tool to
learn physical models.

1 INTRODUCTION

Machine Learning (ML) techniques have found great success in modeling dynamical and physical
systems, including Partial Differential Equations (PDEs). The growing interest around this topic
is driven by the many real-world problems that would benefit from accurate prediction of dynami-
cal systems, such as weather prediction (Pathak et al., 2022), fluid modeling (Zhang et al., 2024),
quantum mechanics (Mo et al., 2022), and molecular dynamics (Behler & Parrinello, 2007). These
problems require grasping the essence of the system by modeling its evolution while following the
underlying physical laws. Purely data-driven models often fail at this task: while being able to
approximate any function, they do not usually learn to maintain consistency with the physical dy-
namics of the system (Greydanus et al., 2019; Hansen et al., 2023), or fail to approximate it when
only a few data points are available (Czarnecki et al., 2017). Physics-Informed Neural Networks
(PINNs) (Raissi et al., 2019) emerged as an effective paradigm to learn the dynamics of a PDE, by
explicitly including in the loss the PDE components evaluated using automatic differentiation (Bay-
din et al., 2018). This imposes physical consistency by design and allows to use PINNS in regimes
where data is scarce. Unfortunately, PINNs suffer from optimization issues (Wang et al., 2022)
which can lead to poor generalization (Wang et al., 2021). Other physics-inspired models exploit
classical formalisms of mechanics such as Hamiltonians (Greydanus et al., 2019) and Lagrangians
(Cranmer et al., 2019), but they are restricted to problems where the system is conservative and
require an external solver to calculate complete trajectories.

In this paper, we propose Derivative Learning (DERL), a new approach to train neural networks
using only the partial derivatives of the objective function, as they perfectly describe its evolution
in time and space. Like PINNs, DERL also learns the initial and boundary conditions, as they
are needed to retrieve the full solution. The idea behind learning the partial derivatives can be
understood by looking at a simple dynamical system such as the pendulum, or any other system
that can be described by a Cauchy problem ẋ(t) = f(x(t)), x(0) = x0. The initial position and
velocity give the starting point, while the time derivative of such quantities along the trajectory can
completely determine the rest of the evolution. This is a consequence of the uniqueness theorem
for Ordinary Differential Equations (ODEs). A similar result holds for PDEs (Evans, 2022). We

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Neural Network AD PINN

DERL

Figure 1: Comparison between how DERL and PINN learn a function u(t, x, y). Partial deriva-
tives ∂û

∂t ,
∂û
∂x ,

∂û
∂y of the network output û are computed by Automatic Differentiation (AD) (Baydin

et al., 2018). PINNs consider û,∇û and entangle all derivatives when calculating the PDE resid-
ual. Instead, DERL learns the partial derivatives as independent targets, together with the initial or
boundary condition. Derivatives can be calculated as finite differences (right-most plot).

prove that learning partial derivatives is sufficient to learn the underlying system and enables better
in-domain generalization compared to data-driven approaches like supervised learning and PINNs.
We also discovered that DERL enables the transfer of physical knowledge from a trained model to
a student model by distilling the derivatives. Distilling higher-order derivatives improves the result.

The main contributions of this paper are: (a) DERL, a new methodology to learn dynamical systems
and solutions to PDEs by only using the partial derivatives of the target functions, along with initial
and boundary conditions (figure 1). (b) A theoretical validation of DERL which proves that the
learned solution converges to the true one when the loss goes to zero. Our results hold even with
empirical derivatives when the analytical ones are not available. (c) An empirical assessment of
DERL on a variety of dynamical systems and PDEs, including systems of PDEs, against data-
driven supervised learning, PINNs, and other state-of-the-art methodologies. (d) An application of
DERL to the transfer of physical knowledge from a reference model to a student one. To the best of
our knowledge, this is the first attempt at this task. We hope it can pave the way to an incremental
and compositional way (Xiang et al., 2020; Soltoggio et al., 2024) of learning physical systems.

2 ON THE IMPORTANCE OF DERIVATIVE LEARNING

A model that learns dynamical systems must be capable of simulating the evolution of the system
over a large timespan, possibly in regions or at resolutions not available during training. This makes
the consistency of our model to the underlying physical laws a key factor to ensure it is a reliable
and robust predictor. Concretely, given a set of evaluation points and their outputs {(xi, u(xi)}, i =
1, . . . , N , where x ∈ Rn and u(x) ∈ R, multiple curves pass through those points. We are interested
in learning the one curve that is compatible with the underlying physical model.

Continuous dynamical systems are completely determined by two components: an initial state u0,
and an ODE describing its evolution du/dt = f(u(t)). The existence and uniqueness of a solution
are guaranteed under hypotheses such as Lipschitz continuity of f . As a running example, we
consider the damped pendulum. Its state is defined by the current angle and angular velocity x(t) =
(θ(t), ω(t)). The corresponding ODE reads:{

θ̇ = ω

ω̇ = θ̈ = − g
l sin(θ)−

b
mω,

(1)

where g, b,m, l are scalar parameters that represent physical quantities such as gravity, dampening,
mass, and rope length, respectively. Dynamical systems teach us an interesting fact: the initial state
and the state derivatives are all that is necessary and sufficient to predict the full trajectory of the
system. From a mathematical point of view, two functions with the same continuous derivative
differ up to a constant, which is determined by some initial condition. Of greater complexity, PDEs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

describe physical systems of the form:
Lu(t,x) = 0 t ∈ [0, T],x ∈ Ω, (PDE)
u(0,x) = g(x) x ∈ Ω, (IC)
u(t,x) = b(t,x) x ∈ ∂Ω, (BC)

(2)

where L is the differential operator of the ODE/PDE, which usually involves derivatives, Ω is the
domain of the solution, and ∂Ω is its boundary. Well-posed problems of this kind are completely
determined by the dynamics of the PDE, which determines the evolution and propagation of infor-
mation in the domain, initial conditions (IC), and boundary conditions (BC).

With this in mind, it is worth asking if this concept can be leveraged for neural networks that learn
an underlying physical system. If partial derivatives are sufficient to determine the evolution starting
from a given state, can we train a model with just these terms to completely describe the behavior of
the system? Hence, we propose to train a neural network using the following DERL loss:

L(û,u) =

Derivative learning︷ ︸︸ ︷
λu ∥Dû(t,x)−Du(t,x)∥2L2([0,T]×Ω) +

Boundary cond.︷ ︸︸ ︷
λB ∥û(t,x)− b(t,x)∥2L2([0,T]×∂Ω) +

+ λI ∥û(0,x)− g(x)∥2L2(Ω)︸ ︷︷ ︸
Initial cond.

,
(3)

that is a combination of the L2 loss on the function jacobians Du or gradients ∇u when u(x) ∈ R,
the BC and the IC, where λu, λB , λI are hyperparameters. In practice, the L2 losses are substituted
by empirical ones such as the Mean Squared Error over collocation points. See Appendix A for more
details. In the case of time-independent problems, such as the Allen-Cahn equation (E2) in table 1,
the last term is dropped. Compared to PINNs our method is simpler to train as the network’s partial
derivatives have individual targets instead of being entangled together (see figure 1). Therefore, we
expect better generalization capabilities. When the derivatives are not available as data, we will
show that empirical derivatives obtained with finite differences on u (Anderson et al., 2020) are
sufficient to train the network.

Derivative distillation for transfer of physical knowledge. Combining knowledge from differ-
ent experts is a powerful approach in deep learning (Xiang et al., 2020; Carta et al., 2024), still
unexplored in the context of physical systems. We leverage DERL and distillation to transfer the
physical knowledge contained in a pre-trained model to a randomly initialized student. This relieves
from the burden of learning exclusively from raw data and it enables continual exchange of physical
information across models. We train the student to minimize the MSE loss between the derivative
∇ûT computed by the (frozen) teacher and the derivative computed by the (trainable) student ∇ûS

in the interior of the domain. The MSE replaces the KL divergence commonly used in distillation
for classification problems. We will show that distilling higher-order derivatives leads to substantial
improvements in the physical consistency of the final model.

2.1 THEORETICAL ANALYSIS

Neural networks are universal approximators in the Sobolev space Wm,p(Ω) of p-integrable func-
tions with p-integrable derivatives up to order m (Hornik, 1991). The only requirement is for the
activation function to be continuously differentiable m times (as is the tanh function we will use).
We now prove that learning the derivatives Du, together with the IC and BC, is sufficient to learn
u. We show that minimizing the loss in 3 is equivalent to minimizing the distance between our
solution û and the true one u. Our first result involves ODEs and one-dimensional functions, which
resembles the fundamental theorem of calculus:
Theorem 2.1. Let u(t) be a (continuous) function in the space W 1,2([0, T]) on the interval [0, T].
If L(u, û) → 0, then u → û.

We give the proof in Appendix B.1. The generalization of this result to higher dimensions turned
out to be more challenging. We state the final result as:
Theorem 2.2. Let Ω be a bounded open set and u ∈ W 1,2(Ω) a function in the Sobolev space with
square norm. If the neural network û is trained such that L(û, u) → 0, then ∥û − u∥W 1,2(Ω) → 0

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and ∥û−u∥L2(∂Ω) → 0. To have a numerical approximation, if L(û, u) ≤ ϵ, then ∥û−u∥W 1,2(Ω) ≤
2(C+1)ϵ for some constant C. Furthermore, at the limit, the two functions coincide û∞ = u inside
Ω and at the boundary.

The proof is provided in Appendix B.2. This result can be extended to include higher-order deriva-
tives by adding the corresponding terms to the loss L. We can use these theorems to prove that a
neural network trained to optimize the loss in equation 3 learns the solution to a PDE. We prove the
following theorem in Appendix B.3.

Theorem 2.3. Let u be a solution to a PDE of the form of equation 2, which can be time-dependent
or time-independent. A Neural Network û trained to optimize L(û,u) as in equation 3 converges
to the solution of the PDE u and fulfills all three conditions.

When analytical derivatives are not available, we use empirical derivatives obtained via finite differ-
ences (Anderson et al., 2020): ∂u

∂xi
(x) ≃ u(x+hei)−u(x)

h , where ei is the unit vector in the direction
of xi and h is a small positive real number. Appendix C shows that finite differences converge on
the whole domain to the true derivatives when h → 0. This guarantees that we can still approximate
u using empirical derivatives. We provide additional statements and remarks in Appendix B.

3 RELATED WORKS

Data-driven methods. Neural approaches are commonly used to learn physical systems and
PDEs. Recurrent neural networks (Schmidt, 2019) are a prototypical example of systems that evolve
through time based on their previous state. ResNets (He et al., 2016) and NODEs (Chen et al., 2019)
model the residual state update as a discrete or continuous derivative, but cannot predict complete
trajectories at once or require an external ODE solver. Normalizing flows (Rezende & Mohamed,
2015) model dynamical systems such as particles by learning their distribution with iterative invert-
ible mappings. Neural operators (Li et al., 2020b) and their evolution (Li et al., 2021) act as neural
networks for entire functions by mapping initial conditions or parameters to a solution via kernel
operators and Fourier transforms. While these methods are powerful and find many applications
to real-world problems (Pathak et al., 2022), they require a large amount of data to generalize, are
computationally intensive, and do not ensure that the solution is physically consistent. Our work
shares similarities with Sobolev learning (Czarnecki et al., 2017; Srinivas & Fleuret, 2018), which
adds derivative learning terms to the supervised loss with application to reinforcement learning and
machine vision tasks. Instead, we are the first to consider a pure derivative approach and to apply it
to physical and dynamical systems.

