
[Re] Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for
Bottom-Up Panoptic Segmentation

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

The original work by Cheng et al. [5] introduces Panoptic-DeepLab - a novel architecture for panoptic segmentation,3

claiming to achieve comparable performance to two-stage, top down approaches while yielding fast inference speeds.4

At the time of publication, Panoptic-Deeplab claims to have ranked first in all three cityscapes benchmarks (specifically:5

mIoU, AP & PQ).6

Methodology7

As the original paper authors published their source code, our codebase integrates sections of their codebase, while8

re-implementing components intrinsic to the main claim we are attempting to evaluate. We also studied the source code,9

using information provided from it and the pipelines to augment our understanding from what the paper described.10

While we initially attempted a code-blind reproduction, it was soon determined to be unfeasible following which a11

hybrid approach was instantiated.12

Results13

While we successfully reproduced the given architecture, we have been unable to train it. Therefore: our contributions14

currently remaining exclusive to architecture, and certain unit tests within the system itself. We also highlight potential15

low-level Tensorflow that were pitfalls to our development, that may be advantageous to investigate.16

What was easy17

The authors of the paper structured their contributions on well-documented and tested frameworks such as ResNet and18

DeepLabV3+, while training on popular datasets such as Cityscapes and Mapillary Vistas. Consequently, setting up the19

dataset and the environment to reproduce the given research was straightforward.20

What was difficult21

A significant hurdle we came across during our reading of the paper was vagueness within the expected implementation.22

This extended from the architecture to the training regime. The descriptions provided, although accurate, were presented23

as a high-level overview, with the expectation of a lot of prior domain knowledge. This resulted in a significant time-sink,24

following which we looked into the codebase for necessitated context.25

Despite the well-structured objected oriented implementation through which the code was written, we found certain26

sections hard to understand. We observed convoluted re-implementations of high level functions already part of27

Tensorflow as part of the codebase. However, this could have been a direct result of the implementation not using the28

now-popularised Functional API within Tensorflow, which may have resulted in the required use of custom layers.29

Submitted to ML Reproducibility Challenge 2021. Do not distribute.



Communication with original authors30

We communicated with the authors over e-mail, resolving doubts that arose while reading the paper. It is also through31

author communication that we were directed to the codebase, as although public - the relevant repository wasn’t32

mentioned within the paper.33

2



1 Introduction34

Since it’s inception in 2018, Panoptic Segmentation[10] has remained a popular task within the domain of computer35

vision. It is in effect the unification of two distinct yet related tasks, namely: semantic and instance segmentation.36

Semantic segmentation broadly involves the assignment of a class ID to every input pixel, whereas instance segmentation37

is the delineation of distinct objects within an input frame. Broadly classified as “stuff” and “things”, the unification of38

the two produces the target output known as Panoptic Segmentation.39

Panoptic-Deeplab[5] aims to establish a strong baseline for a bottom-up approach to the task. Consequently, it places40

a focus on simplicity, cleverly incorporating established components within neural architecture to set state-of-art41

benchmarks as of the date of publication.42

2 Scope of reproducibility43

We investigate the following claims from the original paper:44

• Panoptic-DeepLab establishes a solid baseline for bottom-up methods that can achieve comparable performance45

of two-stage methods while yielding fast inference speed - nearly real-time on the MobileNetV3 backbone.46

• Single Panoptic-DeepLab simultaneously ranks first (at the time of publication) at all three Cityscapes47

benchmarks, setting the new state-of-art of 84.2% mIoU, 39.0% AP, and 65.5% PQ on test set.48

3 Methodology49

Initially, we attempted a code-blind reproduction of Panoptic-DeepLab. However, we swiftly determined it to be50

unfeasible - primarily as a result of us being unable to fully grasp implementation details from the paper itself. The51

paper does incredibly well to provide a high level explanation of how the architecture functions; unfortunately, the lack52

of implementation-specific information prevented a blind-paper reproduction without extensive interpolation. Crucially:53

we note the importance of a standardized system for presenting architecture diagram. While the current abstract layers54

look nicer, we find they lack important information necessary to reproduction.55

It is important to note here that upon re-reading the paper post implementation - with a prior understanding of the56

architecture - we found that just the paper did very well to explain the architecture, enough even, for a code-blind57

reproduction. Going through long-expired threads of discussion was an exercise that did well to remind us of implicit58

interpolations we made, having already known the architecture.59

3.1 Model description60

Panoptic-DeepLab[5] incorporates an encoder-decoder architecture to generate target inference, with our implementation61

encapsulating 6, 547, 894 total parameters, of which 6, 534, 998 are trainable, while the remaining 12, 896 are non-62

trainable. Broadly - it sequentially incorporates the modules discussed in the following subsections.63

