
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

MIXTURE OF NEURAL OPERATORS: INCORPORATING
HISTORICAL INFORMATION FOR LONGER ROLLOUTS

Harris Abdul Majid & Francesco Tudisco
The University of Edinburgh
Edinburgh, United Kingdom
{h.abdulmajid,f.tudisco}@ed.ac.uk

ABSTRACT

Traditional numerical solvers for time-dependent partial differential equations
(PDEs) notoriously require high computational resources and necessitate recom-
putation when faced with new problem parameters. In recent years, neural surro-
gates have shown great potential to overcome these limitations. However, it has
been paradoxically observed that incorporating historical information into neural
surrogates worsens their rollout performance. Drawing inspiration from multistep
methods that use historical information from previous steps to obtain higher-order
accuracy, we introduce the Mixture of Neural Operators (MoNO) framework; a
collection of neural operators, each dedicated to processing information from a
distinct previous step. We validate MoNO on the Kuramoto-Sivashinsky equa-
tion, demonstrating enhanced accuracy and stability of longer rollouts, greatly
outperforming neural operators that discard historical information.

1 INTRODUCTION

Traditional numerical methods, such as finite difference, finite element, and spectral methods, are the
standard go-to methods for solving partial differential equations (PDEs) (Thomas, 2013); however,
these methods may require prohibitive computational costs, especially for high-dimensional time-
dependent problems. Furthermore, traditional methods may struggle with complex geometries, and
suffer from accuracy and stability issues when dealing with multiscale or nonlinear phenomena
(Tadmor, 2012). Given these challenges, there has been a growing interest in the use of machine
learning for solving PDEs by directly learning the solution operator (Thuerey et al., 2021; Brunton
& Kutz, 2023). This paradigm shift is driven by the ability of machine learning to learn from data,
identify patterns, and enable fast predictions, offering new perspectives in scientific computing.

The use of machine learning for predicting PDE trajectories can be broadly divided into two main
categories. The first category involves using initial conditions to predict an entire trajectory up
to a pre-specified time step (Raissi et al., 2019; Kovachki et al., 2021); however, this approach
often struggles with generalizing beyond the training data. The second category adopts a sequential
strategy (Stachenfeld et al., 2021; Brandstetter et al., 2022b), akin to traditional numerical methods.
Here, the solution at the current time step is used to predict the solution at the next time step, which is
then used as a stepping stone to make further predictions or unroll the trajectory. While this approach
has been quite successful at predicting accurate and stable trajectories over extended periods, it is
not without shortcomings. A key challenge is the accumulation of small one-step prediction errors,
which compound over time, leading to significant deviations from the true trajectory. The one-step
prediction errors are exacerbated at time steps that extend beyond the training range, highlighting an
area of improvement in the application of autoregressive or rollout methods.

Intuition suggests that incorporating historical information in the training data, i.e. solutions at
several previous time steps, will reduce one-step prediction errors and long-term predictions as a
consequence, akin to traditional multistep approaches in scientific computing. However, current
approaches tend to show the opposite behaviour: while incorporating historical information does
reduce one-step prediction errors, it paradoxically worsens the accuracy and stability of long-term
predictions (Lippe et al., 2023). As one typically trains the network to learn residuals (the difference
between the solution at the next time step and the current time step), the problem arising when incor-

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

porating history is that the difference between the inputs is highly correlated with the model’s target,
the residual at the next time step. This leads the neural operator to focus on modeling second-order
differences, deteriorating rollout performance.

Inspired by linear multistep methods in numerical analysis (Wanner & Hairer, 1996), which use a
combination of solution values at multiple time steps, in this work we propose to use a combination
of neural operators, each dedicated to processing the solution from a distinct previous time step. This
collection of operators is coupled with a gating network that acts as a dynamic selector, adapting
the contribution of each neural operator based on the solution at the current time step. The resulting
model is an end-to-end, highly parallelizable approach that leverages historical information to, not
only reduce one-step prediction errors but also, improve the accuracy and stability of long-term
predictions, largely outperforming standard single-step neural operator baselines.

2 PROBLEM SETTING

In this paper, we focus on time-dependent PDEs of the form

ut +N (t,x,u,ux,uxx, . . .) = 0,

where t ∈ [0, T] represents the temporal dimension, x ∈ X represents the (possibly multiple)
spatial dimension(s), and u(t,x) : [0, T]×X → Rn represents the solution. Here, N is a nonlinear
operator that governs the dynamics of the system, describing how the different variables and their
derivatives interact. Further, we focus on initial conditions given by u(0,x) = u0(x), along with
periodic boundary conditions. Discretizing the temporal dimension with step size ∆t transforms
the continuous PDE into a discrete PDE, yielding a sequence of solutions at discrete time steps
U0,U1, . . . ,UN , where N = T/∆t is the number of steps. This discretization introduces an
evolution operator G, which maps the solution at any given time step to the solution at the subsequent
time step:

G (Un) = Un+1.