Physics-inspired and Physics-Informed methods. PINNs (Raissi et al., 2019) incorporate PDEs
that describe the underlying physical system directly into the loss (as well as the L2 residual), using
automatic differentiation (Baydin et al., 2018). PINNs reduce the amount of training data needed
and increase the physical consistency of the solution. However, PINNs suffer from optimization
problems (Wang et al., 2021) and can fail to reach a minimum of the loss (Sun et al., 2020). To
alleviate these issues, there exist methodologies to simplify the objective (Sun et al., 2020) or to
choose the collocation points where the PDE residual is evaluated (Zhao, 2021; Lau et al., 2024).
Both approaches are problem-specific and add complexity to the optimization process. Models
inspired by physics exploit the formalisms of Hamiltonian (Greydanus et al., 2019) and Lagrangian
(Cranmer et al., 2019) mechanics to be inherently consistent with the properties of the system,
but they require the system to be conservative and to be formulated explicitly or implicitly in the
Lagrangian or Hamiltonian formalism, which is generally not the case.

Exact consistency by design. Adopting ad-hoc architectural choices for the model allows the
learning process to be exactly consistent with the physical properties of the underlying system.
Hansen et al. (2023) takes a probabilistic approach by modeling the predicted distribution of the
solution and by projecting it on a subspace that is conservative. However, they only consider global
conservation of quantities, and the approach is only tested on one-dimensional systems. Neural
Conservation Laws (NCL) (Richter-Powell et al., 2022) take advantage of the mathematical theory
of geometric analysis to make the output of the model divergence-free by design. However, NCL is
very slow and it is only built for systems that are described by a divergence-free equation. Similarly,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Summary of the tasks we consider in the experiments.

Experiment Equation Description

Pendulum (E1) θ̇ = ω, ω̇ = − g
l sin(θ)−

b
mω ODE

Allen-Cahn (E2) λ(uxx + uyy) + u(u2 − 1) = f Second-order PDE

Continuity (E3) ∂ρ
∂t +∇ · (vρ) = 0 Time-dependent PDE

Navier-Stokes (E4.M)
∂u

∂t
− µ∆u+ ρ[Du]u = −∇p,

(E4.I) ∇ · u = 0
System of PDEs

KdV distillation (E5) u+ uut + νuxxx = 0 Third-order PDE

NCL distillation
(E6.C)

∂ρ

∂t
+∇ · (ρu) = 0, (E6.I) ∇ · u = 0

(E6.M)
∂u

∂t
+ [Du]u+

∇p

ρ
= 0

System of PDEs

Torres et al. (2024) propose a divergence-free normalizing flow, but that requires invertible mappings
and it can only work with densities. Again, this approach works only with divergence-free fields and
cannot be extended to include other equations in the framework.

4 EXPERIMENTS

We validate our approach on a set of dynamical systems and physical PDEs. Table 1 summarizes the
tasks we consider. For each experiment, we compare 4 training methods on a Multi-Layer Perceptron
(MLP, Goodfellow et al. (2016)): our DERL that learns Du, Output Learning (OUTL) that learns
u, PINN (Raissi et al., 2019), and Sobolev learning (SOB) (Czarnecki et al., 2017). Details on
these models are in Appendix A. The approaches differ in the way they learn the solution in the
interior of the domain, while they enforce the same IC and BC.
To evaluate the accuracy of the prediction, we compute the L2 distance between the true function u
and the estimate û. To measure the physical consistency of a model, we either compute the L2 norm
of the PDE residual of the network as for PINNs (Raissi et al., 2019) or the L2 distance between the
true and the learned field in the phase space ẋ for dynamical systems (Strogatz, 2019).
For each experiment and each methodology, we tuned the hyperparameters for the respective losses
and the learning rate independently, to obtain the top performance for each model. We report the
implementation details in Appendix A and describe the tuning process in Appendix D.1. Specific
experiment remarks along with many additional results are available in Appendix E.

4.1 DAMPED PENDULUM

We consider the dynamical system of a damped pendulum with state equation 1, which we briefly
considered in Section 2. Additional details on the experimental setup are available in Section
E.1. We sampled a total of 50 trajectories from different starting conditions (θ0, ω0): 30 reserved
for training, 10 for validation, and 10 reserved for testing. Each trajectory was sampled every
∆t = 0.01s. For each method, we used a 4-layer MLP with 20 units per layer and tanh ac-
tivation, trained for 200 epochs with batch size 32. The model takes as input the time and the
initial condition (t, θ0, ω0) and is trained to predict the corresponding position and angular speed
(θ(t; θ0, ω0), ω(t; θ0, ω0)) at time t. Initial states are sampled randomly in [−π

2 ,
π
2] × [−1.5, 1.5].

The task consists in learning the vector field in the phase space, that is to learn the derivatives (θ̇, ω̇)
that best match the true ones from equation 1. The loss on the PDE residual measures the dis-
tance between θ̇ and ω, while the field error measures the distance between the derivative of each
network’s output and the true derivative.

Figure 2a shows a direct comparison of the errors in the learned field (θ̇, ω̇) in the domain. We
computed the local error on grid points for each method. Then, for each method, we computed the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Results for the damped pendulum experiment. We report the loss on the state and its deriva-
tives on testing trajectories, the L2 distance between true and predicted fields, the PDE residuals,
and the PDE residual for the initial condition differentiability. Fields and PDE residuals are calcu-
lated at t = 0. Bold denotes the best model.

Model State loss Derivative loss Field error PDE res. Init PDE res.

DERL (ours) 0.025719 0.011121 0.28006 0.23656 0.58299
OUTL 0.017737 0.032557 0.98303 0.76095 1.7741
PINN 0.018198 0.018843 0.62468 0.47643 1.3161
SOB 0.015823 0.014177 0.42762 0.34912 0.91480

1 0 1

1

0

1

OUTL - DERL

1 0 1

1

0

1

PINN - DERL

1 0 1

1

0

1

SOB - DERL

0.128
0.004

0.120
0.244
0.368
0.493
0.617
0.741
0.865
0.989

(a)

1 0 1

1

0

1

HNN - DERL

1 0 1

1

0

1

LNN - DERL

0.2020
0.1331
0.0643

0.0045
0.0734
0.1422
0.2110
0.2799
0.3487
0.4175

(b)

Figure 2: Pendulum experiment. L2 error difference in the learned field at t = 0 between each
methodology and DERL. The blue area is where DERL performs better than the comparison.

difference between its errors and DERL’s error, such that positive values (blue) are where DERL
performs better. Table 2 shows the errors on the test trajectories, the L2 distance between the true
and predicted fields, and the ODE residual L2 norm. These results show the generalization ability
of the approaches for unseen starting conditions. The initial condition PDE (see Appendix E.1.2 for
details) measures the regularity of the model with respect to (θ0, ω0) and, in particular, if the trajec-
tories are differentiable up to the first order on these variables. DERL significantly outperforms the
other approaches. DERL is therefore the best at generalizing equation E1 to new initial conditions,
while OUTL and PINN are the worst-performing ones.
For this task, we adapted Lagrangian Neural Networks (LNN) (Cranmer et al., 2019) and Hamil-
tonian Neural Networks (HNN) (Greydanus et al., 2019) to the damped pendulum case. We train
them on the conservative part of the field (see E.1.5 for details), where they excel as they are specif-
ically designed for conservative fields. Unlike DERL, they also require trajectories to be calculated
through external solvers. Remarkably, DERL outperforms both LNN and HNN (figure 2b): DERL
scores a field error of 0.28006, against 0.44699 and 0.44277 for LNN and HNN, respectively.

4.2 ALLEN-CAHN EQUATION

Table 3: Results for the Allen-Cahn equation: L2 distances from the
ground truth. The best results are in bold.

Model ∥û− utrue∥2 ∥∇û−∇utrue∥2 PDE L2 norm

DERL (ours) 0.010380 0.033228 0.0096173
OUTL 0.018174 0.15132 0.030412
PINN 030950 0.11028 0.028795
SOB 0.015356 0.048076 0.016461

We now move to PDEs. The
Allen-Cahn (equation (E2) in
table 1) is a time-independent
non-linear PDE, with λ =
0.01 and analytical solution
utrue = sin(πx) sin(πy). The
BC and the external force f
are calculated from utrue us-
ing the PDE. We sample the
solution on a grid with ∆x =
∆y = 0.02 both inside the
domain and at the boundary. Partial derivatives are calculated analytically from the true solution.
The MLP has 4 layers with 50 units and tanh activation and is trained for 100 epochs with batch
size 32. Model selection details and results are provided in Appendix E.2.

Table 3 shows the L2 distance between the true and predicted solution (including partial derivatives),
as well as the L2 PDE residual, which is equivalent to the error in the learned forcing f . As for the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 OUTL - DERL

1.0 0.5 0.0 0.5 1.0

PINN - DERL

1.0 0.5 0.0 0.5 1.0

SOB - DERL

0.01463
0.00978
0.00493
0.00007

0.00478
0.00963
0.01448
0.01934
0.02419
0.02904

(a)

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 OUTL - DERL

1.0 0.5 0.0 0.5 1.0

PINN - DERL

1.0 0.5 0.0 0.5 1.0

SOB - DERL

0.00911
0.00015
0.00941
0.01866
0.02792
0.03718
0.04644
0.05570
0.06495
0.07421

(b)

Figure 3: Allen-Cahn experiment: (a) u error comparison between DERL and the other methodolo-
gies. (b) PDE residual comparison between DERL and the other methodologies. Blue regions are
where DERL performs better than the comparison.

1 0 11.5

1.0

0.5

0.0

0.5

1.0

1.5 OUTL - DERL

1 0 1

PINN - DERL

1 0 1

SOB - DERL

0.1851
0.1392
0.0932
0.0473
0.0013

0.0446
0.0906
0.1365
0.1825
0.2284

(a)

1 0 11.5

1.0

0.5

0.0

0.5

1.0

1.5 OUTL - DERL

1 0 1

PINN - DERL

1 0 1

SOB - DERL

0.0428
0.0210

0.0007
0.0225
0.0443
0.0660
0.0878
0.1095
0.1313
0.1530

(b)

Figure 4: Continuity equation experiment: (a) Comparison of L2 PDE residual on the domain at
t = 5. Differences between the other methods’ residuals and DERL. Blue regions are where we
perform better (b) Same plot but with L2 distance w.r.t. the true solution ρtrue.

damped pendulum, figure 3a shows the error difference on the solution u between DERL and the
other approaches. Similarly, figure 3b shows the error difference for the PDE residual. Calculations
and color definitions for the plots are the same as in the pendulum experiment. DERL outperforms
all the other approaches in learning the true solution utrue. As expected, DERL also approximates
best the derivatives. Finally, DERL satisfies the PDE 3 times better than OUTL and PINN. The
fact that the second best method is SOB shows again the effectiveness of learning the derivatives.
This is also an empirical confirmation of our theoretical results. In the case where data about u in Ω
is not available, the models have to propagate information from the boundary to the interior of the
domain. PINN underperforms in this setup, while DERL successfully solves the task, while also
showing a stronger consistency with the second-order derivatives PDE.