3.1.1 Image DataGenerator64

To the extent of our understanding, Panoptic-Deeplab[5] did not discuss the implementation of its dataset loaders. As65

a result, we entirely used a custom implementation of Tensorflow’s ImageDataGenerator[1] class, to function as an66

iterator for the training regime. Since we did not find it highlighted within the paper to generate ground-truth center67

heatmaps and centerpoint predictions, we discuss this in the following paragraph.68

Center Heatmaps & Prediction[13] The center heatmaps & prediction maps are representations of the ground truth69

instance ID images. These images are effective data representations of instances within the frame. Each ‘thing’ has an70

encoded value, for instance: each pixel representing car#1 may be labeled 10001, while car#2 is labelled 10002. The71

first two digits encode one of the 19 different objects tracked by Cityscapes - in this case, the car - while the final three72

digits refer to the instance of the given object. The representation in specific are the computed averages of each of the73

instances - producing the center prediction. The center heatmaps are a gaussian distribution applied over the centerpoint74

predictions with standard deviation = 8px.75

3



3.1.2 Encoder76

Panoptic-DeepLab is trained on three popular encoder ImageNet pre-trained backbones, namely: Xception-71[6],77

ResNet-50[8] & MobileNetV3[9]. The backbone works to generate feature maps from input images. For the purpose78

of this reproduction, we use Xception-71 as our encoder backbone, as this is the primary implementation used by the79

original authors. We integrate our own implementation of the Xception-71 module as part of the paper reproduction.80

3.1.3 Atrous Spatial Pyramid Pooling81

From the encoder, the feature maps are split into dual modules. The first layer to run the decoupled modules is Atrous82

Spatial Pyramid Pooling[4], abbreviated - ASPP, is a module that concurrently resamples encoded feature layers at83

different rates, finally pooled together to capture objects and relevant context at multiple scales.84

We derived the ASPP block directly from the tensorflow implementation maintained by the paper authors, with no85

modifications made to the architecture.86

3.1.4 Decoder87

Panoptic-DeepLab is a fork of the DeepLabV3+[4] decoder architecture. It incorporates two fundamental contributions,88

specifically: an additional skip connection in the upsampling stage, and an additional upsampling layer with output89

stride = 8. We developed a custom implementation of this utilizing the modern Keras Functional[2] API. Through90

our development of the decoder, we ran into a prominent problem, that delayed significantly our progress within model91

architecture. This is in direct correlation with how Tensorflow handles internal API calls, type conversion.92

tf.Tensor v KerasTensor KerasTensor is an internal class within the Keras API. It is generated during layer93

definition, during the construction of a neural architecture. When latent features are passed during the function calls, the94

KerasTensor object is converted implicitly to the tf.Tensor format - covering up significant type discrepancies. As95

part of testing the original Panoptic-Deeplab code, we evaluated that as part of the model conversion to the Functional96

API, it was unable to retrace inputs to the decoder. This resulted in a Graph Disconnected error. In an attempt to97

allow traceback to work, we devised an approach wherein skip connections were made instance variables within the98

Decoder class, and passed separately to the functional call. It is here that we discovered that the lack of the implicit type99

conversion, while transferring precisely the same set of data resulted in a TypeError. We were unable to manually make100

the necessary conversion, highlighting a lack of documentation as KerasTensor is a backend class. Consequently, we101

were unable to patch the approach and proceeded to a full rewrite.102

Graph Disconnected An error we struggled to get past - the Graph Disconnected error is thrown when the traceback103

method within the functional API is unable to generate the necessary I/O graph to create a valid architecture. While in104

retrospect: the information provided was enough to debug effectively the point of failure, we would like to highlight105

that we believe a more visual or verbose representation - for instance, a plot describing the graph upto the point of106

failure - may allow the quicker & clearer identification of the issue.107

3.1.5 Prediction Heads108

The decoupled decoder modules further split into three separate prediction heads. These generate the final deep-learning109

based output within our implementation. They are a final set of convolutional followed by fully connected layers110

generating the final result.111

Similar to ASPP[4], we derived prediction heads directly from the tensorflow implementation maintained by the paper112

authors, with no modifications made to the architecture.113

3.1.6 Loss Function114

Panoptic-DeepLab employs a collective loss function intended to train resultant outputs.

