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Abstract

Methods for gene regulatory network (GRN) inference often leverage structural
knowledge from curated databases to constrain the expansive genome-sized graph
space or as labels for training, however, this knowledge does not necessarily pertain
to the specific context being studied – in this case chronic low-dose radiation
exposure. We show how this mismatch between existing knowledge and the context
under investigation makes it difficult to tune and evaluate estimated context-specific
GRNs. We provide a dataset of RNA-seq gene expression of human cells grown
in lab exposed to low-dose ionizing radiation, and compare several algorithms
for estimating GRNs. We find that DAG-GNN, an unsupervised causal structure
learning model, infers pathways that best align with existing literature. We also
find that models that jointly learn from gene expression and radiation level data
can directly estimate the genes most impacted by radiation, which greatly enhances
downstream pathway analysis.

1 Introduction

Chronic exposure to low-dose radiation has implications for the onset of cancer and cardiovascular
disease by activating response pathways in cells (Shimizu et al., 2010). Most research explores
the affects of high dose, acute exposure to radiation; this results in high rates of double-stranded
DNA breaks triggering programmed cell death or apoptosis (Verheij & Bartelink, 2000). However,
a complete understanding of the interplay between dose rate, cumulative dose, and cell type in the
activation of low-dose radiation pathways remains an open question (Fig. 1), and has implications
for people chronically exposed to low-dose radiation (e.g., space exploration, radon exposure). A
gene regulatory network (GRN) represents the mechanisms that govern gene expression levels, or
the number of copies of RNA transcribed from DNA for a particular portion of DNA (i.e, a gene).
Gene expression levels correlate to the number of proteins translated to carry out certain actions in
the cell, including response to external stressors such as radiation. We explore the capabilities of
causal structure learning and graph learning algorithms to infer GRNs for chronic, low-dose radiation
exposure. One challenge is the lack of a context-specific ground truth network to evaluate, tune or
constrain these algorithms with. We find that models trained to leverage edges from knowledge bases
are not necessarily useful for understanding pathways specific to chronic, low-dose radiation response
due to the macroscopic nature of these knowledge databases. Instead, models that do not incorporate
prior knowledge are better at capturing dose-dependent mechanisms such as cell cycle arrest (a pause
in cell division) and DNA damage repair. Our contributions and findings are as follows:

1. We provide an RNA-seq gene expression dataset specific to chronic exposure to low-dose
radiation in Human Umbilical Vein Endothelial Cells (HUVECs) grown in lab at five
different dose rates over 3 weeks.
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Figure 1: Exposure to ionizing radiation causes
DNA breakage in cells. Cells activate pathways in
order to repair the damage before the cell divides.

Dataset Dose Rate # Genes # samples
(mGy/hr)

A 0.001 918 13
B 0.01 1590 13
C 0.1 1487 13
D 1 1965 13
E 2 801 13

Table 1: A description of the five datasets A
through E by dose rates.

2. We provide an evaluation of network recovery and pathway enrichment for six algorithms of
interest with varying degrees of prior knowledge incorporation: GENIE3 (Marbach et al.,
2012), GENELink (Chen & Liu, 2022), DAG-GNN (Yu et al., 2019), GES (Chickering,
2002), PC (Spirtes et al., 2000), and DirectLiNGAM (Shimizu et al., 2011).

3. We find that GENIE3, DAG-GNN and GES, which incorporate minimal prior knowledge
and jointly model the radiation level, identify low-dose radiation pathways. DAG-GNN
further identifies dose-dependent pathways related to DNA damage and cell cycle arrest.

2 Related Works
Chronic low-dose radiation exposure datasets High-dose, acute radiation response in mouse and
human cell lines has been highly studied and documented in the RadBioDB database (Zanni et al.,
2024). To our knowledge, we provide the first RNA-seq expression data for cells exposed to chronic
(> 72 hours), low dose (< 100 mGy accumulated dose) radiation. Similar studies to ours include
Babini et al. (2022) and Rombouts et al. (2014) who collected microarray expression data of HUVEC
cell lines exposed to 1.4 - 4.1 mGy/hr of gamma radiation for up to 10 weeks.
GRN inference Yuan & Duren (2025) show how pretraining on existing RNA-seq expression data
from the ENCODE database boosts the recovery of cell-type specific GRNs. Yao et al. (2015);
Greenfield et al. (2013) incorporate structural edge priors into GRN inference to improve network
recovery for yeast and bacteria GRNs. These works suggests that data and knowledge from other
contexts can be used to improve learning of a context-specific GRN.

