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Reproducibility Summary1

Scope of Reproducibility2

Our work consists of two major parts: (1) Reproducing results from Kotonya & Toni(Authors) (3) (2) Performing3

experiments to improve test accuracy and other metrics for veracity prediction. We did not use BioBERT(20) model4

deliberately for veracity prediction as it did not perform well on the defined metrics, as observed in the original paper(3).5

Authors were doubtful of how good the rouge metric is in conveying the quality of explanations, so they used human6

evaluation to evaluate the explanations generated. We stuck to rouge score for evaluating the explanations generated.7

Methodology8

Authors did not publish the code for fine-tuning BERT(10) and SciBERT(7) models for veracity prediction. For9

explanation generation the authors use a BERT based model which was not made public, so we chose the BART model10

pre-trained on CNN-DailyMail dataset. We have written a functional and modular code.1 which is easy to reproduce11

and comprehend.12

Results13

The accuracy for veracity prediction using BERT base model (top 5 sentences) was 3% lower than that published by the14

authors. The accuracy for veracity prediction using SciBERT (top 5 sentences) was 4.73% lower than that published by15

the authors. SciBERT performed well on all the test metrics for veracity prediction. While the accuracy was close, the16

macro F1, precision and recall were inconsistent with the authors’ claim. For explanation generation, the automated17

evaluation metric was rouge(21). In case of R1 and RL, we got f1 measure, which was around 30% more than what was18

mentioned in the paper(3). Improvements were also observed in R2 rouge score. 4.1.4. We also checked some of the19

explanations that were generated, and the results were up to the mark with gold standard explanations.20

What was easy21

It was easy to implement the code for veracity prediction using two different BERT models. The model used for22

summarization was available in the Hugging Face library, pretrained on the same dataset as the authors. Without much23

effort, we were able to fine-tune the model on our dataset.24

What was difficult25

The implementation code was not available in author’s GitHub repository2. We had to implement code ourselves. It26

was difficult to increase the accuracy of the models to get close to that published by the authors.27

Communication with original authors28

We tried contacting the authors many times, but unfortunately could not make any contact.29

1https://github.com/saswat01/Reproduce-Health_Fact_Checking
2https://github.com/neemakot/Health-Fact-Checking
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1 Introduction30

A great amount of progress has been made in the area of automated fact-checking. This includes more accurate machine31

learning models for veracity prediction and datasets of both naturally occurring (Wang, 2017; Augenstein et al., 2019;32

Hanselowski et al., 2019) and human-crafted (Thorne et al., 2018) fact-checking claims, against which the models33

can be evaluated. We introduce a framework for generating explanations and veracity prediction specific to public34

health fact-checking. We show that gains can be made through the use of in domain data. The second shortcoming we35

look to address is the paucity of explainable models for fact-checking (of any kind). Explanations have a particularly36

important roles to play in the task of automated fact checking, especially in health-related claims where domain specific37

knowledge is required to understand the context. Explainable models can also aid the end users’ understanding as they38

further elucidate claims and their context3.39

This work intends to perform reproducibility, experiments to improve score on evaluation metrics for veracity prediction40

and perform an ablation study(remove BioBERT for veracity prediction and human evaluation of generated explanations)41

and validate the metrics to evaluate the experiments. The work also contributes a pipeline of veracity prediction and42

explanation generation, using which we can get veracity prediction of a claim and explanation verifying the prediction.43

2 Scope of reproducibility44

As mentioned by the authors, (3) the veracity predictions made on the claims and evidence sentences (top 5) gave the45

best accuracy when SciBERT was used and BERT(base-uncased) model gave the best precision score. The SciBERT46

model succeeded on all the test metrics for veracity prediction. But the BERT model did not surpass SciBERT in terms47

of precision score, which was contrary to what was observed by the authors. We also took a data centric approach and48

observed the performance of the same transformers on dataset alterations for veracity prediction.49

For explanation generation, we used the top 5 sentences returned by SBERT in veracity prediction stage. The BART50

based summarization model pretrained on CNN/DailyMail dataset, yielded better results than BERT based extractive51

abstractive summarization model pretrained on the same dataset as mentioned in the paper (3). Our central aim was to52

reproduce these results as close as possible to the authors. The results of our experimental findings are shown in Table53