4.3 CONTINUITY EQUATION

As a first example of time-dependent PDE, we consider the continuity equation (equation (E3) in
table 1), used to model conservation laws. The domain of the unknown density ρ(t, x, y) is the 2D
plane region [−1.5, 1.5]2 for t ∈ [0, 10]. The velocity field v is the rotational divergence-free field
v(x, y) = (−y, x). The density is null at the boundary and the IC is given by 4 Gaussian densities
(see Appendix E.3), as in Torres et al. (2024). The reference solution is calculated using the finite
volumes method (Ferziger & Peric, 2001) on a regular grid characterized by ∆x = ∆y = 0.01 and
time discretization of ∆t = 0.001.

Table 4: Continuity equation results. L2 norms
w.r.t. the ground truth. Best models are in bold.

Model ∥ρ− ρtrue∥2 PDE L2 norm

DERL (ours) 0.028827 0.073379
OUTL 0.027932 0.12411
PINN 0.088850 0.041071
SOB 0.052511 0.092739

The MLP has the same architecture as the Allen-
Cahn experiment and is trained for 200 epochs
with batch size 128. Partial derivatives were cal-
culated by finite difference approximation with
∆x = ∆y = ∆t = 0.01, without any inter-
polation. The MLP takes as input (t, x, y) and
predicts ρ(t, x, y). See E.3 for further details and
results, where we also report results for the inter-
polated data case.

Table 4 reports the L2 error on the solution
ρ(x, y, t) and the PDE residual L2 norm on the
whole time-space domain. Figure 4a shows the comparison between DERL and the other methods

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

on the PDE residual norm and the distance from the true solution at t = 5. We found DERL to
be the most effective method: the distance from the ground truth is comparable to OUTL and two
orders of magnitude smaller than all the others. Plus, DERL is also second best for PDE consis-
tency, closely following PINNs (which, we recall, impose the PDE as a hard constraint). However,
PINNs completely fail to propagate the solution through time correctly, as reported by both table
4 and figure 4b at t = 5. These results for PINNs are aligned with Wang et al. (2022), where the
authors conjectured that PINN’s gradients are biased towards high values of t with the model failing
to propagate information from the initial solution. DERL, on the other hand, correctly learns the
complete solution without ever seeing any data for t > 0. The continuity equation is a strong exam-
ple showing how derivatives are all that is needed to learn the system. It is also interesting to see how
SOB performed worse in all metrics. This is probably due to the more challenging and conflicting
loss terms, which require Sobolev to learn both the derivatives and the outputs at the same time.

4.4 NAVIER STOKES EQUATIONS

We now consider a system of time-dependent PDEs with multiple outputs, the most challenging
among our tasks. As in Raissi et al. (2019), we consider the transient 2D Navier-Stokes equations,
made of the momentum equation (E4.M) and the incompressibility equation (E4.I) (table 1), with
uniform density ρ = 1 and viscosity µ = 10−3. The unknowns are the 2D fluid’s velocity u and
the pressure p. For the setup, please refer to Appendix E.4.1. Following Raissi et al. (2019), we
considered the region adjacent to the right side of the circular obstacle. The domain is (x, y) ∈
[0, 1.7] × [0, 0.41] for times t ∈ [0, 2]. IC, BC and internal data are given by the true solution
obtained with the finite volumes method (Anderson et al., 2020). The training data has a grid size of
∆x = ∆y = ∆t = 0.01. The MLP is made of 8 tanh layers with 128 units. The training lasted for
200 epochs with a batch size of 512. In Raissi et al. (2019), the solution is parametrized such that
equation (E4.I) is satisfied by design. Here, the network takes as input (t, x, y) and predicts u and p
so that both equations have to be learned at the same time.

Table 5: Results for the Navier Stokes experiments. L2 error on the
final solution, L2 norms of the residuals of the 2 PDEs. Norms are
calculated across the entire time-space domain. Best model in bold.

Model L2 error (E4.M) L2 norm (E4.I) L2 norm

DERL (ours) 0.021687 0.36237 0.30337
OUTL 0.011950 0.81446 0.33483
PINN 0.63828 6.9591 3.9806
SOB 0.015714 0.60096 0.29979

Numerical results are in ta-
ble 5. The PINN learns
the IC at t = 0 but
fails to propagate it to later
time steps (see Appendix
E.4), thus learning a solu-
tion which diverges from
the true one by a large mar-
gin. DERL outperforms all
other approaches in the mo-
mentum equation residual
(E4.M), the most challeng-

ing equation. All models except PINN perform similarly on (E4.I). We again stress how DERL
achieves these results without having access to the solution in the interior of the time-space domain.
We provide results with randomly sampled points and empirical derivatives in Appendix E.4.3.

4.5 TRANSFERRING PHYSICAL INFORMATION ACROSS MODELS

We investigate the ability of DERL to transfer physical constraints from a pre-trained model to a
student model by distilling the teacher’s derivatives. To the best of our knowledge, we are the first
to leverage distillation for this purpose. We experimented with a PINN on the Korteweg-de Vries
(KdV) equation and a Neural Conservation Laws (NCL) model (Richter-Powell et al., 2022) on the
Euler equations.

4.5.1 PINN DISTILLATION

We consider the Korteweg-de Vries (KdV) equation, a third-order non-linear PDE (equation (E5) in
table 1), with ν = 0.0025. The IC is u(0, x) = cos(πx) with periodic BC for u and ux. A PINN
is trained on a reference solution on a grid with ∆x = ∆t = 0.005. The resulting model is treated
as the teacher model. The architecture of the student is the same as the teacher. More details are
provided in Appendix E.5.1. Since this is a third-order PDE, we are also interested in understanding

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Results for the KdV equation, PINN distillation. Results are empirical L2 norms over
the time-space domain. Derivative and Hessian losses are computed with respect to the PINN. Best
model(s) in bold, second best underlined.

Model ∥û− utrue∥2 ∥∇û−∇uPINN∥2 ∥Hû −HPINN∥2 PDE loss BC loss

PINN (teacher) 0.037171 / / 0.16638 0.33532

DERL (ours) 0.038331 0.098188 3.9872 0.32480 0.014197
HESL (ours) 0.037380 0.065454 1.1662 0.19153 0.014220
DER+HESL (ours) 0.038524 0.041988 0.85280 0.19317 0.031850
OUTL 0.038589 0.22580 31.582 17.366 0.012830
SOB 0.037447 0.10097 4.0967 0.38523 0.013644
SOB+HES 0.041353 0.13119 3.2684 0.23184 0.016222

the impact of higher-order derivatives on the performance, both in terms of physical consistency
(the PDE residual norm) and in terms of matching the true solution utrue or the BC. We implemented
Hessian learning (HESL), which learns the Hessian matrices of the teacher model. We also ex-
plored its combination with DERL (DER+HESL, which learns both ∇uPINN and HPINN(x, t)) and
Sobolev (SOB+HES). In this last case, we use the approximation of the Hessian matrix as suggested
in Czarnecki et al. (2017), while for HESL we use the full Hessian of the network, at the cost of an
increase in computational time (see Section D.2 for further details). We remark that each method-
ology has been tuned individually to find the hyperparameters that provide the best approximation
of the true solution utrue. Table 6 reports the L2 distance to the true solution, relevant distillation
metrics, BC errors, and the PDE residual norm on the domain. First, we notice that all methods suc-
cessfully learned to approximate the solution utrue with the same performance as the teacher model,
with SOB+HES being the worst by a small margin. We observe that (a) distilling a PINN can lead
to noticeable performance improvements. In particular, our HESL and DER+HESL achieved the
same PDE residual norm and distance to the true solution of the teacher model but with a BC loss
smaller by at least one order of magnitude. This may be due to the easier optimization objective of
the student models. (b) OUTL fails to distill the physical knowledge of an architecturally identical
PINN, as the PDE residual is two orders of magnitude larger than any other model. Interestingly,
the best methods in terms of physical consistencies are those that did not see the values of u directly.
(c) When boundary conditions are available for both u, ux, second order derivatives are sufficient
to learn the true solution with PDE consistency comparable to PINN. (d) HESL and DER+HESL
showed the best overall results. This tells us that adding one more derivative helps learning and dis-
tilling high-order PDEs. Furthermore, approximating Hessians as in SOB+HES (Czarnecki et al.,
2017) slightly reduces the performance compared to using the full Hessian of the network.

4.5.2 NCL DISTILLATION

Table 7: Results for the NCL distillation experiment. L2 distance be-
tween the NCL and our distilled solutions, L2 norms of the residuals
of the 2 PDEs. Norms are calculated across the entire time-space do-
main. The best results are in bold.

Model L2 error (E6.M) L2 norm (E6.I) L2 norm

DERL (ours) 0.015287 0.28566 0.095044
OUTL 0.022247 0.52101 0.17159
SOB 0.013282 0.28620 0.10134

We perform knowledge
distillation with the NCL
architecture (Richter-
Powell et al., 2022),
considering the Euler
equations for incompress-
ible inviscid fluids with
variable density in the 3D
unit ball (3 PDEs). The
system is made of the
mass conservation (6.D),
incompressibility (6.I) and

momentum (6.M) equations (table 1), where ρ is the density, u the velocity and p the pressure.
IC and BC are from Richter-Powell et al. (2022). Equation (E6.D) is guaranteed by the specific
architecture of the NCL model, while (E6.M) and (E6.I) are learned with the usual PINN style PDE
residual loss. The teacher and student models’ setup is the same as in Richter-Powell et al. (2022).

As Equation (E6.D) is guaranteed by NCL design, table 7 reports results for Equations (E6.M)
and (E6.I). Although minimal, distillation reported an improvement in the BC (from 0.09 for the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

teacher to around 0.07 for the students). DERL and SOB outperform OUTL, with almost 50%
error reduction in each metric. Even with a different architecture like NCL, these results highlight
the effectiveness of derivative distillation for the transfer of physical knowledge across models.

5 CONCLUSION

We proposed DERL, a methodology to learn dynamical and physical systems using only the partial
derivatives of the solution together with the initial and boundary conditions of the problem. We
showed theoretically and experimentally that our method successfully learns the solution to a prob-
lem and remains consistent with its physical constraints, outperforming PINN and other supervised
learning methods. We also found DERL to be effective in transferring physical knowledge across
models through distillation, and we showed how higher-order derivatives can contribute to an in-
creased physical consistency of the learned solution. Much like other deep learning applications
(e.g. natural language processing, computer vision), in the future learning physical and dynamical
systems may not require always starting from scratch. Instead, the learning process may be based on
the continual composition and integration of physical information across different models. A more
general and flexible paradigm that is still underexplored to date, for which DERL can be a good
candidate to provide the foundational mechanisms and core principles.

ETHICS STATEMENT

We do not identify any ethical concerns or societal risks for this work. The datasets do not con-
tain any sensitive or privacy-related information. Our work does not involve human subjects or
crowdsourcing methods.

REPRODUCIBILITY STATEMENT

The code to reproduce all experiments is available as supplementary material. The main text and the
appendix (A and D.) provide all the details about the experiments setup.

REFERENCES

Dale Anderson, John C Tannehill, Richard H Pletcher, Ramakanth Munipalli, and Vijaya Shankar.
Computational fluid mechanics and heat transfer. CRC Press, Boca Raton, FL, 4 edition, Decem-
ber 2020.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research,
18(153):1–43, 2018. URL http://jmlr.org/papers/v18/17-468.html.

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional
potential-energy surfaces. Phys. Rev. Lett., 98:146401, Apr 2007. doi: 10.1103/PhysRevLett.98.
146401. URL https://link.aps.org/doi/10.1103/PhysRevLett.98.146401.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Sanjoy Dasgupta and David
McAllester (eds.), Proceedings of the 30th International Conference on Machine Learning, vol-
ume 28 of Proceedings of Machine Learning Research, pp. 115–123, Atlanta, Georgia, USA, 17–
19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/bergstra13.
html.

Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, Davide Bacciu, and Joost van de Weijer. Pro-
jected Latent Distillation for Data-Agnostic Consolidation in distributed continual learning. Neu-
rocomputing, 598:127935, September 2024. ISSN 0925-2312. doi: 10.1016/j.neucom.2024.
127935.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations, 2019. URL https://arxiv.org/abs/1806.07366.

10

http://jmlr.org/papers/v18/17-468.html
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://arxiv.org/abs/1806.07366

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. La-
grangian neural networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and Dif-
ferential Equations, 2019. URL https://openreview.net/forum?id=iE8tFa4Nq.

Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Raz-
van Pascanu. Sobolev training for neural networks. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/758a06618c69880a6cee5314ee42d52f-Paper.pdf.

Lawrence C Evans. Partial differential equations. American Mathematical Society, Providence, RI,
March 2022.

Joel H Ferziger and Milovan Peric. Computational methods for fluid dynamics. Springer, Berlin,
Germany, 3 edition, November 2001.

Herbert Goldstein. Classical mechanics. Pearson Education, Philadelphia, PA, 2011.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf.

Derek Hansen, Danielle C. Maddix, Shima Alizadeh, Gaurav Gupta, and Michael W. Mahoney.
Learning physical models that can respect conservation laws. In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pp. 12469–12510. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/hansen23b.html.

Philip Hartman. Ordinary Differential Equations. Society for Industrial and Applied Mathematics,
January 2002.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)
90009-T. URL https://www.sciencedirect.com/science/article/pii/
089360809190009T.

Wolfram Research, Inc. Mathematica, Version 13.1, 2022.

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. PIN-
NACLE: PINN adaptive collocation and experimental points selection. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=GzNaCp6Vcg.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. A system for massively parallel hyperparameter tuning, 2020a. URL
https://arxiv.org/abs/1810.05934.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations, 2020b. URL https://arxiv.org/abs/2003.03485.

11

https://openreview.net/forum?id=iE8tFa4Nq
https://proceedings.neurips.cc/paper_files/paper/2017/file/758a06618c69880a6cee5314ee42d52f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/758a06618c69880a6cee5314ee42d52f-Paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.mlr.press/v202/hansen23b.html
https://proceedings.mlr.press/v202/hansen23b.html
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://openreview.net/forum?id=GzNaCp6Vcg
https://openreview.net/forum?id=GzNaCp6Vcg
https://arxiv.org/abs/1810.05934
https://arxiv.org/abs/2003.03485

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Vladimir Maz’ya. Sobolev spaces. Grundlehren der mathematischen Wissenschaften. Springer,
Berlin, Germany, 2 edition, February 2011.

Yifan Mo, Liming Ling, and Delu Zeng. Data-driven vector soliton solutions of coupled nonlin-
ear schrödinger equation using a deep learning algorithm. Phys. Lett. A, 421(127739):127739,
January 2022.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: a distributed
framework for emerging ai applications. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, OSDI’18, pp. 561–577, USA, 2018. USENIX
Association. ISBN 9781931971478.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-
driven high-resolution weather model using adaptive fourier neural operators, 2022. URL
https://arxiv.org/abs/2202.11214.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis
Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning Research, pp. 1530–1538, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/rezende15.
html.

Jack Richter-Powell, Yaron Lipman, and Ricky T. Q. Chen. Neural conservation
laws: A divergence-free perspective. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Process-
ing Systems, volume 35, pp. 38075–38088. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
f8d39584f87944e5dbe46ec76f19e20a-Paper-Conference.pdf.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin, and
Xavier Glorot. Higher order contractive auto-encoder. In Dimitrios Gunopulos, Thomas Hof-
mann, Donato Malerba, and Michalis Vazirgiannis (eds.), Machine Learning and Knowledge Dis-
covery in Databases, pp. 645–660, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-23783-6.

Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview, 2019.
URL https://arxiv.org/abs/1912.05911.

Andrea Soltoggio, Eseoghene Ben-Iwhiwhu, Vladimir Braverman, Eric Eaton, Benjamin Ep-
stein, Yunhao Ge, Lucy Halperin, Jonathan How, Laurent Itti, Michael A. Jacobs, Pavan Kan-
tharaju, Long Le, Steven Lee, Xinran Liu, Sildomar T. Monteiro, David Musliner, Saptarshi
Nath, Priyadarshini Panda, Christos Peridis, Hamed Pirsiavash, Vishwa Parekh, Kaushik Roy,
Shahaf Shperberg, Hava T. Siegelmann, Peter Stone, Kyle Vedder, Jingfeng Wu, Lin Yang,
Guangyao Zheng, and Soheil Kolouri. A collective AI via lifelong learning and sharing at

12

https://openreview.net/forum?id=c8P9NQVtmnO
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2202.11214
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/f8d39584f87944e5dbe46ec76f19e20a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f8d39584f87944e5dbe46ec76f19e20a-Paper-Conference.pdf
https://arxiv.org/abs/1912.05911

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

the edge. Nature Machine Intelligence, 6(3):251–264, March 2024. ISSN 2522-5839. doi:
10.1038/s42256-024-00800-2.

Suraj Srinivas and Francois Fleuret. Knowledge transfer with Jacobian matching. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 4723–4731. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/srinivas18a.html.

Steven H Strogatz. Nonlinear dynamics and chaos. CRC Press, London, England, 2 edition, May
2019.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech.
Eng., 361(112732):112732, April 2020.

Fabricio Arend Torres, Marcello Massimo Negri, Marco Inversi, Jonathan Aellen, and Volker
Roth. Lagrangian flow networks for conservation laws. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Nshk5YpdWE.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM J. Sci. Comput., 43(5):A3055–A3081, January
2021.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks, 2022. URL https://arxiv.org/abs/2203.07404.

Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning From Multiple Experts: Self-paced
Knowledge Distillation for Long-Tailed Classification. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020, pp. 247–263, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-58558-7. doi: 10.1007/978-3-030-58558-7
15.

Xuan Zhang, Jacob Helwig, Yuchao Lin, Yaochen Xie, Cong Fu, Stephan Wojtowytsch, and Shui-
wang Ji. Sinenet: Learning temporal dynamics in time-dependent partial differential equa-
tions. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=LSYhE2hLWG.

Colby L Wight & Jia Zhao. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive
physics informed neural networks. Commun. Comput. Phys., 29(3):930–954, June 2021.

A IMPLEMENTATION DETAILS

In this Section, we give additional details on the implementation of the models and their respec-
tive losses. We start by defining the individual loss components in the most general case. Each
experiment will feature its required terms based on the problem definition.

13

https://proceedings.mlr.press/v80/srinivas18a.html
https://openreview.net/forum?id=Nshk5YpdWE
https://openreview.net/forum?id=Nshk5YpdWE
https://arxiv.org/abs/2203.07404
https://openreview.net/forum?id=LSYhE2hLWG

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sobolev norms. Let u(x) : Ω → R be the function we want to learn. In the case of u taking values
in RD, we can take the sum over the vector components. The main loss terms are those linked to
learning the solution in the domain Ω. The distance in the Sobolev space Wm,2(Ω) between the
function u and our Neural Network û is defined as

∥u− û∥2Wm,2(Ω) = ∥u− û∥2L2(Ω) +

m∑
l=1

∥∥Dlu−Dlû
∥∥2
L2(Ω)

, (4)

where Dlu is the l-th order differential of u, i.e. the gradient or Jacobian for l = 1 and the Hessian
for l = 2. Practically, these squared norms are approximated via Mean Squared Error (MSE) on
a dataset Dd of collocation points xi ∈ Ω, i = 1, . . . , Nd with their respective evaluations of the
function and its differentials:

Dd =
{
(xi, u(xi),Du(xi), . . . ,D

lu(xi)
}
, xi ∈ Ω, i = 1, . . . , Nd. (5)

The MSE is then calculated as

∥u− û∥2L2(Ω) ≃
1

Nd

Nd∑
i=1

(u(xi)− û(xi))
2

∥∥Dlu−Dlû
∥∥2
L2(Ω)

≃ 1

Nd

Nd∑
i=1

(
Dlu(xi)−Dlû(xi)

)2
, l = 1, . . . ,m

(6)

Each of the models will feature one or more terms in equation 6. In particular, OUTL uses only
the first, our methodologies use only the second with one or more values of l, and SOB uses both.
In the case of time-dependent problems, it is sufficient to consider the augmented domain Ω̃ =
[0, T]×Ω and collocation points that are time-domain couples (ti,xi), i = 1, . . . , Nd. The models’
derivatives are calculated using Automatic Differentiation (Baydin et al., 2018) using the python
PyTorch package (Paszke et al., 2019). In the case of SOB, the derivative terms of order l ≥ 2 are
approximated using discrete difference expectation over random vectors (see Czarnecki et al. (2017)
and Rifai et al. (2011) for more details).

PDE residuals. For PINN learning and the evaluation of the physical consistency of a model, we
adopt the L2 norm of the corresponding PDE residual, as in Raissi et al. (2019). Let the problem be
defined by a Partial Differential Equation Lu(x) = f(x), where L is a differential operator

Lu(x) = a0(x)u(x) +

n∑
i=1

ai(x)
∂u

∂xi
(x) +

n∑
i=1

n∑
j=1

aij(x)
∂2u

∂xi ∂xj
(x) + . . . (7)

The PDE residual measure we consider is the L2 norm of Lû − f , which is approximated again as
the MSE over collocation points dataset Dd defined above. In this case, there is no supervised target
and the operator is applied to the model using AD, obtaining the loss term

∥Lû− f∥2L2(Ω) =
1

Nd

Nd∑
i=1

(Lû(xi)− f(xi))
2
. (8)

This loss will be used to measure the consistency of our model to the physics of the problem or the
PDE in general in a strong sense since it contains the derivatives of the network itself. For PINN
learning, this is the term that substitutes equation 6 to learn the solution in the domain.

Boundary (and Initial) conditions. To learn the function u(x), as per theorem 2.2, we need
to provide some information at the boundary ∂Ω as well. Otherwise, we can only conclude that
u(x) and û(x) differ by a possibly non-zero constant. In one dimension, this reminds us of the
indefinite integral F (x) =

∫
f(x) + C, which is defined up to a constant C determined by some

condition on the function integral F . To measure the L2 distance between the true function and our
approximation on the boundary, we employ the usual L2(∂Ω) norm approximated via MSE loss on
a dataset of collocation points

Db = {(xi, u(xi) = b(xi)} , xi ∈ ∂Ω, i = 1, . . . , Nb. (9)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The norm is then approximated as

∥u− û∥L2(∂Ω) ≃
1

Nd

Nb∑
i=1

(b(xi)− û(xi))
2
. (10)

In the case of time-dependent problems, we consider the augmented domain Ω̃ = [0, T]×Ω. In this
case, the collocation points of the boundary conditions are time-space couples (ti,xi) ∈ [0, T]×∂Ω.
In this case, initial conditions u(0,x) = g(x) are also required as part of the extended boundary and
are learned with

∥u(0,x)− û(0,x)∥L2(Ω) ≃
1

Ni

Ni∑
i=1

(g(xi)− û(0,xi))
2
. (11)

In theory, the augmented boundary should contain the values of u(T,x) at the final time T . As these
are usually not present in PDE problems or classical PINN training procedures (Raissi et al., 2019),
we decided not to include them. As shown in our experiments in Section 4 and Appendix E, this
led to interesting results and differences between the models. PINN learning failed to propagate the
solution from t = 0 to higher times, while the other models did not suffer from this issue.