3 Methods
3.1 Bulk RNA-seq expression data in HUVECs
We collect bulk RNA-seq expression data for HUVECs grown in the lab exposed to low-dose ionizing
radiation from a Cesium-137 gamma ray source at five different dose rates measured in miliGray
(mGy) per hour 1. For samples at each dose rate, measurements are made after one, two, and three
weeks for both control and exposed samples. A full experimental protocol is described in Appendix
B. We subselect genes that are differentially expressed (either over or under expressed) compared
to the control samples at each week and filter these to only include genes in the neighborhood of
known genes related to radiation exposure, which we describe in the following section. We discuss
our reasoning for choosing bulk RNA-seq expression over single-cell RNA-seq, which is popular for
causal discovery, in Appendix B.4.

3.2 Curation of a partial ground truth
Following the approach used by Pratapa et al. (2020), we curate a partial ground truth GRN comprised
of all currently known transcription factors (genes that code for proteins that control the expression
levels of other genes) to target gene regulatory relationships, and protein to protein interaction
relationships using four knowledge databases: ENCODE (Consortium et al., 2012), TRUUST (Han
et al., 2015), htFTarget (Zhang et al., 2020) and STRING (Von Mering et al., 2005). To tailor this

1One Gray is equal to one joule of absorbed radiation energy per kilogram of matter

2



wide-ranging knowledge graph to our specific context, we manually collect a set of 56 key genes
involved in radiation response from a set of publications (these are not necessarily specific to chronic
low-dose radiation response). These key genes and associated publications can be found in Appendix
Table 3. For each key gene, we take the two-hop neighborhood in the knowledge graph to create our
smaller gene set for learning. See Table 1 for the descriptions of each dataset. The partial ground
truth graph is the subgraph induced by this subset of genes on the curated knowledge graph.

3.3 Graph and structure learning models

We chose to evaluate six methods based on their varying ability to incorporate prior knowledge.
While this is not a comprehensive list, our objective is to understand if prior knowledge that is not
context-specific can improve network recovery and identify low-dose radiation response pathways.
GENELink Chen & Liu (2022) train a supervised graph attention neural network with gene expres-
sion data, and positive/negative edge pairs of transcription factors and target genes from a known
GRN. Positive pairs correspond to the presence of the edge in the GRN and negative pairs correspond
to the absence of an edge. The model infers edge probabilities on a test set of positive/negative pairs.
GENIE3 Marbach et al. (2012) construct an ensemble of Random Forest regression models. Each
model predicts the expression value of one transcription factor from all target genes. Edges from
transcription factors to target genes are weighted according to the feature importance scores of the
fitted models. Known transcription factors are used to initialize the number of models in the ensemble.
DAG-GNN Yu et al. (2019) construct a variational autoencoder parameterized by a novel graph
neural network architecture. The model simultaneously learns the structure and weights of a
nonlinear structure equation model which results in a learned causal adjacency matrix over the gene
set. No known knowledge is needed to train this model.
GES Chickering (2002) design a greedy score-based algorithm that traverses the space of equivalence
classes (graphs that imply the same conditional independencies) and outputs a partially directed
acyclic graph corresponding to the best scoring graph. Instead of a structural prior, GES assumes a
linear Gaussian data distribution and optimizes the Bayesian information criterion.
PC Spirtes et al. (2000) define a constraint-based algorithm that learns edges using conditional
independence tests in level sets. Similar to GES, no structural priors are used for the PC algorithm, but
the conditional independence test (Fisher z-transformation) assumes a linear Gaussian multivariate
model.
DirectLiNGAM Shimizu et al. (2011) assume a linear non-Gaussian acyclic model, for which
the causal graph is identifiable without interventions, to learn the causal ordering of variables by
successively subtracting the effect of each independent component from the given data in the model.
From the causal ordering, the full structure of the causal graph can be learned using linear regression.