L = λsemLsem + λheatmapLheatmap + λoffsetLoffset

This was a straightforward function, the implementation of which was just as straightforward, and did not require any115

effort above the requisite minimum.116

4



3.1.7 Post Processing117

Post processing of the outputs heads in effect involves stitching the instance and semantic segmentation outputs via a118

majority vote, generating the final panoptic segmentation. Since output post processing involves a traditional script with119

no trainable parameters, we have used post-processing code directly from the original tensorflow implementation, as120

put forward by the authors of the paper.121

3.2 Datasets122

Panoptic-DeepLab used Cityscapes[7], Mapillary Vistas[12] & COCO[11] datasets over the proposed architecture. For123

the purpose of our implementation, we train our model on the Cityscapes dataset, as examples are referenced from it124

through the evaluation stages of the model. Each image is of size (1025, 2049), and utilizes an odd crop size to allow125

centering, aligning features across spatial resolutions.126

3.3 Hyperparameters127

Panoptic-DeepLab uses a training protocol similar to that of the original DeepLab, specifically: the ‘poly’ learning128

rate policy. It uses the Adam optimizer with a learning rate of 0.001 without weight decay, with fine-tuned batch129

normalization parameters and random scale data augmentation. While we prepared our re-implementation with the130

same set of hyperparameters, we were unable to validate our approach, further discussed in Section 3.5.131

3.4 Experimental setup and code132

Alongside git for code tracking, we also employ data science specific tools such as DVC (Data Version Control) and133

MLFlow[3] with DAGsHub as the platform operating the relevant stack of services. DVC requires S3 buckets, that134

maintain the dataset, models, visualization and high storage binaries utilized during training. MLFlow - specifically,135

MLFlow tracking was the service we utilized as part of documenting the training lifecycle, including experimentation,136

and the relevant comparison between training cycles.137

3.5 Computational requirements138

By an astronomical margin, the computational requirements necessary for training Panoptic-DeepLab was the factor139

that prevented us from successfully testing our target reproduction. Originally, the architecture was trained on a cluster140

of 32 TPUs. In a technical report that detailed a PyTorch re-implementation of Panoptic-DeepLab, they coupled runtime141

optimization techniques alongside smaller batch size to reduce the training size to 4-8 GPUs. While a significant142

improvement, we find that stating it enables ‘everyone be able to reproduce state-of-the-art results with limited resources’143

a vast extension.144

The computational stack under active access to our team includes a single GPU on a docker container, personal145

workstations as well as any GPUs provisioned by cloud notebook service Google Colaboratory. Even considering the146

use of cloud compute services such as AWS - that are estimated to cost upwards of 2, 000 USD - for the acquisition of147

necessary compute, it is not possible to acquire access to the high performance GPU-enabled G3 instances without148

explicit approval from AWS customer support. Through a back-and-forth that extended across weeks, we have been149

unable to acquire the approval necessary to create stated instances.150

We therefore attempted the utilization of CPU resources to train the model to the best of our ability. We theorized the151

use of high learning rates in an attempt to overfit the model in a single epoch as a sanity check; to ensure the pipeline152

for our re-implementation worked as intended. Predictably, the training failed, and python was killed as the memory153

usage exceeded the cap permitted by the system, causing it to crash.154

4 Results155

As a result of the scenario detailed in the previous section: while we did manage to reproduce the architecture, we156

have been - as of now - unable to train it. Therefore, to this degree, our reproduction has not been a success, with157

our contributions currently remaining exclusive to architecture and the challenges encountered by us through our158

reproduction of the paper.159

5



5 Discussion160

Through the constant cycle of updates across which the languages on which neural architectures are written, the161

Reproducibility Challenge presents the fantastic opportunity to (1) take a step back, and (2) re-approach a pre-existing162

codebases with an entirely different perspective. It allows us the opportunity to fine-tune both past research and research163

in the near future. The insights our team has generated from our work on Panoptic-DeepLab itself, has done immensely164

to broaden our own perspective on the state of our field at the moment.165

5.1 What was easy166

The authors of the paper structured their contributions on well-documented frameworks such as ResNet and167