Each of the above components, when present, will have its weight in the total loss, which is one
hyperparameter to be tuned. Below we report details on the baseline models and their losses.

Details for the baseline models. The baselines used in the main text comprehend:

• OUTL, that is supervised learning of the solution u.
• PINN (Raissi et al., 2019), which is based on the optimization of the PDE residuals of the

network in equation 8 with automatic differentiation (Baydin et al., 2018).
• SOB, that is Sobolev learning, first introduced in Czarnecki et al. (2017), which considers

the both the losses on u and its derivatives, as in equation 6.

All of these learn IC and BC as well.

Loss comparison. We report here the losses used for each methodology to have a clean compari-
son between them. For space reasons, we write the true norms instead of the MSE approximations
described above. Each norm is in L2(Ω) or L2([0, T]× Ω) based on the setting.

OUTL: L(u, û) = λD∥u− û∥2 + λI IC + λBBC

DERL: L(u, û) = λD∥Du−Dû∥2 + λI IC + λBBC

DER+HESL: L(u, û) = λD

(
∥Du−Dû∥2 + ∥D2u−D2û∥2

)
+ λI IC + λBBC

HESL: L(u, û) = λD∥D2u−D2û∥2 + λI IC + λBBC

SOB: L(u, û) = λD

(
∥u− û∥2 + |Du−Dû∥2

)
+ λI IC + λBBC

SOB+HES: L(u, û) = λD

(
∥u− û∥2 + ∥Du−Dû∥2 + ∥D2u−D2û∥2

)
+ λI IC + λBBC

PINN: L(u, û) = λD∥Lu− f∥2 + λI IC + λBBC
(12)

where BC and IC are respectively given by equation 10 and equation 11.

B PROOFS OF THE THEORETICAL STATEMENTS

B.1 PROOF OF THEOREM 2.1

Proof. Since u(t) ∈ W 1,2([0, T]), u is actually Holder continuous or, to be precise, it has a
Holder continuous representative in the space (Maz’ya, 2011). Since L(u, û) → 0, we have that

û′(t)
L2([0,T])−−−−−−→ u′(t) and û(0) → u(0) (the initial conditions are just one point). If v = u − û,

we have that v′ L2

−−→ 0 and v converges to a function a.e. constant, which we can suppose to be
continuous as above. Then, since v(0) = 0, we have that v ≡ 0 and û ≡ u.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 PROOF OF THEOREM 2.2

We begin by stating Poincaré inequality (see also Evans (2022) and Maz’ya (2011)).
Theorem B.1 (Evans (2022) Section 5.6, theorem 3 and Section 5.8.1, theorem 1). Let 1 ≤ p < ∞
and Ω be a subset bounded in at least one direction. Then, there exists a constant C, depending only
on Ω and p, such that for every function u of the Sobolev space W 1,p

0 (Ω) of functions null at the
boundary, it holds:

∥u∥Lp(Ω) ≤ C∥∇u∥Lp(Ω) (13)

In case the function is not necessarily null at the boundary u ∈ W 1,p(Ω) and Ω is bounded, we have
that

∥u− (u)Ω∥Lp(Ω) ≤ C∥∇u∥Lp(Ω) (14)

where (u)Ω = 1
|Ω|

∫
Ω
udx is the average of u.

To prove one of our results we will also need the following generalization of Poincaré’s inequality.
Theorem B.2 (Maz’ya (2011) Section 6.11.1, corollary 2). Let Ω ⊆ Rn be an open set with fi-
nite volume, u ∈ W 1,p(Ω) such that the trace of u on the boundary ∂Ω is r-integrable, that is
∥u∥Lr(∂Ω) < ∞. Then, for every r, p, q such that (n− p)r ≤ p(n− 1) and q = rn

n−1 , it holds

∥u∥Lq(Ω) ≤ C
(
∥∇u∥Lp(Ω) + ∥u∥Lr(∂Ω)

)
(15)

In particular, if p = r = 2 we have that q = 2n
n−1 but since Ω has finite volume, the inequality holds

for each q ≤ 2n
n−1 and, in particular, for q = 2.

Corollary B.1. If p = r = 2, theorem B.2 holds for q = 2n
n−1 and, since Ω has finite volume, it

holds for each q ≤ 2n
n−1 and, in particular, for q = 2, that is

∥u∥L2(Ω) ≤ C
(
∥∇u∥L2(Ω) + ∥u∥L2(∂Ω)

)
(16)

We are now ready to prove theorem 2.2.

Proof. Let ûn be a sequence such that L(ûn, u) ≤ ϵn with ϵn → 0 and vn = ûn − u. From the
definition of L have that ∥∇vn∥L2(Ω) ≤ ϵn and similarly for ∥vn∥L2(∂Ω), so that

∥vn∥L2(Ω) ≤ C
(
∥∇vn∥L2(Ω) + ∥vn∥L2(∂Ω)

)
≤ 2Cϵn → 0

∥vn∥W 1,2(Ω) = ∥vn∥L2(Ω) + ∥∇vn∥L2(Ω) ≤ 2(C + 1)ϵn → 0
(17)

which gives us the first part of the thesis. Additionally, ∇vn → 0. This means that the limit of vn is
a.e. constant and, actually, continuously differentiable in Ω. Since vn → 0 and limn ∇vn = ∇v∞
(limits and weak derivatives commute), at the limit û∞ = u and, by continuity of the trace operator
in W 1,2(Ω), we also have that û∞|∂Ω = u|∂Ω in L2(∂Ω). The result can be easily extended to
multi-component functions by considering each component individually.

B.3 PROOF OF THEOREM 2.3

Proof. We show the results for time-independent PDEs, for time-dependent PDEs it is sufficient to
consider the extended domain Ω̃ = [0, T] × Ω, in which the initial (and final) conditions become
boundary conditions. We also show the result for functions with one component. The result can be
generalized by applying it to each component.

Let û be the trained Neural network. From theorem 2.2, we have that the network converges to the
solution of the PDE u in W 1,2(Ω) and that the two functions coincide almost everywhere, since
∇(û− u) = 0. From this, we deduce that the PDE is satisfied by û and the boundary conditions are
satisfied as well as per theorem 2.2.

Remark B.1. In the case of time-dependent PDEs, we will not provide the final conditions at t = T ,
which are part of the ”boundary” of the extended domain and are necessary for theorem 2.3. Since
our experiments are on regular functions, this has proven not to be an issue and the neural network
still converges.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C ON THE USE OF EMPIRICAL DERIVATIVES

As discussed in Section 2, when analytical or true derivatives are not available, we use empirical
ones via finite differences (Anderson et al., 2020) to approximate them:

∂u

∂xi
(x) ≃ u(x+ hei)− u(x)

h
, (18)

These approximations introduce errors, but the following result ensures that with a small enough h,
these derivatives are very similar to the true ones.

Theorem C.1. Let u ∈ W 1,2(Rn) and let Dϵ
xi
u be the difference quotient

Dϵ
xi
u(x) =

u(x+ hei)− u(x)

h
(19)

where ei is the unit vector in the xi direction. Then, we have that ∥Dϵ
xi
u∥L2(Rn) ≤ ∥ ∂u

∂xi
∥L2(Rn)

and Dϵ
xi
u → uxi in L2(Rn), which means that empirical derivatives converge to weak (or true)

ones as ϵ → 0. The same results holds for any open set Ω, with the convergence being true on every
compact subset of Ω. In practical terms, empirical derivatives converge a.e. for every point distant
at least h from the boundary.

Proof. Assuming the result for smooth integrable functions, we show the thesis using the char-
acterization of the Sobolev space W 1,2(Rn) via C∞

c (Rn) approximations with smooth functions
with compact support (Maz’ya, 2011). For each δ > 0, there exists ϕ ∈ C∞

c (Rn) such that
∥u− ϕ∥W 1,2(Rn) < δ. First, we note that for each u ∈ W 1,2(Rn)

|u(x+ hei)− u(x)| =
∣∣∣∣∫ 1

0

∂u

∂xi
(x+ htei)hdt

∣∣∣∣
≤

∫ 1

0

∣∣∣∣ ∂u∂xi
(x+ htei)

∣∣∣∣ |h|dt (20)

so that, by squaring and integrating∥∥∥∥u(x+ hei)− u(x)

h

∥∥∥∥2
L2(Rn)

≤
∥∥∥∥∫ 1

0

∣∣∣∣ ∂u∂xi
(x+ htei)

∣∣∣∣dt∥∥∥∥2
L2(Rn)

≤
∥∥∥∥ ∂u

∂xi

∥∥∥∥2
L2(Rn)

, (21)

which is the first part of the thesis. Applying this to u− ϕ one directly shows that

∥Dϵ
xi
u−Dϵ

xi
ϕ∥2L2(Rn) ≤ ∥uxi

− ϕxi
∥L2(Rn), (22)

Then, we have that

∥Dϵ
xi
u− uxi

∥L2(Rn) = ∥Dϵ
xi
u−Dϵ

xi
ϕ+Dϵ

xi
ϕ− ϕxi

+ ϕxi
− uxi

∥L2(Rn)

≤ ∥Dϵ
xi
u−Dϵ

xi
ϕ∥L2(Rn) + ∥Dϵ

xi
ϕ− ϕxi

∥L2(Rn) + ∥ϕxi
− uxi

∥L2(Rn)

≤ ∥uxi − ϕxi∥L2(Rn) + δ + δ

≤ 3δ
(23)

where the second inequality follows from equation 22 and the last one follows from choosing a small
enough ϵ. The same steps are true for every open subset Ω, by considering the L2

loc norm.

D EXPERIMENTAL SETUP

This Section is dedicated to additional details on the setup and tuning of the experiments.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Computational time of 1 epoch for each experiment. For NCL we reported the computa-
tional time of 100 steps due to the definition and length of one epoch. The NCL column results are
on the specific architecture of Richter-Powell et al. (2022).

Model Pendulum Allen-Cahn Continuity Navier-Stokes KdV NCL

PINN 6.0451 2.9809 6.0450 8.3473 37.197 9.4651
DERL 5.2647 1.2138 5.8674 4.8215 17.851 8.3582
HESL / / / / 25.431 /
DER+HESL / / / / 28.754 /
OUTL 3.3748 0.87363 5.3797 3.4959 14.730 7.8256
SOB 5.6974 1.3320 5.8871 5.2402 18.170 8.3365
SOB+HES / / / / 24.338 /

D.1 MODEL TUNING

For each experiment, each model was tuned individually on the task to find the best parameters.
This was done to extract the best performance, to have a fair comparison among the methodologies,
and to measure their effectiveness in the tasks. The hyperparameters to be tuned are given by the
weights of the different norms in equation 12, as well as the learning rate. The batch size was fixed
for each experiment beforehand.

The tuning was conducted using the Ray library (Moritz et al., 2018) with the HyperOpt search
algorithm (Bergstra et al., 2013) and the ASHA scheduler (Li et al., 2020a) for early stop-
ping of unpromising samples. For each weight λD, λI , λB , the search space was the interval
[10−3, 102] with log-uniform distribution, and for the learning rate, we consider discrete values
in [0.00005, 0.0001, 0.0005, 0.001]. Most importantly, the target metric of the tuning to evaluate
individual runs was the L2 loss on the function ∥u − û∥L2(Ω), being the usual target in data-driven
tasks.