4 Experiments

We evaluate GENELink, GENIE3, DAG-GNN, GES, PC, and DirectLiNGAM using our low-dose ra-
diation dataset described in Section 3.1 and partial ground truth network described in Section 3.2. We
use a train, test, evaluation split on the partial ground truth edge set following the methods described
in Chen & Liu (2022) so that the test set is 1/3 of the total number of edges, and each set is balanced
for positive and negative labels. A list of known transcription factors in the train set are provided as
input to GENIE3. For a description of training parameters, model architectures and hyperparameters
for each method see Appendix C. We bootstrap each model over 10 iterations, and find the optimal
threshold for pruning edge weights by optimizing the F1-score of each estimated graph using the
training set. Results for the test set on dose rate A are shown Table 2. Further, we estimate the
genes directly affected by radiation for GENIE3, DAG-GNN, PC, GES, and DirectLiNGAM. For
DAG-GNN, PC, GES and DirectLiNGAM we add the observed cumulative radiation as a random
variable in the dataset. For GENIE3, we add radiation as a transcription factor – noting that it should
be upstream of all genes. The estimated radiation neighborhood for DAG-GNN is visualized in
Appendix Fig. 3. To identify activated pathways we perform pathway enrichment analysis using
gProfiler (Raudvere et al., 2019). The enriched pathways and p-values for the genes directly affected
by radiation at each dose rate are shown in Fig. 2.
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Dose (# edges) Method AUC-PR ↑ F1 ↑ TP↑ FP ↓
GENELink 0.287 (0.194) 0.369 (0.219) 134.6 (127.7) 967.2 (1633.7)
GENIE3 0.027 (0.006) 0.048 (0.01) 31.3 (11.7) 714.6 (304.5)

A (570) DAG-GNN 0.020 (0.008) 0.022 (0.0) 2.10 (1.30) 107.0 (154.6)
GES 0.030 (0.007) 0.033 (0.008) 11.0 (6.0) 382.1 (129.7)
PC 0.017 (0.011) 0.022 (0.0) 1.4 (1.36) 65.2 (5.7)
DirectLiNGAM 0.028 (0.006) 0.031 (0.007) 11.8 (3.1) 488.6 (165.9)

Table 2: Results for recovery of the test set for dose A. TP stands for true positive, FP stands for false
positive. Values in parentheses show the standard error across bootstrap runs.

Pathway Analysis (-log10p)

WP5434: Cancer Pathways
WP5475: Hallmark of cancer sustaining 

     proliferative signaling

WP710: DNA damage response only ATM dependent
WP1530: miRNA regulation of DNA damage response
WP4946: DNA repair pathways full network

WP45: G1 to S cell cycle control
WP4963: p53 transcriptional gene network

WP1772: Apoptosis modulation and signaling
WP254: Apoptosis

WP3391: Senescence associated secretory phenotype SASP
WP3668: Hypothesized pathways in pathogenesis of cardiovascular disease

DNA 
damage/
repair

Cell Cycle

Cell death

Cancer 
pathways

Cell 
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Figure 2: Pathways term names from WikiPathways (Martens et al., 2021) are shown in the text
on the left, categorized by the type of radiation response. Brighter values imply more significant
enrichment of the corresponding pathway terms for a given model.

5 Discussion
Recovery of edges from knowledge databases Table 2 shows that GENELink is the best at
recovering the partial ground truth graph for dose rate A, achieving the best AUC-PR and F1 scores –
this holds across dose rates (Appendix Table 4). The remaining algorithms have roughly the same,
and relatively poor, performance. For reference, a random estimator would have an AUC-PR value of
0.011 (# positive edges in test set/ total number of edges in test set). Given that GENELink is trained
using a subset of partial ground truth edges, it’s comparative performance is expected. We note that
all methods have very large standard errors across bootstrap runs, likely due to our low sample size.