In the context of operator learning (Lu et al., 2019; 2021; Li et al., 2020; Kovachki et al., 2021),
the objective is to approximate the evolution operator G with a learned neural operator Gθ that
captures the dynamics of the system. A key consideration is the choice between directly predicting
the solution at subsequent time steps, or predicting the differences between the solutions at two
successive time steps:

G (Un) = Un+1 −Un.

Empirical observations suggest that, for small step sizes, predicting residuals is advantageous for
maintaining accuracy and stability over extended periods (Li et al., 2021; Lippe et al., 2023). See
Appendix A for further details.

In both traditional numerical methods and data-driven methods, the choice of step size ∆t is a key
hyperparameter with its set of trade-offs (de Hoop et al., 2022). While a larger temporal step size de-
creases computational costs, it leads to larger one-step prediction errors and greater divergence from
the true trajectory. In autoregressive neural methods, a larger temporal step size can significantly
lower computational costs; for example, a doubling of the temporal step size halves the number of
discretization points, thereby halving training and inference costs. However, if the chosen step size
∆t is too small, the trajectory can suffer from an accumulation of rounding errors.

Incorporating historical information into data-driven models is intuitively appealing, as it potentially
provides the models with additional context of the underlying dynamics, thereby improving the
accuracy and stability of long-term predictions. The most straightforward strategy for incorporating
historical information into data-driven methods involves the introduction of additional channels,
where each m-dimensional solution at a previous time step Un−1,Un−2, . . . is assigned a separate
channel, analogous to the RGB channels in color images. Using this representation as input, and
mirroring the findings by Lippe et al. (2023), we observe a reduction of one-step prediction errors
but a worsened high-correlation time (see Figure 1). These effects are exacerbated with smaller step
sizes and longer histories. Lippe et al. (2023) explain that the problem arises because the difference
between the current and previous solution Un − Un−1 is highly correlated with the residual of
the next time step Un+1 − Un—this leads the learned neural operator to focus on second-order
differences which is known to deteriorate performance in explicit schemes.

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

1 2 4 8
10 9

10 8

10 7

10 6

10 5

Re
la
ti
ve
 O
ne
-S
te
p
Er
ro
r

1 2 4 8
50

55

60

65

70

75

80

Hi
gh
 C
or
re
la
ti
on
 T
im
e

History (Number of Previous Solutions h)

t = 0.2
t = 0.4
t = 0.8
t = 1.6

Figure 1: Performance of a neural operator (UNet) evaluated on Kuramoto-Sivashinsky data with
step sizes ∆t = {0.2, 0.4, 0.8, 1.6}. Left: Relative One-Step Error as a function of History. Right:
Time taken for correlation to drop below a threshold of 0.9 as a function of History.

To mitigate the aforementioned challenges, we propose training a collection of neural operators,
each dedicated to processing the solution from a distinct previous time step, before weighting and
aggregating their outputs. This framework prevents the model from focusing on higher-order differ-
ences, allowing effective use of historical information.

3 MIXTURE OF NEURAL OPERATORS

Akin to traditional numerical methods where lower-order accurate methods can be extended to ob-
tain higher-order accuracy by using multiple time steps, in this work we introduce a novel ensemble
approach, termed Mixture of Neural Operators (MoNO), which synergizes a collection of neural
operator models G(0)

θ , . . . ,G(h−1)
θ , orchestrated by a gating network Rθ. The MoNO framework is

designed to dynamically weigh and integrate the predictions from each operator. Formally,

MoNOθ (Un, . . . ,Un−h+1) :=

h−1∑
i=0

Rθ (Un, . . . ,Un−h+1)i · G
(i)
θ (Un−i),

where Rθ(z)i denotes the gating network’s weighting for the i-th operator, and G(i)
θ (z) denotes the

corresponding neural operator’s output.

The training objective for MoNO optimizes a loss function L(θ) that minimizes the discrepancy
between the aggregated prediction and the true residual:

L(θ) = |MoNOθ (Un, . . . ,Un−h+1)− (Un+1 −Un) |.