For PDE and distillation experiments, that is all but the pendulum one, there is no
train/validation/testing split, as the solution has to be learned in the whole domain. For the pen-
dulum experiments that involve full trajectories, 30 trajectories are for training and 10 for validation
at the tuning stage. These are used together as 40 training trajectories in the final model training,
while 10 unseen trajectories are used for model testing. For the pendulum interpolation task in
Section E.1, a total of 40 trajectories are used for in the tuning phase: points with times between
t = 3.75 and t = 6.25 are unseen by the models and used for tuning/validation, while 10 new
complete trajectories are used for testing.

D.2 COMPUTATIONAL TIME

Although effective, optimization of higher-order derivatives of a Neural Network can be costly in
time and computational terms. On the other hand, the functional and the Automatic Differentiation
framework of Pytorch (Paszke et al., 2019) allowed us to calculate such quantities with ease and in
contained time. For a complete comparison, we calculated the time to perform one training epoch
for each task and model. Results are available in table 8. As expected, OUTL is the fastest having
the most basic objective, while DERL beats SOB and PINN require at least one order of derivative
to be calculated. It seems clear that the more terms in equation 12, the longer the training time,
as seen by adding the Hessian matrices in the KdV experiment. Here, the third-order derivatives
have a huge impact on PINN training. On the other hand, the approximations employed in SOB to
calculate the Hessian matrices did not significantly improve the computation time compared to our
approach with Automatic Differentiation. For reference, all the experiments were performed on an
NVIDIA H100 GPU with 80 GB or RAM.

E ADDITIONAL RESULTS AND EXPERIMENTAL SETUPS

In this Section, we provide additional results and details for the setup of each experiment.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 5: (a) Schematic representation of the pendulum system: the state variables are the angle
θ the rope makes with the vertical direction. (b) Phase space of the damped pendulum. Arrows
represent the direction and intensity of θ̇, ω̇. Testing trajectories are also plotted. (c) Phase space of
the conservative pendulum with no dampening (b = 0).

E.1 PENDULUM

We start by describing the pendulum problem from a physical point of view. We consider the rope
pendulum under the force of gravity Fg = −mg and a dampening force Fd = −blθ̇, where θ
is the angle the rope makes w.r.t. the vertical, b is a parameter for the dampening force, l,m are
respectively the length of the rope and the mass of the pendulum. A schematic representation of
the system can be found in figure 5a, and we also plot its phase space on (θ, θ̇) along with some
trajectories with dampening 5b or without 5c, that is the conservative case. The evolution of the
pendulum is given by the ODE mlθ̈ +mg sin(θ) + blθ̇ = 0, which can be expressed in a first-order
system as where ω is an alternative name for the angular speed θ̇, leading to equation 24 that we also
presented in section 2.

E.1.1 TUNING DETAILS

For each pendulum experiment, we sampled a total of 50 trajectories with IC θ0, ω0 randomly chosen
in

[
π
2 ,

π
2

]
× [−1.5, 1.5]. Of these 50 trajectories, 10 are kept for testing, while the other 40 are for

training and validation. For the experiments with complete trajectories, the tuning is performed
with 30 as training and 10 for validation. The tuning objective was to minimize the L2 loss on
the validation trajectories. For the interpolation task in Section E.1.4, all 40 trajectories are used
together, with the time region between 3.75 and 6.25 used for validation only and being totally
unavailable during training.

E.1.2 DIFFERENTIABILITY WITH RESPECT TO INITIAL CONDITIONS

For ODEs such as the pendulum one

{
θ̇ = ω

ω̇ = − g
l sin(θ)−

b
mω,

(24)

the solution (θ(t, θ0, ω0), ω(t, θ0, ω0)) is actually continuously differentiable with respect to the IC
θ0, ω0, since the right-hand sides in equation 24 are C1 as well. For a proof, see Hartman (2002),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 0 11.5
1.0
0.5
0.0
0.5
1.0
1.5 DERL

1 0 11.5
1.0
0.5
0.0
0.5
1.0
1.5 OUTL

1 0 11.5
1.0
0.5
0.0
0.5
1.0
1.5 PINN

1 0 11.5
1.0
0.5
0.0
0.5
1.0
1.5 SOB

0.003
0.187
0.371
0.554
0.738
0.922
1.106
1.290
1.473
1.657

Figure 6: L2 residual on the initial condition differentiability PDE. Blue is better.

Table 9: Results for the damped pendulum experiment with randomly sampled times and empirical
derivatives. We report the loss on the state and its derivatives on testing trajectories, L2 distances
between true and predicted fields, PDE residuals, and PDE residual for the initial condition differ-
entiability. Fields and PDE residuals are calculated at t = 0.

Model State loss Derivative loss Field error PDE res. Init PDE res.

DERL (ours) 0.026976 0.010855 0.27220 0.21309 0.56515
OUTL 0.016530 0.036725 1.0191 0.83332 2.0075
PINN 0.018873 0.018849 0.55090 0.47905 1.2383
SOB 0.0160474 0.015510 0.45475 0.38576 1.1402

theorem 3.1. In this specific case, we can derive the following PDEs:

∂

∂θ0

∂θ

∂t
=

∂ω

∂θ0
∂

∂ω0

∂θ

∂t
=

∂ω

∂ω0

∂

∂θ0

∂ω

∂t
= −g

l

∂ sin(θ)

∂θ0
− b

m

∂ω

∂θ0
,

∂

∂ω0

∂ω

∂t
= −g

l

∂ sin(θ)

∂ω0
− b

m

∂ω

∂ω0

(25)

which are true for any trajectory (θ(t, θ0, ω0), ω(t, θ0, ω0)). In the experiments, we calculated the
L2 PDE residual of equation 25 in plain PINN style, to see which model learns to be differentiable
w.r.t. the IC.

E.1.3 ADDITIONAL RESULTS ON THE DAMPED PEDULUM

To complete the results of Section 4.1, we plot the L2 residual on the initial condition differentiability
PDE in equation 25. Figure 6 shows the domain’s local L2 residual. We decided to plot this instead
of error differences to appreciate better the generalization power of DERL.

We repeated the same experiment using empirical derivatives, calculated by using finite difference
with h = 10−3 on the original trajectories. We also used randomly sampled times to evaluate trajec-
tories, to simulate a setting where the time sampling is not constant. We report the relevant losses
in table 9, where DERL outperforms the other methods in almost every metric, especially in those
showing the generalization capability. We conclude that learning derivatives improves generaliza-
tion in the models. DERL has also a simpler objective than PINNs and the other methodologies,
which learn the trajectory itself as well, leading to better results.

E.1.4 INTERPOLATION EXPERIMENT

We also performed a different experiment, where we tried to see how the models perform in an out-
of-distribution setting. In particular, we chose to provide as training samples only the data simulated
between t = 0 and t = 3.75, and between t = 6.25 and t = 10, effectively the 70% of the
trajectories’ length. The task is then to correctly reconstruct the trajectory for times t ∈ [3.75, 6.25].
To have a fair comparison, we feed to the network the final state at t = 10, similarly to how we give

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Results for the damped pendulum experiment on trajectory interpolation. We report the
loss on the unseen trajectories (New traj. loss) and the loss on the unseen part of the training trajec-
tories (Test loss), L2 distances between true and predicted fields, PDE residuals, and PDE residual
for the initial condition differentiability in equation 25. Fields and PDE residuals are calculated at
t = 0.

Model New traj. loss Test loss Field error ODE res. Init PDE res.

DERL (ours) 0.029449 0.011092 0.33621 0.31579 0.81501
OUTL 0.084394 0.048155 0.67805 0.54420 1.4217
PINN 0.032684 0.015972 0.39573 0.28835 0.93173
SOB 0.019661 0.011633 0.40108 0.39563 1.1390

the initial one. This is because the PINN and DERL methodologies would not be able to reconstruct
the final part of the trajectory without a context on that section, which SOB and OUTL naturally
have by learning directly the states.

Table 10 shows the numerical results for this task. In this case, we decided to report both the error
on the full new trajectories, as well as the error on the unseen section of the training trajectories. It is
clear that DERL outperforms the other models in generalizing the field and the ODE to new initial
conditions. Our method is the best at interpolating the training trajectories, and the second best at
predicting new complete trajectories. Graphical results on the testing trajectories are available in
figure 7. We conclude that OUTL is the worst at interpolating trajectories knowing the start and the
end, while the others have similar performance

0 2 4 6 8 10
Time: t

1.0

0.5

0.0

0.5

An
gl

e:

DERL time trajectories

True trajectories
Predicted trajectories

(a) DERL

0 2 4 6 8 10
Time: t

1.0

0.5

0.0

0.5

An
gl

e:

OUTL time trajectories

True trajectories
Predicted trajectories

(b) OUTL

0 2 4 6 8 10
Time: t

1.0

0.5

0.0

0.5

An
gl

e:

PINN time trajectories

True trajectories
Predicted trajectories

(c) PINN

0 2 4 6 8 10
Time: t

1.0

0.5

0.0

0.5

An
gl

e:

SOB time trajectories

True trajectories
Predicted trajectories

(d) SOB

Figure 7: True and predicted trajectories in the pendulum damped interpolation experiment.

E.1.5 HNN AND LNN SETUP

In this Section, we describe the setup we used for the Hamiltonian Neural Network (Greydanus
et al., 2019) and Lagrangian Neural Network (Cranmer et al., 2019). In particular, we will explain
how we adapted these methods to learn non-conservative fields, which is not present in their original
works.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11: Results for the conservative pendulum experiment. We report the loss on the state and
its derivatives on testing trajectories, L2 distances between true and predicted fields, PDE residuals,
and PDE residual for the initial condition differentiability. Fields and PDE residuals are calculated
at t = 0.

Model Test loss Test der. loss Field error PDE res. Init PDE res.

DERL (ours) 0.11046 0.073087 0.49334 0.49216 2.0274
OUTL 0.082856 0.10686 0.92589 0.68083 2.4250
PINN 0.22413 0.18899 0.62099 0.51660 1.8593
SOB 0.092996 0.072278 0.60668 0.66383 2.2725

In both the conservative and dampened cases, we used the setup described in their original arti-
cles without modifications in the architecture, initialization, and training. We now describe how to
include the dampening effects through data or particular processing during inference.

Hamiltonian Neural Network. In this case, the neural network parametrizes the Hamiltonian
function H(p, q), from which derivatives one obtains

∂p

∂t
= −∂H

∂q
,

∂q

∂t
=

∂H

∂p
. (26)

Equation 26 is valid in the conservative case, while in the dampened case it is sufficient to add the
term −bp to ∂p

∂t , leading to the correct formulation as in equation 24. This way, the HNN learns
just the conservative part of the field, which was originally made for, while we add the dampening
contribution externally.

Lagrangian Neural Network. In this case, we need to look at the Lagrangian formulation of
mechanics, in particular at the Euler-Lagrangian equation. Given a neural network that parametrizes
the Lagrangian function L(θ, θ̇), we have that (see Cranmer et al. (2019) for the full explanation)

d

dt
∇θ̇L −∇θL = 0. (27)

We can add the effect of external forces, in this case, the dampening, using d’Alembert’s principle
of virtual work (Goldstein, 2011). In particular, given the force in vector form

Fd = −blθ̇[cos(θ), sin(θ)] (28)

and the position of the pendulum as a function of the coordinates

x(t) = [l sin(θ),−l cos(θ)], (29)

the virtual work is given by

Q(t, θ, θ̇) = Fd ·
∂x(t)

∂θ
= −bl2θ̇. (30)

It is then sufficient to put this term on the right-hand side of equation 27 and proceed with the
calculations as in Cranmer et al. (2019) to obtain the full update of the model.