Pathway enrichment analysis Fig. 2 shows pathway enrichment using gProfiler. Pathways that
are highly enriched by a gene set have high -log10 p-values; implying higher confidence that the
gene set overlaps with known genes in that pathway. For GENIE3, DAG-GNN, GES, PC and
DirectLiNGAM we perform enrichment analysis on genes predicted to be directly affected by
radiation. For GENELink we take the 100 genes with the highest out-degrees. We include enrichment
of a set of 100 random genes in each dataset for reference. We expect to see enrichment of pathways
shown in Fig. 1 with a dose dependent pattern; certain pathways may be highly enriched in a specific
dose range. DAG-GNN, GENIE3 and GES enrich more pathways implicated in low-dose radiation
response compared to the other methods and the random baseline. Cancer pathways are enriched
across doses – the highest being at 0.1 mGy/hr (dose rate C). DNA damage response pathways are
active across all doses, but from DAG-GNN graphs we see a dose-dependent activation of specific
damage pathways. According to DAG-GNN graphs, the mirRNA regulation of DNA damage response

4



pathway (which depends on a combination of ATM and ATR genes) is enriched at higher dose rates
compared to the DNA damage response only ATM dependent pathway. DAG-GNN, GENIE3 and
GES corroborate evidence that miRNA plays a role in DNA damage response (Wouters et al., 2011).
The enrichment of the G1 to S cell cycle control implies the presence of cell cycle arrest across
doses. While cell cycle arrest is a temporary pause in cell division, cell senescence is a permanent
stop in cell division due to irreparable DNA damage. There is evidence that cellular senescence in
HUVECs is active at dose rate 1.4mGy/hr (Rombouts et al., 2014); DAG-GNN graphs show that
senescence pathways are active at dose rates as low as 0.01 mGy/hr (dose rate B). Apoptosis has
limited enrichment across doses, as expected given the low dose rate. DAG-GNN graphs show some
low enrichment of pathways related to heart disease at 0.1 mGy/hr (dose rate C). GES and GENIE3
have almost identical enrichment of pathways; this is largely because both learned networks are
dense and the radiation neighborhood is close to the size of the full gene set. In contrast, DAG-GNN
has a smaller radiation neighborhood (see Fig. 3), but the enrichment of important pathways shows
that these genes are specific to our context. In general, GENIE3, DAG-GNN and GES enrich low-
dose radiation pathways of interest, however, DAG-GNN provides a more nuanced dose-dependent
description of these pathways.

Limitations GENIE3, DAG-GNN and GES do not effectively recover the exact edges involved
in these pathways. For this task, collecting single-cell, time series, and targeted gene perturbation
data will likely yield more accurate results because this data is closer to meeting causal assumptions –
including having access to larger sample sizes. Instead, we show that these methods can be effective
data analysis tools to understand dose-dependent behavior despite limitations in the data.

6 Conclusion
Analysis of chronic exposure to low-dose radiation is an under explored area, but it has potential
to reveal mechanisms crucial to understanding long term prognosis for people exposed to low
levels of radiation over time. We provide a dataset of RNA-seq gene expression for HUVEC cells
chronically exposed to low-dose radiation, which is outside the scope of existing studies. We perform
GRN inference and find that structural knowledge from databases is generally not transferrable
to understanding pathways activated by low-dose radiation. Moreover, models that jointly learn a
graph over gene sets and radiation levels allow us to find the genes most affected by radiation for
downstream pathway analysis; of these, DAG-GNN has the best dose-dependent pathway enrichment.
We posit that methods like GENIE3, DAG-GNN and GES can be powerful tools for similar under-
explored scientific areas, especially in cases with small sample sizes, and with observed environmental
perturbations.
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A Radiation Specific Genes
List of genes involved in radiation response and corresponding citations which were manually curated.
Genes are included in this list if they were shown to be differentially expressed and listed in a table,
or in the case of theoretical papers, if they were mentioned in a discussion of radiation response. This
list is dose agnostic.