This design encourages a cooperative interaction among the neural operators, where adjustments in
one operator’s parameters induce compensatory adaptations across the ensemble, ensuring a cohe-
sive evolution towards minimizing residual prediction errors.

To realize the MoNO framework, we explore various neural operator architectures, including UNet
and Fourier Neural Operator (FNO), allowing for a diverse representation of the solution mappings.
The flexibility of MoNO extends to the configuration of each neural operator, enabling adjustments
in parameter allocation, activation functions, and architectural nuances to tailor the ensemble’s pre-
dictive capacity. Central to the efficacy of MoNO is the gating network, Rθ, which determines
the proportional contribution of each neural operator to the ensemble prediction. We use a soft-
max linear layer to ensure that the experts’ weights are non-negative and sum to one, facilitating
interpretability and maintaining balanced contributions.

Furthermore, MoNO’s framework is inherently amenable to distributed computing environments.
Leveraging standard model parallelism techniques, the framework can distribute its components
across multiple GPUs, routing inputs to their respective neural operators for processing and subse-
quently aggregating the outputs, thus capitalizing on computational resources efficiently.

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

50

60

70

80

90

100

0.9
0.8

0.9
corr=0.8

Step Size = 0.2

UNet
MoNO(UNet)

Step Size = 0.4 Step Size = 0.8 Step Size = 1.6

1 2 4 8

50

60

70

80

90

100

0.9

0.8

0.9
corr=0.8

FNO
MoNO(FNO)

1 2 4 8 1 2 4 8 1 2 4 8
History (Number of Previous Solutions h)

Hi
gh

 C
or

re
la

ti
on

 T
im

e
UNet

FNO

Figure 2: High-Correlation Time of MoNO (and baselines) evaluated on Kuramoto-Sivashinsky
data. Each graph reports the High-Correlation Time as a function of History, and each column
corresponds to a different step size. Top: Comparison between UNet and MoNO(UNet). Bottom:
Comparison between FNO and MoNO(FNO).

4 EXPERIMENTS

In order to test the performance of the proposed model we present experimental evaluation on the
one-dimensional Kuramoto-Sivashinsky (KS) equation. The KS equation is a fourth-order nonlin-
ear PDE derived to model diffusive-thermal instabilities in laminar flame fronts (Kuramoto, 1978;
Sivashinsky, 1977). Its one-dimensional variant can be expressed as:

ut + uxx + uxxxx + uux = 0.

Here, the fourth-order derivative uxxxx and the nonlinear term uux contribute to complex and
chaotic behavior which present a challenge for traditional numerical solvers (Hyman & Nicolaenko,
1986; Kevrekidis et al., 1990; Smyrlis & Papageorgiou, 1991), necessitating fine spatial and tempo-
ral discretizations (and therefore increased computational costs) for accurate and stable trajectories.

We assessed the performance of MoNO using KS data across various step sizes and history lengths.
The objective was to predict the residual: the difference between successive time steps, Un+1−Un.
As a baseline neural operator Gθ we used the U-Net by Gupta & Brandstetter (2022), which is fre-
quently used for neural PDE solvers Lippe et al. (2023). A softmax-MLP serves as MoNO’s gating
network. We conducted parallel evaluations using another prevalent model, the Fourier Neural Op-
erator (FNO) with 8 Fourier layers and 32 Fourier modes (Li et al., 2020). To ensure equitable
comparisons, we adjusted the channels of each model so that the model has approximately 50 mil-
lion trainable parameters. For training, we chose the Mean Squared Error (MSE) as a loss metric.
To evaluate, we autoregressively apply the models on the initial conditions in the testing dataset, and
report the high-correlation time: the duration for the Pearson correlation between the true trajectory
and predicted trajectory to fall below thresholds of 0.8 and 0.9.

At a step size of 0.2, the U-Net baseline obtained a high-correlation time of 75.0 (79.8) for a thresh-
old of 0.9 (0.8). An increase in history length up to 8 steps resulted in reduced high-correlation times,
manifesting as 59.4 (65.4) for a threshold of 0.9 (0.8); whereas, the MoNO framework demonstrated
significant improvements, recording 14%, 28%, and 44% longer high-correlation times at history
lengths of 2, 4, and 8, respectively. This trend persisted across all step sizes. It is noteworthy that at
step size ∆t = 1.6, extending the history from 4 to 8 did not yield further improvements, suggesting
that data from 4 steps prior (or 6.4 seconds) lacked relevance for subsequent predictions. Similar to
U-Net, MoNO with FNO backbone consistently outperformed the baseline across all history lengths
and step sizes. See Figure 2, top (U-Net) and bottom (FNO) panels.