4.1.1, 4.1.2 and 4.1.3.54

3 Methodology55

We have provided the entire code to fine-tune the BERT, SciBERT and DistillBart transformers for veracity prediction56

and explanation generation. The processed dataset has been put up in the GitHub repository (1), which can be used57

straightaway for fine-tuning the transformer models on downstream tasks. The modularity of the code makes it58

comfortable for experimentation. For, e.g., if an individual wants to increase/decrease hyperparameters like batch size,59

epochs, learning rate etc. they can easily do that. All the instructions have been specified in the GitHub repository (1)60

regarding the usage of the repository and experimentation. We have made use of PyTorch Lightning, which makes61

training swifter. Along with that, we train all the models using early stopping with patience of 2 or 3. While training the62

models, we save the checkpoints when the validation loss is least. It helps to track and save the model with the best63

weights.64

The fine-tuning was performed on Tesla T4 15.84 Gigabyte GPUs provided on the Google Colaboratory platform. The65

recommended batch size provided by the authors was 16 only the GPUs could support a batch size of 13. We used66

batch size 13 for fine-tuning both the transformer models for veracity prediction and a batch size of 8 for fine-tuning67

DistillBart for explanation generation. Computational time and other details have been provided in Section 3.6. We68

have also provided a convenient test script which can predict label, select evidences from main text and generate an69

explanation for the claim text.70

3.1 Model descriptions71

For veracity prediction, we make use of pretrained BERT(base-uncased) model and SciBERT(scibert-scivocab-uncased)72

model from Hugging Face library. The tokenizers for BERT(base-uncased) and SciBERT(scibert-scivocab-uncased)73

were also used from the Hugging Face library. For explanation generation, we used DistillBart model and tokenizer74

pretrained on CNN-DailyMail dataset from the Hugging Face library.75

3Excerpts taken from paper (3)
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Figure 1: Veracity Prediction model Architecture

1. The pretrained BERT(base-uncased) model has 12-layer, 768-hidden, 12-heads, 110M parameters. It was76

pretrained on lower-cased English text.77

2. The pretrained SciBERT model is a BERT model pretrained on papers taken from Semantic Scholar of Corpus78

size 1.14M papers and 3.1B tokens.79

3. The pretrained DistillBart 12-6 model is pretrained on CNN- DailyMail dataset, which has 300k unique news80

articles written by journalists at CNN and the Daily Mail. It has 306M parameters.81

4. A smaller DistillBart model pretrained on the same CNN-DailyMail dataset. It has 230M parameters.82

We have provided the above-mentioned fine-tuned models in the repository (1).83

3.2 Datasets84

The Pubhealth dataset constructed by the authors (3) contains 11,832 claims for fact-checking. The claims were related85

to several topics like biomedical research, government healthcare policies and other health related stories. The dataset86

is divided into three splits train, dev and test dataset. Main features in the dataset was claim ID, claim sentence, main87

text containing article text, explanation, and label. The distribution of labels in train, dev and test dataset is displayed88

in Figure 2. The dataset had some NA values for some features. We dropped the rows containing NA values. After89

dropping the rows we had 9806 observations in train dataset, 1235 observations in test dataset and 1217 observations in90

validation dataset.91

(a) Label distribution for train dataset (b) Label distribution for test dataset

Figure 2: Distribution of labels in dataset
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We also created a derived dataset using authors code6.3 for preprocessing and then applying SBERT to the main text92

to get top k sentences for veracity prediction according to their cosine similarity with respect to the contextualized93

representation of the claim sentence.94

The dataset in raw and processed form are available in our GitHub(1) repository.95

3.3 Hyperparameters96

Details regarding the hyperparameters like batch size, number of epochs, learning rate are mentioned in the original97

research paper by the authors. Although, it helped us to reproduce the paper, information about other hyperparameters98

(for e.g., token length) and detailed methodology for fine-tuning task for veracity prediction was not offered. We used99

the same learning rate as mentioned by the authors, i.e., 1e-6. As was mentioned earlier, the GPU provided on the100

Google Colaboratory platform could not support a batch size of 16 (recommended by the authors) we used batch sizes101

of 8, 10, 12 and 13 for experimentation. Out of which, a batch size of 13 established the best results; a batch size of 12102

also showed synonymous results. We altered epochs from 4 to 7 and got 5 as the most appropriate number of epochs.103

Hence, the number of epochs for fine-tuning the models was altered from 4 (recommended by the authors) to 5 as it104

gave best results in our case. Encode plus tokenizer with maximum length of 512 was used for fine-tuning both the105

transformers. We optimized our model using Cross-Entropy Loss (recommended by authors) for veracity prediction.106

For all experiments related to veracity prediction, hyperparameter trials were done for each possibility of batch sizes107

{10, 12, 13} and number of epochs {4, 5, 7}.108

In the case of explanation generation, authors didn’t give any details for hyperparameter tuning. We enforced manual109

search with a couple of combination of hyperparameter values. We used 5e-5 as the learning rate, batch size of 8,110

number of epochs was 3. We used Adam W optimizer with maximum input length of 512 and the maximum output111

length was 128.112

3.4 Experimental setup and code113

For veracity prediction models were evaluated on test dataset using macro F1, precision, recall, and accuracy metrics.114