Table 3: Radiation specific genes with citations

Gene name Citations

TP53 Ghandhi et al. (2011); Akuwudike et al. (2023); Wyrobek et al. (2011); Katsura
et al. (2023); Okazaki (2022)

MYC Ghandhi et al. (2011); Akuwudike et al. (2023); Wyrobek et al. (2011); Katsura
et al. (2023); Okazaki (2022); Bao et al. (2016); Lee et al. (2016)

FOS Ghandhi et al. (2011); Wyrobek et al. (2011); Fang et al. (2022); Ghandhi et al.
(2010, 2008)

BCL2 Wyrobek et al. (2011); Keshavarzi et al. (2024); Okazaki (2022); Ghandhi et al.
(2008, 2010); Liu et al. (2015)

FAS Ghandhi et al. (2008, 2010, 2011); Akuwudike et al. (2023); Wyrobek et al.
(2011); Fang et al. (2022); Katsura et al. (2023); Okazaki (2022); Bao et al.
(2016); Liu et al. (2015)

NFYB Wyrobek et al. (2011)
E2F4 Wyrobek et al. (2011)
B2M Wyrobek et al. (2011)
EGR2 Wyrobek et al. (2011)
CDKN1A Ghandhi et al. (2010, 2011); Akuwudike et al. (2023); Wyrobek et al. (2011)
GADD45A Ghandhi et al. (2011); Akuwudike et al. (2023); Wyrobek et al. (2011)
ATM Okazaki (2022)
ATR Okazaki (2022)
SOD2 Ghandhi et al. (2008)
GPX1 Okazaki (2022)
HMOX1 Bao et al. (2016)
BAX Okazaki (2022); Keshavarzi et al. (2024); Kim et al. (2004)
CASP3 Liu et al. (2015)
ILB Ghandhi et al. (2008, 2010, 2011)
IL6 Ghandhi et al. (2008, 2010, 2011)
IL8 Ghandhi et al. (2008, 2010, 2011)
IL33 Ghandhi et al. (2008, 2010, 2011)
TNF Ghandhi et al. (2008, 2010, 2011); Wyrobek et al. (2011); Fang et al. (2022);

Okazaki (2022)
TNFAIP3 Ghandhi et al. (2008, 2010, 2011); Wyrobek et al. (2011); Fang et al. (2022);

Okazaki (2022)
TNF-alpha [Ghandhi et al. (2008, 2010, 2011); Wyrobek et al. (2011); Fang et al. (2022);

Okazaki (2022)
NFKB1 Ghandhi et al. (2011)
EGR1 Wyrobek et al. (2011)
RAD51 Lee et al. (2016)
MDM2 Akuwudike et al. (2023); Okazaki (2022); Wyrobek et al. (2011); Ghandhi et al.

(2008, 2011)
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XPC Akuwudike et al. (2023); Okazaki (2022)
DDB2 Okazaki (2022); Wyrobek et al. (2011); Ghandhi et al. (2008, 2010)
TGF-beta-1 Okazaki (2022)
CXCL2 Ghandhi et al. (2008, 2010, 2011)
CXCL3 Ghandhi et al. (2008, 2010, 2011)
CXCL4 Ghandhi et al. (2008, 2010, 2011)
GDF15 Ghandhi et al. (2008, 2011)
FDXR Ghandhi et al. (2008, 2010)
PTGS2 Ghandhi et al. (2008, 2010)
FGF2 Ghandhi et al. (2008); Katsura et al. (2023)
POU5F1 Ghandhi et al. (2008); Katsura et al. (2023)
MMP1 Ghandhi et al. (2008, 2010)
MMP3 Ghandhi et al. (2008, 2010)
DKK1 Ghandhi et al. (2008, 2010)
SERPINB2 Ghandhi et al. (2008)
IL1A Ghandhi et al. (2008)
IL1B Ghandhi et al. (2008)
LIF Ghandhi et al. (2008)
MMP10 Ghandhi et al. (2008)
ATF3 Ghandhi et al. (2008)
BCL2A1 Ghandhi et al. (2008, 2010)
MT1E Ghandhi et al. (2011)
KDM5B Ghandhi et al. (2011)
BMP2 Ghandhi et al. (2008)
KYNU Ghandhi et al. (2008)
LAMB3 Ghandhi et al. (2008)
ETS1 Wyrobek et al. (2011)