E.1.6 CONSERVATIVE PENDULUM

The setup for the conservative pendulum experiment is the same as for the dampened one, with
the fundamental difference that b = 0 in both data generation and during training. We report the
numerical results in table 11, with the same definitions as in Section 4.1. We also plot the field error
differences as defined in Section 4.1 in figure 8. In this case, the results are closer in all metrics,
but DERL is still the best at generalizing the field to new starting points and its error on the test
trajectories is close to the best, given by OUTL, while PINN struggled.

In this case, HNN (field L2 error 0.13570) and LNN (field L2 error 0.085388) outperform all other
methodologies as they are precisely built for this task. We still remark that their objective is solely
to learn the field, which is easier than whole trajectories.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 0 1

1

0

1

OUTL - DERL

1 0 1

1

0

1

PINN - DERL

1 0 1

1

0

1

SOB - DERL

0.362
0.240
0.117

0.006
0.128
0.251
0.374
0.496
0.619
0.742

(a)

1 0 1

1

0

1

HNN - DERL

1 0 1

1

0

1

LNN - DERL

0.7384
0.6560
0.5736
0.4912
0.4088
0.3264
0.2440
0.1616
0.0792

0.0032

(b)

Figure 8: Comparison in the learned field at t = 0 for the pendulum experiment expressed as the
differences of the L2 errors between the other methodologies and DERL. The blue area is where we
perform is better.

1.0 0.50.0 0.5 1.0x 1.0
0.5

0.0
0.5

1.0

y

1.0
0.5

0.0
0.5
1.0

u

(a) True solution u

1.0 0.50.0 0.5 1.0x 1.0
0.5

0.0
0.5

1.0

y

0.50
0.25

0.00
0.25
0.50

f

(b) External forcing

Figure 9: Allen-Cahn equation. (a) True solution and (b) external forcing f

E.2 ALLEN-CAHN EQUATION

We start by plotting the true solution u along with the forcing function f in figure 9.

We now present the additional results for the Allen-Cahn equation. In particular, we show
that similar results to the ones in Section 4.2 can be obtained using random points in-
stead of an equispaced grid. For this matter, the training dataset was created by ran-
domly sampling 10000 points in the x, y plane, along with their analytical derivatives.

Table 12: Results for the Allen-Cahn equation: L2 distances from
the ground truth. Randomly sampled points in the domain.

Model ∥u− utrue∥2 ∥∇u−∇utrue∥2 PDE L2 norm

DERL (ours) 0.0090879 0.031058 0.0095793
OUTL 0.018933 0.18600 0.034516
PINN 0.014867 0.084936 0.018048
SOB 0.0093875 0.029891 0.0092199

Table 12 shows the relevant
metrics, that is the L2 dis-
tance w.r.t. the ground truth
on u,∇u, as well as the PDE
L2 residual. For a graphi-
cal comparison, in figure 10
we report the L2 error on
u and PDE residual in the
form of differences between
the other methodologies and
DERL: blue regions are where
we perform better. The key takeaway is, as in Section 4.2, that learning the derivatives is both
sufficient and better than learning just u. We clearly see it in the results, where DERL and SOB
performed best in all metrics, while PINN learning is at least 2 times worse.

E.3 CONTINUITY EQUATION

For the experimental setup, the original solution was calculated using finite volumes (Ferziger &
Peric, 2001) on a grid with ∆x = ∆y = 0.01 and time discretization of ∆t = 0.001. To reduce

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 OUTL - DERL

1.0 0.5 0.0 0.5 1.0

PINN - DERL

1.0 0.5 0.0 0.5 1.0

SOB - DERL

0.01233
0.00603

0.00027
0.00657
0.01287
0.01918
0.02548
0.03178
0.03808
0.04438

(a) u error

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 OUTL - DERL

1.0 0.5 0.0 0.5 1.0

PINN - DERL

1.0 0.5 0.0 0.5 1.0

SOB - DERL

0.01456
0.00696

0.00065
0.00825
0.01585
0.02345
0.03105
0.03866
0.04626
0.05386

(b) PDE L2 residual

Figure 10: L2 loss on u and PDE residual comparison between the methodologies. Differences
between the methodology and the DERL errors. Positive (blue) regions are where we perform
better

the length of training we downsampled the solution to ∆t = 0.01. The empirical derivatives are
calculated with h = 0.01 on each component.

We start by showing the true solution to the continuity equation at t = 0, 5, 9 in figure 11a, together
with the L2 errors at t = 0 (figure 11b), t = 5 (figure 11c), and t = 9 (figure 11d). The results show
clearly that the best methodologies to learn the density are DERL and OUTL, with the latter being
the worst at physical consistency as reported in Section 4.3. The effect of PINN losing precision as
time increases is evident, as from t = 5 to t = 9 the error grows even more.

E.3.1 RANDOMLY SAMPLED POINTS AND EMPIRICAL DERIVATIVES

For this equation, we performed an additional experiment where we tested the effects of using an
interpolated curve on the solution to randomly sample points and calculate derivatives. This simu-
lates a situation with sparse data and no analytic derivatives of ρ available. For this purpose, we used
the data from the grid calculated as in Section 4.3 and used a regular grid interpolator from SciPy
(Virtanen et al., 2020) with cubic interpolation for third-order accuracy. Then, we randomly sam-
pled 10000 points in the t, x, y domain, and calculated finite difference derivatives with h = 0.001.

Table 13: Results for the continuity equation. L2

norms w.r.t. the ground truth.

Model ∥ρ− ρtrue∥2 PDE L2 norm

DERL (ours) 0.027702 0.065162
OUTL 0.023268 0.13277
PINN 0.10463 0.049962
SOB 0.022879 0.059103

Numerical results are available in table 13,
while figures 12a and 12b show the compar-
isons on physical consistency (PDE L2 resid-
ual) and the L2 error on ρ across methodolo-
gies. The format is the usual difference between
the methods’ error and the DERL one, with
positive values (blue regions) meaning we are
performing better. Even in this case DERL is
among the best-performing models, with a ρ er-
ror and physical consistency respectively simi-
lar to SOB and PINN. The latter fails again at propagating the solution correctly, while OUTL is
clearly the worst at learning the physics of the problem. This shows that our methodology works
even with empirical derivatives calculated on an interpolation of the true solution. We remark again

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Time: 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Time: 5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Time: 9

0.0000

0.1021

0.2042

0.3062

0.4083

0.5104

0.6125

0.7145

0.8166

0.9187

(a) True density

1 0 11.5

1.0

0.5

0.0

0.5

1.0

1.5 DERL

1 0 1

OUTL

1 0 1

PINN

1 0 1

SOB

0.00000
0.00839
0.01677
0.02516
0.03355
0.04194
0.05032
0.05871
0.06710
0.07548

(b) Error at t = 0

1 0 11.5

1.0

0.5

0.0

0.5

1.0

1.5 DERL

1 0 1

OUTL

1 0 1

PINN

1 0 1

SOB

0.0000
0.0171
0.0342
0.0514
0.0685
0.0856
0.1027
0.1199
0.1370
0.1541

(c) Error at t = 5

1 0 11.5

1.0

0.5

0.0

0.5

1.0

1.5 DERL

1 0 1

OUTL

1 0 1

PINN

1 0 1

SOB

0.0000
0.0232
0.0464
0.0696
0.0928
0.1160
0.1392
0.1624
0.1855
0.2087

(d) Error at t = 9

Figure 11: Continuity equation experiment. (a) True densities at t = 0, 5, 9. L2 errors for the
compared methodologies at (b) t = 0, (c) t = 5, (d) t = 9.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1 0 11.5

1.0

0.5

0.0

0.5

1.0

1.5 OUTL - DERL

1 0 1

PINN - DERL

1 0 1

SOB - DERL

0.0689
0.0328

0.0033
0.0394
0.0755
0.1116
0.1477
0.1838
0.2199
0.2560

(a)

1 0 11.5

1.0

0.5

0.0

0.5

1.0

1.5 OUTL - DERL

1 0 1

PINN - DERL

1 0 1

SOB - DERL

0.0262
0.0002

0.0258
0.0519
0.0779
0.1039
0.1299
0.1560
0.1820
0.2080

(b)

Figure 12: Continuity equation task with randomly sampled points: (a) Comparison of L2 PDE
residual on the domain at t = 5. Differences between the other methods’ residuals and DERL. Blue
regions are where we perform better (b) Same plot but with L2 distance w.r.t. the true solution ρtrue

x
0.0

0.1

0.2

0.3

0.4

y

True X velocity

x
0.0

0.1

0.2

0.3

0.4

y

True Y velocity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

True Pressure

0.862

0.578

0.294

0.010

0.274

0.558

0.841

1.125

1.409

1.693

(a)

x
0.0

0.1

0.2

0.3

0.4

y

True X velocity

x
0.0

0.1

0.2

0.3

0.4

y

True Y velocity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

True Pressure

0.845

0.562

0.278

0.005

0.289

0.572

0.856

1.139

1.423

1.706

(b)

x
0.0

0.1

0.2

0.3

0.4

y

True X velocity

x
0.0

0.1

0.2

0.3

0.4

y

True Y velocity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

True Pressure

0.843

0.559

0.274

0.010

0.295

0.580

0.864

1.149

1.433

1.718

(c)

Figure 13: Navier Stokes equations true solution (a) t = 0 (b) t = 1 (c) t = 2

the importance of learning the derivatives, as DERL and SOB are the best all-around models for
this task.

E.4 NAVIER-STOKES EQUATIONS

In the following Sections, we describe the original setup for the Navier-Stokes experiment, as well
as provide additional results.