DeepLabV3+, while training on popular datasets such as Cityscapes and Mapillary Vistas. Consequently, setting up the168

dataset and the environment to reproduce the given research was straightforward.169

Additionally, various modules within the architecture were concisely and concretely defined - which enabled us to170

re-implement them without additional effort, above the minimum requisite. We found several sections of the paper were171

written with meticulous detail, and we especially appreciated the exhaustive, vast array of experiments and benchmarks172

provided as part of the research, which led our primary motivations towards attempting the reproduction.173

5.2 What was difficult174

A significant hurdle we came across during our reading of the paper was vagueness within the expected implementation.175

This extended from the architecture to the training regime. The descriptions provided, although accurate, were presented176

as a high-level overview, with the expectation of a lot of prior domain knowledge. This resulted in a significant time-sink,177

following which we looked into the codebase for necessitated context.178

Despite the well-structured objected oriented implementation through which the code was written, we found certain179

sections hard to understand. We observed convoluted re-implementations of high level functions already part of180

Tensorflow as part of the codebase. However, this could have been a direct result of the implementation not using the181

now-popularised Functional API within Tensorflow, which may have resulted in the required use of custom layers.182

Additionally, we would also like to highlight the importance of excessive computational requirements within the183

machine learning space, and it’s relation to the reproducibility of a paper. With the exploding costs of GPUs owing184

to extensive crypto-mining farms[14], and the ever increasing complexity of models being trained over time, it is185

imperative to consider designing systems that adhere to development policies ranging beyond the best-funded labs, and186

represents an important milestone within the democratization of research within high-throughput deep learning.187

5.3 Communication with original authors188

We enjoyed minimal yet significant communication with the original authors of the research. We communicated over189

e-mail, resolving doubts we came across as we read the paper. We found valuable insight through this communication,190

which has consequently been imperative to the success of our project. It has enabled discovering an additional suite of191

supplementary literature written with respect to the target architecture, which we may have potentially been unable to192

find without significant delay.193

References194

[1] Shervine Amidi Afshine Amidi. A detailed example of how to use data generators with Keras. https://github.195

com/afshinea/keras-data-generator/. 2018.196

[2] Ekaba Bisong. “Tensorflow 2.0 and keras”. In: Building Machine Learning and Deep Learning Models on Google197

Cloud Platform. Springer, 2019, pp. 347–399.198

[3] Andrew Chen et al. “Developments in MLflow: A System to Accelerate the Machine Learning Lifecycle”. In:199

Proceedings of the Fourth International Workshop on Data Management for End-to-End Machine Learning200

(2020).201

[4] Liang-Chieh Chen et al. “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous202

Convolution, and Fully Connected CRFs”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence203

40 (2018), pp. 834–848.204

6

https://github.com/afshinea/keras-data-generator/
https://github.com/afshinea/keras-data-generator/
https://github.com/afshinea/keras-data-generator/


[5] Bowen Cheng et al. “Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Seg-205

mentation”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020),206

pp. 12472–12482.207

[6] François Chollet. “Xception: Deep Learning with Depthwise Separable Convolutions”. In: 2017 IEEE Conference208

on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 1800–1807.209

[7] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Understanding”. In: 2016 IEEE210

Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 3213–3223.211

[8] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer212

Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.213

[9] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”.214

In: ArXiv abs/1704.04861 (2017).215

[10] Alexander Kirillov et al. “Panoptic Segmentation”. In: 2019 IEEE/CVF Conference on Computer Vision and216

Pattern Recognition (CVPR) (2019), pp. 9396–9405.217

[11] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: ECCV. 2014.218

[12] Gerhard Neuhold et al. “The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes”. In: 2017219

IEEE International Conference on Computer Vision (ICCV) (2017), pp. 5000–5009.220

[13] Jonathan Tompson et al. “Joint Training of a Convolutional Network and a Graphical Model for Human Pose221

Estimation”. In: NIPS. 2014.222

[14] Linus Wilson. “GPU Prices and Cryptocurrency Returns”. In: ERN: Technology (Topic) (2021).223

7


	Introduction
	Scope of reproducibility
	Methodology
	Model description
	Image DataGenerator
	Encoder
	Atrous Spatial Pyramid Pooling
	Decoder
	Prediction Heads
	Loss Function
	Post Processing

	Datasets
	Hyperparameters
	Experimental setup and code
	Computational requirements

	Results
	Discussion
	What was easy
	What was difficult
	Communication with original authors