B Experimental Protocols

B.1 Radiation source plates

To produce radioactive source plates optimized for long term low-dose rate exposure of cells, gamma-
emitting nuclides (137 Cs) were dissolved in carrier solvent and deposited into select wells of a
96-well plate. Specific “hot” well locations were selected to maximize separation between different
doses on the plates. After drying, a radiation-resistant epoxy resin was added to create a sealed
source. This source plate was inverted to allow close proximity to cell culturing plates placed on
top. Collimators were fabricated using commercially available high-Z shielding material (tungsten
bismuth polymer), and these collimators placed between the source plate and the culturing plate. Our
custom radiation source plates allowed investigation of impacts of a broad range of extremely low
dose rate exposures: 0.001 mGy/hr, 0.01 mGy/hr, 0.1 mGy/hr, 1 mGy/hr and 2 mGy/hr.

B.2 Cell culture

Single-donor human vascular endothelial cells (HUVECs) (Cat. No. C-12200, PromoCell) were
cultured in Human Large Vessel Endothelial Cell Basal Medium (Gibco) supplemented with 1X
Large Vesselplement (Gibco). HUVEC trypsinization was performed using phosphate-buffered saline
(PBS, Cat. No. SH30256.01 Cytiva) for rinsing, 0.25% Trypsin (Cat. No. SH40003.01, Cytiva)
for detachment, and Trypsin Neutralizing Solution (Cat. No. CC-5002, Lonza). HUVECs were
harvested until cell replication was insufficient to continue, at 3 weeks.
Cells were split twice per week to prevent overgrowth between weekly harvest days. The split ratio
was determined based on a visual assessment of confluency and adjusted as growth rates diminished
progressively throughout the experiment, ranging between 1:4 and 1:12. Cells were pooled by dose
rate, diluted with media, and reseeded on fresh 96-well plates. Culturing was carried out in Nunc Edge
2.0 96-well Plates (Thermo Fisher Scientific) for continued cell culture and nucleic acid extractions,
and in PhenoPlate 96-well microplates (Revvity) for cell painting experiments. All empty wells were
filled with sterile water to mitigate edge effects. The moats of the Nunc Edge 2.0 96-well plates were
filled with 3 mL sterile water per moat to reduce edge effects further.
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B.3 RNA-seq
Raw, paired-end sequencing FASTQ files and were assessed for quality using FASTQC to identify
potential technical issues. Adapter trimming and removal of low-quality bases were carried out
using TrimGalore (v0.6.10) to ensure high-quality input for alignment. The cleaned reads were then
aligned to the GRCh38.p14 human reference genome using the STAR aligner (v2.7.11b). Gene-level
counts were generated with featureCounts (v2.0.6), and transcript abundance was estimated with
TPMCalculator (v0.0.3). Each irradiated condition included two biological replicates. Differential
expression analysis was performed using DESeq2 (pydeseq2 v0.4.9), by contrasting weekly irradiated
samples against untreated controls. Genes were considered significantly differentially expressed if
they met the criteria of an adjusted p-value < 0.05 and an absolute log2 fold-change ≥ 1.0.

B.4 A note about single-cell versus bulk RNA-seq data
A natural question is what the reasoning is for our choice of measuring bulk rather than single-
cell gene expression – especially since single-cell datasets have been increasingly used for causal
discovery because it better matches the assumptions needed for identifiability of the causal structure
and generates tens of thousands of samples (Brouillard et al., 2020; Lopez et al., 2022; Chevalley
et al., 2025). Our reasoning is two-fold: First, single-cell RNA-seq costs around 10x more than
bulk RNA-seq (this ends up being $100k for the duration of our experiments); second, single-cell
RNA-seq data is most valuable when analyzing the expression profile of heterogeneous cells. For
example, in tissue samples we see heterogeneity between cells because a tissue sample contains cells
of varying cell types – different cell types have different expression profiles. In our case, the cells
come from a cell-line, meaning they are all the same cell type. If we were to measure single-cell
expression, we would likely observe cells in different stages of the cell-cycle. While this is valuable
for understanding gene to gene causal relationships relevant to the cell-cycle, since we are more
interested in the cells’ response to radiation our focus is to collect data where this signal would
be strongest. In bulk expression data, cells are pooled and expression values are averaged. This
improves the statistical power of the data, and strengthens radiation signals which we expect to affect
all cells. In contrast, single-cell RNA-seq is highly susceptible to noise and dropouts, which has been
well-documented (Dai et al., 2024). There is some heterogeneity specific to radiation response; some
cells will die earlier than others, and therefore it is of interest to measure the expression of each cell to
understand why a cell survived. Further, there is a coupling between cell-cycle and radiation exposure.
we are able to measure cell-cycle arrest and cell senescence signals in bulk-expression data based
on Fig. 2, however single-cell may be able to provide more information to the coupling between
cell-cycle and radiation response. Given the cost of single-cell, we see more value in measuring
bulk-expression of cells under radiation, however single-cell could be valuable for understanding
cell-cycle related radiation response in the future.