4

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

REFERENCES

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. arXiv preprint arXiv:2202.07643, 2022a.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022b.

Steven L. Brunton and J. Nathan Kutz. Machine learning for partial differential equations, 2023.

Maarten V de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M Stuart. The cost-
accuracy trade-off in operator learning with neural networks. arXiv preprint arXiv:2203.13181,
2022.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

James M Hyman and Basil Nicolaenko. The kuramoto-sivashinsky equation: a bridge between pde’s
and dynamical systems. Physica D: Nonlinear Phenomena, 18(1-3):113–126, 1986.

Ioannis G Kevrekidis, Basil Nicolaenko, and James C Scovel. Back in the saddle again: a computer
assisted study of the kuramoto–sivashinsky equation. SIAM Journal on Applied Mathematics, 50
(3):760–790, 1990.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Yoshiki Kuramoto. Diffusion-induced chaos in reaction systems. Progress of Theoretical Physics
Supplement, 64:346–367, 1978.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynam-
ics in chaotic systems. arXiv preprint arXiv:2106.06898, 2021.

Phillip Lippe, Bastiaan S Veeling, Paris Perdikaris, Richard E Turner, and Johannes Brandstet-
ter. Pde-refiner: Achieving accurate long rollouts with neural pde solvers. arXiv preprint
arXiv:2308.05732, 2023.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

G.I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames—i. derivation
of basic equations. Acta Astronautica, 4(11):1177–1206, 1977. ISSN 0094-5765. doi: https:
//doi.org/10.1016/0094-5765(77)90096-0.

Yiorgos S Smyrlis and Demetrios T Papageorgiou. Predicting chaos for infinite dimensional dy-
namical systems: the kuramoto-sivashinsky equation, a case study. Proceedings of the National
Academy of Sciences, 88(24):11129–11132, 1991.

5

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. arXiv preprint arXiv:2112.15275, 2021.

Eitan Tadmor. A review of numerical methods for nonlinear partial differential equations. Bulletin
of the American Mathematical Society, 49(4):507–554, 2012.

James William Thomas. Numerical partial differential equations: finite difference methods, vol-
ume 22. Springer Science & Business Media, 2013.

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um.
Physics-based Deep Learning. 2021. URL https://physicsbaseddeeplearning.
org.

Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II, volume 375. Springer
Berlin Heidelberg New York, 1996.

6

https://physicsbaseddeeplearning.org
https://physicsbaseddeeplearning.org

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A DIRECT VERSUS RESIDUAL PREDICTION

0.2 0.4 0.8 1.6 3.2
Step Size

10 8

10 7

10 6

10 5
Re
la
ti
ve
 O
ne
-S
te
p
Er
ro
r

0.2 0.4 0.8 1.6 3.2
Step Size

55

60

65

70

75

80

85

Hi
gh
 C
or
re
la
ti
on
 T
im
e

0.9

0.8

0.9

corr=0.8

Direct
Residual

Figure 3: Comparing direct and residual prediction. Direct prediction achieves higher relative one-
step error and lower high-correlation time up to ∼ 2 seconds as observed by Li et al. (2021) and
Lippe et al. (2023).

B DATA GENERATION

For our experiments, we generate data for the one-dimensional Kuramoto-Sivashinsky equation ac-
cording to Brandstetter et al. (2022a)1, who use the method of lines, with the spatial derivatives
computed using the pseudo-spectral method. We set T = 100 for the training (and T = 200 for
validation and testing) data, with ∆t = 0.2. Further, we set X = [0, 64], with ∆x = 0.25. Initial
conditions were sampled from a distribution over the truncated Fourier series with random coeffi-
cients Ak ∼ U(−0.5, 0.5), lk ∼ {1, 2, 3}, and ϕk ∼ U(0, 2π):

u0(x) =

10∑
k=1

Ak sin

(
2πlkx

L
+ ϕk

)
,

where L = 64 is the length of the spatial domain. Finally, we set periodic boundary conditions.

We generated 2048 trajectories for the training dataset and 128 trajectories for each of the validation
and testing datasets. For each trajectory, the first 360 steps were considered to be part of the warmup
phase and subsequently discarded. The data was initially generated using double-precision floating-
point format (float64) and then converted into single-precision floating-point format (float32)
for our experiments.

1We make slight modifications to their code (https://github.com/brandstetter-johannes/LPSDA)
and set ∆t = 0.2.

7

	Introduction
	Problem Setting
	Mixture of Neural Operators
	Experiments
	Direct versus Residual Prediction
	Data Generation