Linear scheduler with warm up was used to train the language models to decrease chances of early over-fitting or115

skewness. For cleaning the top 5 evidence sentences, we used regex library provided by the Python language. Precise116

instructions have been provided in the repository(1) to assist you to train the models and test them, along with discerning117

the test metrics.118

For explanation generation, the performance on the test dataset was assessed using rouge score metrics. The training119

script is easy to run aiding arguments, with option to save the model which can be used later to evaluate on the test120

data. We have provided a test script in the GitHub repository, which lets you perform veracity prediction and generate121

explanation for the claim sentence simultaneously.122

3.5 Extended Experiments123

Apart from reproducing the paper, experiments were conducted, to answer the following questions:124

• Can managing class imbalance in the dataset lead to better performance of models on evaluation metrics for125

veracity prediction ?126

• Can text cleaning improve model performance for veracity prediction ?127

• Can any other hyperparameter improve model performance for veracity prediction ?128

To handle class imbalance in the dataset, synonym matching (replacing maximum 15 words in the top 5 evidence129

sentences using synonyms) was used as the augmentation technique. Most observations lied under the “True” label, so130

we made the “Mixture” and “Unproven” label observations equivalent to the “False” label, which had observations next131

to the “True” label. We conducted experiments on the augmented dataset using the BERT model, 4.1.2 discusses the132

results. The SciBERT model did not give satisfactory results on the augmented data, so we did not perform extensive133

experimentation utilizing it.134

Text cleaning was performed using the regex library provided by the Python language. We removed redundant text, i.e.,135

square brackets, links, punctuation, and words containing numbers from the top 5 evidence sentences. The SciBERT136

model fine-tuned on the clean top 5 evidence sentences performed flawlessly on all the evaluation metrics 4.1.3.137

It was observed that the average token length was 125 and a maximum token length of 512 was observed. There were a138

handful of tokens whose token length was 512. We reduced the token length from 512 to 350 to fine-tune BERT and139
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SciBERT on the clean data. We chose 350 as the trusted token length, as it was capable of representing the token length140

of 95% of the sentences. It gave the best results and the results are discussed in Section 4. A 2% gain in accuracy was141

discovered when the SciBERT model was fine-tuned on clean top 5 evidence sentences along with a token length of142

350.143

3.6 Computational requirements144

As the experiments are done on an easily accessible environment, there are no specific requirements one needs to145

reproduce and implement our work. You need a laptop/PC and an internet connection to perform everything that we146

have published in the report and in the GitHub repository (1).147

The computational time for various models and other relevant details have been provided in the tables below.148

Model Train time(in sec.) Train time(in hours)

BERT(epoch 4) 3420 sec 0.95 hours
BERT(epoch 5) 5400 sec 1.5 hours
BERT(epoch 7) 7200 sec 2 hours

SciBERT(epoch 4) 3600 sec 1 hours
SciBERT(epoch 5) 5940 sec 1.65 hours

149

Table 1. Training computational time for veracity prediction150

Model Test time(in sec.) Test time(in minutes)

distilbart-cnn-12-6 (epoch 3) 6300 sec 1.75 hours
distilbart-cnn-6-6 (epoch 3) 4500 sec 1.25 hours

151

Table 2. Training computational time for summarization152

4 Results153

For calculation of all the metrics for veracity prediction, Scikit-learn library was used. The SciBERT model gives the154

best accuracy, F1 score, precision, and recall on the Pubhealth dataset for veracity prediction. It supports the original155

claim of the authors except that their BERT model gave better precision than SciBERT which was not observed in156

our experiments. Also, from all the experiments we conducted, SciBERT model gave the best results when the top 5157

evidence sentences was cleaned and the token length was shrunk. BERT model gave the best results when it was trained158

using the best hyperparameters, as discussed 3.3. Also, it was observed that BERT results were not very different when159

it was fine-tuned on clean top 5 evidence sentences. Distillbart based model gave better results than ExplanerFC-Expert

(a) Bert (b) Scibert

Figure 3: (a)BERT and (b)SciBERT confusion matrix

160
model used by authors. The rogue scores are given in the table 4.1.4 along with authors’ best model.161
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4.1 Results reproducing original paper162

It can be comprehended that SciBERT surpasses BERT on every evaluation metric in section 4.1.1.163

4.1.1 Veracity prediction best results164

Both models were fine-tuned using the best hyperparameters, except the token length. It can be sighted that accuracy165

metrics is proximate to the original assertions of the authors but the precision, accuracy and F1 score is contrary from166

what was originally verified by the authors. SciBERT performs unexcelled on all the metrics for veracity prediction. It167

partially supports the authors’ assertions, as the precision of the BERT model is not better than the SciBERT model.168

Model Pr. Rc. F1 Acc.