C Model Training and Hyperparameters
We use the default settings for training/running all methods. Here we describe these settings in detail.

• GENELink embeds the prior GRN and gene expression data with two GAT layers (each
with three attention heads), with hidden_dim = 128 and output_dim = 64. The out-
puts of the GAT layers are connected to two separate two-layer MLP channels both with
input_dim=64, hidden_dim=32, output_dim=16. Each channel corresponds to tran-
scription factors (TF) and target gene embeddings. For a given (TF, target) train or test pair,
edge probabilities are computed as the dot product of the transcription factor and target gene
embeddings. GENELink is trained for 5 epochs using the Adam optimizer with batch size
256, learning rate of 3e-3 (gamma=0.99), and binary cross entropy loss.

• For GENIE3, each RandomForestRegressor model has n_estimators = 1000 trees and
max_features =

√
#genes. GENIE3 ensemble models are fit in parallel with 16 threads.

• DAG-GNN has a trainable adjacency matrix A ∈ R#genes×#genes. The encoder is z =
(I −AT )x for input x ∈ R#genes×#samples, where I is the identity matrix. The decoder is
(I −AT )−1z. DAG-GNN is trained by maximizing the evidence lower bound (ELBO) and
until convergence of the acyclicity constraint described in Yu et al. (2019). DAG-GNN is
trained for 300 epochs using Adam with a learning rate of 3e-3 (gamma=1.0, lr_decay=
200). The threshold for the adjacency matrix A is set to 0. We tune A separately according
to the optimal F1-score with respect to the train set of GENELink.
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• For GES, we use the Tetrad implementation (Ramsey & Andrews, 2023) and use the
Bayesian information criterion (BIC) score function.

• For the PC algorithm we use the Tetrad implementation (Ramsey & Andrews, 2023) and the
Fisher z-score conditional independence test. We set the significance threshold for pruning
edges α = 0.05, which is the default value.

• For DirectLiNGAM we use the Tetrad implementation (Ramsey & Andrews, 2023).

All models were trained on a NVIDIA Tesla V100-SXM2-32GB GPU. Due to memory constraints
with the DAG-GNN model architecture, we partitioned the gene set according to a causal partition
(Shah et al., 2025) with respect to the partial ground truth network. Training times depend on the
gene set size, which vary by dose rate. For dose rate A (918 genes) the average training times are as
follows: GENELink (1 min), GENIE3 (10.7 min), DAG-GNN (23.3 min), PC (8.9 min), GES (57.7
min), and DirectLiNGAM (1.5 min).

D DAG-GNN Radiation Neighborhoods
Fig. 3 shows the two-hop neighborhood for “radiation" after including the cumulative radiation
dose as a random variable in DAG-GNN graph estimation. The size of the node corresponds to the
out-degree of the node and the width of the edge corresponds to the edge weight magnitude. These
graphs were generated using the consensus over 10 bootstrap runs so that edges that occurred in
≥ 50% of runs were retained and visualized – edge weights were averaged. The node set is also
the gene set used for pathway enrichment in Fig. 2. GENIE3 and GES graphs are not shown here
because the neighborhoods are very large and difficult to visualize.
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Figure 3: The radiation (rad) neighborhoods estimated by DAG-GNN for dose rates A (left most)
through E (right most). Thicker edges indicate larger weights between nodes.