E.4.1 SETUP

The full domain is the rectangle [0, 2.2] × [0, 0.41] with a circular obstacle of center [0.2, 0.2] and
radius 1

20 . The IC is u = 0, p = 0 everywhere, while BC are given by: u = 0 on the top, bottom,
and obstacle boundary, u2 = 0 on the left boundary and p = 0 on the right one. The horizontal
speed u1 at the left boundary is given by the function

b(t, y) =
y(0.41− y)

0.412
e5t

6e20 + e5t
(31)

The equation was solved for t ≤ 10 with the finite volumes method and time discretization (An-
derson et al., 2020) with second-order polynomials and a grid with maximum size 0.0005 using the
software Mathematica (Inc., 2022). In the learning task, we instead considered only the region at the
right of the circular obstacle starting at x = 0.5, similar to Raissi et al. (2019). We focused on times
8 ≤ t ≤ 10, where the solution is periodically stable. See figure 13 for the plots of u, p at those
times. The IC is obtained from the reference solution at t = 8 and the BC is changed accordingly,
particularly for the new left boundary x = 0.5. The data, with partial derivatives from Mathematica,
is then saved with a grid size of ∆x = ∆y = ∆t = 0.01. The MLPs take as input (t, x, y) and
predict u(t, x, y), p(t, x, y) and are made of 8 layers of 128 units each with Tanh activation and were
trained for 200 epochs with batch size 512. While in Raissi et al. (2019) a latent potential is modeled
to satisfy automatically ∇ · u = 0, here we model the components of the velocity independently, to
see if we can learn to satisfy 2 PDEs at the same time.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

x
0.0

0.1

0.2

0.3

0.4

y

X velocity

x
0.0

0.1

0.2

0.3

0.4

y

Y velocity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

Pressure

0.853

0.573

0.292

0.012

0.269

0.549

0.829

1.110

1.390

1.670

(a)

x
0.0

0.1

0.2

0.3

0.4

y

X velocity

x
0.0

0.1

0.2

0.3

0.4

y

Y velocity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

Pressure

0.227

0.002

0.231

0.459

0.688

0.916

1.145

1.373

1.602

1.830

(b)

x
0.0

0.1

0.2

0.3

0.4

y

X velocity

x
0.0

0.1

0.2

0.3

0.4

y

Y velocity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

Pressure

0.603

0.299

0.006

0.310

0.614

0.919

1.223

1.527

1.832

2.136

(c)

Figure 14: Results from the trained PINN model for the Navier Stokes experiment at (a) t = 0 (b)
t = 1 (c) t = 2

x
0.0

0.1

0.2

0.3

0.4

y

OUTL - DERL

x
0.0

0.1

0.2

0.3

0.4

y

SOB - DERL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

PINN - DERL

0.377

0.192

0.008

0.177

0.362

0.546

0.731

0.916

1.100

1.285

(a)

x
0.0

0.1

0.2

0.3

0.4

y

OUTL - DERL

x
0.0

0.1

0.2

0.3

0.4

y

SOB - DERL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

PINN - DERL

1.701

1.138

0.575

0.013

0.550

1.113

1.675

2.238

2.800

3.363

(b)

x
0.0

0.1

0.2

0.3

0.4

y

OUTL - DERL

x
0.0

0.1

0.2

0.3

0.4

y

SOB - DERL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

PINN - DERL

0.004

0.108

0.220

0.332

0.444

0.556

0.668

0.780

0.892

1.004

(c)

Figure 15: Navier Stokes equations results. Error difference between DERL and other methods
for (a) the momentum equation residual (time-averaged), (b) the incompressibility equation residual
(time-averaged), and (c) for the learned solution. Blue regions are those where DERL performs
better. Results for OUTL and PINN had to be capped at 1.5.

E.4.2 ADDITIONAL RESULTS FOR SECTION 4.4

We report here additional results and the plots relative to the Navier-Stokes experiment with true
derivatives and points from the original grid.

As said in Section 4.4, the PINN was able to learn only the IC at t = 0, failing to propagate it
correctly for higher times and diverging from the true solution by a large margin. This can be seen
from figure 14 where we plot the results to be compared with figure 13. We then plot the error
difference between DERL and the other methodologies in the learned solution (figure 15c) and the
PDE residual of both the incompressibility (figure 15b) and momentum equation (figure 15a). The
comparison is expressed in terms of the time-averaged difference between the method’s L2 local
PDE residual and the one from DERL so that blue regions are where we perform better. We remark
that OUTL and PINN had to be capped at 1.5 for the sake of image quality, as they performed very
badly in some regions. The figures clearly show the great performance of DERL in learning to be
consistent with the momentum equation. OUTL, on the other hand, struggles especially near the
boundary.

E.4.3 RESULTS ON RANDOMLY SAMPLED POINTS

The results tell us a very similar story to the one in Section 4.4, even with em-
pirical derivatives and interpolated data. Derivatives are sufficient to learn the over-
all solution and provide more physical information than the values of u, p only. Ex-

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

x
0.0

0.1

0.2

0.3

0.4

y

OUTL - DERL

x
0.0

0.1

0.2

0.3

0.4

y

SOB - DERL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

PINN - DERL

0.384

0.193

0.003

0.188

0.379

0.570

0.761

0.952

1.143

1.334

(a)

x
0.0

0.1

0.2

0.3

0.4

y

OUTL - DERL

x
0.0

0.1

0.2

0.3

0.4

y

SOB - DERL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

PINN - DERL

1.468

1.175

0.882

0.589

0.297

0.004

0.289

0.582

0.875

1.168

(b)

x
0.0

0.1

0.2

0.3

0.4

y

OUTL - DERL

x
0.0

0.1

0.2

0.3

0.4

y

SOB - DERL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

0.0

0.1

0.2

0.3

0.4

y

PINN - DERL

0.001

0.154

0.307

0.460

0.613

0.766

0.919

1.072

1.225

1.378

(c)

Figure 16: Navier Stokes equations results for randomly sampled data and empirical derivatives
(a) Comparison between DERL and other methods for the momentum equation residual (time-
averaged). Results for OUTL had to be capped at 1.5 for image quality reasons. (b) Comparison
for the incompressibility equation residual (time-averaged). (c) Comparison for the L2 error on the
solution (time-averaged). Blue regions are those where DERL performs better.

cluding PINN, the error on the solution is similar across methods but the momen-
tum equation consistency of learning with derivative information is unmatched by OUTL.

Table 14: Results for the Navier Stokes experiments on randomly
sampled points. L2 error on the final solution, L2 norms of the
residuals of the 2 PDEs. Norms are calculated across time-space.

Model L2 error (E4.M) L2 norm (E4.I) L2 norm

DERL (ours) 0.020290 0.33351 0.35802
OUTL 0.017841 0.61518 0.27716
PINN 0.81586 13.115 7.8778
SOBL 0.021293 0.32908 0.25817

Similarly to the continuity
experiment, we tried a set-
ting with randomly sampled
points in the domain, ob-
tained from a third-order in-
terpolation of the true solu-
tion with SciPy. Empirical
derivatives are obtained via
finite differences with a dis-
placement of h = 10−3. Nu-
merical results are reported in
14, while the time-averaged

comparison in L2 error and physical consistencies are available in figure 16.

E.5 KNOWLEDGE DISTILLATON

E.5.1 KORTEWEG-DE VRIES EQUATION

Teacher and student model setup. The reference solution is first obtained using the Scipy (Vir-
tanen et al., 2020) solver with Fast Fourier Transforms on a grid with ∆x = ∆t = 0.005. Then, a
PINN is carefully trained on equation (E5) in table 1 and is treated as the teacher model to distill
knowledge from. For the teacher model, we used an MLP with 9 layers of 50 units, tanh activation,
and a batch size of 64. We trained the network for 200 epochs with hyperparameters given by the
tuning process with minimum u loss as the objective. After the teacher’s training, we save a dataset
of its outputs uPINN(x, t), its derivatives ∇uPINN(x, t) and its hessian matrix HPINN(x, t), evaluated
at the same points it was trained on and calculated via automatic differentiation (Baydin et al., 2018).
Then, the student networks are trained using these datasets and the original BC and IC.

Additional results. We report here additional plots related to the Korteweg-de Vries experiment
in Section 4.5.1. Figures 17a and 17b show on the (t, x) domain the comparison of the errors on
u(t, x) and the local PDE residual for the tested distillation methods.

As we can see, every tested method learns similarly to approximate the true solution u(t, x), with
slightly better performances on models with fewer derivatives to learn. On the other hand, more
derivatives help the consistency of the model to the underlying PDE compared to no derivatives, as

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

1.0

0.5

0.0

0.5

1.0 DERL OUTL SOB

0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 SOB

0.0 0.5 1.0

PINN

0.0 0.5 1.0

HESL

0.00000
0.01044
0.02088
0.03133
0.04177
0.05221
0.06265
0.07310
0.08354
0.09398

(a)

1.0

0.5

0.0

0.5

1.0 DERL OUTL SOB

0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 SOB

0.0 0.5 1.0

PINN

0.0 0.5 1.0

HESL

0.000
0.204
0.408
0.612
0.816
1.020
1.224
1.429
1.633
1.837

(b)

Figure 17: Korteweg-de Vries equation experiment. (a) Errors with respect to the true solution utrue
in the (t, x) space. (b) Local PDE L2 residual, physical consistency. In OUTL, the residual is
capped at 2 for clarity reasons on the other plots.

in OUTL, which fails in this regard. It is worth noticing, as reported in Section 4.5.1, that the PINN
was not able to optimize the BC, while other methodologies adapted well to them.

E.5.2 NCL DISTILLATION

Model setup. The model architecture is the same as in Richter-Powell et al. (2022), that is a MLP
with 4 layers of 128 units, trained for 10000 steps on batches of 1000 random points in the 3D unit
ball. As in the previous task, each student model has the same architecture as the teacher model, and
the hyperparameters are tuned for the best loss on imitating the teacher’s output. Each student model
is trained for 10 epochs on the dataset created by the output and derivatives of the teacher network.
We used more than 1 epoch to ensure convergence of the models. We remark that the errors on the
solution are calculated with respect to the NCL model, as no numerical solver we tried converged to
the true solution.

Additional results. We report here additional plots and results for the distillation experiment on
the Neural Conservation Laws model (Richter-Powell et al., 2022). Figure 18 shows the compari-
son among methodologies in terms of error differences between OUTL, SOB, and DERL so that
positive blue regions are where our methodology performs better. We plot the errors on u,Du with
respect to the NCL reference model on the Z = 0 plane, as well as the PDE residual error on the
momentum (E6.M) and incompressibility (E6.I) equations in table 1. Except for some initial con-
ditions, DERL outperforms the other two methodologies, especially in the u,Du errors and in the
momentum equation consistency.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

OU
TL

T = 0

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.25

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.5

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

SO
B

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0307

0.0161

0.0014

0.0132

0.0279

0.0425

0.0572

0.0719

0.0865

0.1012

(a) u error comparison

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

OU
TL

T = 0

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.25

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.5

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
SO

B

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.616

0.032

0.679

1.326

1.974

2.621

3.269

3.916

4.563

5.211

(b) Du error comparison

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

OU
TL

T = 0

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.25

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.5

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

SO
B

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.775

0.002

0.772

1.545

2.319

3.092

3.866

4.639

5.413

6.186

(c) Momentum eqn. error comparison

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

OU
TL

T = 0

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.25

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
T = 0.5

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

SO
B

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.514

0.338

0.162

0.015

0.191

0.367

0.543

0.719

0.896

1.072

(d) Incompressibility eqn. error comparison

Figure 18: Neural Conservation Laws distillation. Comparisons between the methodologies on
u,Du errors w.r.t. the reference model and PDE residuals on the Z = 0 plane. All plots represent
the difference between the method error and the DERL error, so that positive (blue) regions are
where DERL performs better.

30

	Introduction
	On the Importance of Derivative Learning
	Theoretical analysis

	Related Works
	Experiments
	Damped Pendulum
	Allen-Cahn equation
	Continuity Equation
	Navier Stokes equations
	Transferring physical information across models
	PINN distillation
	NCL distillation

	Conclusion
	Implementation Details
	Proofs of the Theoretical Statements
	Proof of theorem 2.1
	Proof of theorem 2.2
	Proof of theorem 2.3

	On the use of Empirical Derivatives
	Experimental setup
	Model tuning
	Computational time

	Additional Results and Experimental Setups
	Pendulum
	Tuning details
	Differentiability with respect to Initial Conditions
	Additional results on the damped pedulum
	Interpolation Experiment
	HNN and LNN setup
	Conservative pendulum

	Allen-Cahn equation
	Continuity equation
	Randomly sampled points and empirical derivatives

	Navier-Stokes equations
	Setup
	Additional results for Section 4.4
	Results on randomly sampled points

	Knowledge Distillaton
	Korteweg-de Vries equation
	NCL distillation