BERT(top 5) 0.35 0.39 0.35 63%
SciBERT(top 5) 0.44 0.41 0.37 65%

169

Table 3. BERT fine-tuned using token length 512, SciBERT fine-tuned using token length 350170

4.1.2 Augmentation Result using BERT(top 5) with batch size 12171

We experiment the phenomenon of epoch size on fine-tuning the BERT model on the dataset for veracity prediction.172

Text augmentation improved the precision, recall and F1 score of the BERT model but was not improving the accuracy173

of the model. Data augmentation also facilitated the BERT model to categorize the labels more accurately, particularly174

the “Mixture” and “Unproven” labels.175

Epochs Pr. Rc. F1 Acc.

4 0.41 0.39 0.37 57%
5 0.42 0.35 0.34 59%
7 0.45 0.37 0.35 59%

176

Table 4. BERT metrics when trained on augmented dataset using synonym replacement, token length 512177

4.1.3 Text Cleaning Result on language models for veracity prediction178

Model Pr. Rc. F1 Acc.

BERT 0.31 0.38 0.34 62%
SciBERT 0.44 0.41 0.37 65%

179

Table 5. Language models trained using the best hyperparameters with token length 350180

4.1.4 Results for explanation generation with batch size 8181

The metric used to evaluate the explanation quality was rouge.182

Model Metric precision recall F1

R1 0.472 0.451 0.461
distilbart-cnn-12-6 R2 0.181 0.173 0.177

RL 0.409 0.392 0.4
R1 0.459 0.438 0.447

distilbart-cnn-6-6 R2 0.165 0.158 0.161
RL 0.395 0.377 0.385
R1 - - 0.323

ExplanerFC-Expert R2 - - 0.135
RL - - 0.27

183

Table 6. Explanation generation results184

5 Ablation Study185

As discussed in the original research paper (3), BioBERT v1.1 and BioBERT v1.0 did not show any significant186

performance on the metrics mentioned for veracity prediction. We excluded the BioBERT transformer model for the187

reproducibility of veracity prediction.188
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For evaluation of explanations, authors used two methods. The second one was human evaluation, in which authors189

asked humans to assess the quality of the gold and generated explanations. We could not do human evaluation of190

explanations. Authors were skeptical about how good rouge score comprehends the usefulness or the quality of the191

explanations, so they also performed human evaluations of generated explanations. Authors calculated coherence to192

assess the quality of the explanations. We stuck to rouge metric for our exclusive evaluation criteria for explanation193

generation.194

6 Discussion195

The experimental results discussed above supports the overall claims by authors. For veracity prediction, we could196

reproduce the results claimed by authors for SciBERT model by using clean top 5 evidence sentences and token length of197

350. These details were not provided in the paper and were revealed using different experimental setups. Unfortunately,198

we could not connect to the authors to substantiate our methodology, but the experimental results convinced us to199

conclude this approach suitable. We could have also experimented with different types of augmentation techniques200

to discover how the models would have performed. Also, we could have made the maximum token length closer to201

the average token length to record the empirical observations of model performance. It may have been possible that202

experimenting on these varied scenarios would have concurred in metrics closer to that published by the authors.203

For the explanation generation task, the authors used two different types of evaluation method. One was automatic204

evaluation using rouge metric. Rouge metric is considered to be the best metric when it comes to summarization tasks.205

As discussed in the ablation study part, authors did use human evaluation. We could have increased the k value above 5206

to check if that generates better results. We used 128 as the max output token, as the average length of gold standard207

explanations were more or less the same.208

6.1 What was easy209

As the authors provided the script in their GitHub repository6.3 to extract top 5 evidence sentences from main text,210

it helped us a lot to kick-start the implementation of transformer models for veracity prediction. Also, the authors211

provided a clear architecture[1] for veracity prediction that helped us to understand the flow of the whole process for212

veracity prediction.213

6.2 What was difficult214

The fine-tuning procedure was not explained in detail by the authors, due to which it took significant amount of time215

and experiments to search the most suitable hyperparameters for fine-tuning the models for veracity prediction. The216

instructions provided by the authors about the abstractive-extractive model which they used were difficult to follow.217

6.3 Communication with original authors218

We tried reaching out to the authors by email. Unfortunately, we could not connect to them. We apprehend they maybe219

busy. We have also sent them this report for verification and expect their response.220
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