E Pathway Enrichment
We use gProfiler (Raudvere et al., 2019) for pathway enrichment analysis of genes in the neighborhood
of radiation for GENIE3, DAG-GNN, PC and GES, the top 100 out-degree nodes for GENELink,
and a set of 100 random genes in the dataset as comparison. gprofiler performs functional profiling of
gene lists using various kinds of biological evidence. The tool performs statistical enrichment analysis
to find over-representation of information in the gene set from Gene Ontology terms, biological
pathways, regulatory DNA elements, human disease gene annotations, and protein-protein interaction
networks. For our analysis, we focus on pathways defined in WikiPathways (Martens et al., 2021).
gProfiler uses Fisher’s one-tailed test, also known as cumulative hypergeometric probability, as the p-
value measuring the randomness of the intersection between the query gene set and the WikiPathway
term term. The p-value represents the probability of the observed intersection plus probabilities of all
larger, more extreme intersections. The higher the -log10 p-value the stronger the enrichment of that
term is in the gene set.

F Doses A-E Results
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Dose Method AUC-PR ↑ F1 ↑ TP↑ FP ↓
(# positive edges in test set)

GENELink 0.287 (0.194) 0.369 (0.219) 134.6 (127.7) 967.2 (1633.7)
GENIE3 0.027 (0.006) 0.048 (0.01) 31.3 (11.7) 714.6 (304.5)

A (570) DAG-GNN 0.020 (0.008) 0.022 (0.0) 2.10 (1.30) 107.0 (154.6)
GES 0.030 (0.007) 0.033 (0.008) 11.0 (6.0) 382.1 (129.7)
PC 0.017 (0.011) 0.022 (0.0) 1.4 (1.4) 65.2 (5.7)
DirectLiNGAM 0.028 (0.006) 0.031 (0.007) 11.8 (3.1) 488.6 (165.9)

GENELink 0.268 (0.173) 0.398 (0.203) 481.7 (327.3) 534.1 (234.8)
GENIE3 0.021 (0.001) 0.044 (0.006) 111.5 (75.2) 3522.2 (2869.9)

B (1241) DAG-GNN 0.022 (0.006) 0.021 (0.008) 16.70 (29.7) 615.4 (1286.3)
GES 0.019 (0.002) 0.020 (0.002) 15.6 (3.7) 890.7 (243.3)
PC 0.012 (0.006) 0.017 (0.0) 1.5 (1.1) 107.7 (12.7)
DirectLiNGAM 0.019 (0.004) 0.021 (0.003) 16.2 (2.6) 965.7 (375.9)

GENELink 0.236 (0.211) 0.312 (0.231) 428.9 (366.2) 877.3 (577.8)
GENIE3 0.015 (6e-4) 0.033 (0.002) 138.6 (33.1) 7130.9 (1730.1)

C (1118) DAG-GNN 0.019 (0.001) 0.017 (3e-4) 4.6 (7.4) 252.5 (540.6)
GES 0.018 (0.003) 0.020 (0.004) 15.6 (6.0) 1032.1 (504.9)
PC 0.015 (0.007) 0.017 (0.0) 2.2 (1.5) 111.9 (10.2)
DirectLiNGAM 0.018 (0.003) 0.019 (0.002) 14.7 (6.1) 1054.0 (532.1)

GENELink 0.074 (0.075) 0.135 (0.151) 248.4 (211.1) 8224.9 (11982.6)
GENIE3 0.015 (0.003) 0.025 (0.005) 23.3 (9.7) 1019.7 (721.1)

D (928) DAG-GNN 0.042 (0.029) 0.017 (0.005) 9.7 (10.0) 478.6 (1099.5)
GES 0.017 (0.004) 0.019 (0.006) 12.2 (2.6) 782.7 (194.8)
PC 0.010 (0.006) 0.019 (0.0) 1.6 (1.2) 118.8 (10.1)
DirectLiNGAM 0.022 (0.004) 0.025 (0.006) 16.1 (2.9) 719.7 (54.5)

GENELink 0.404 (0.245) 0.377 (0.030) 221.0 (176.2) 984.2 (2501.2)
GENIE3 0.040 (0.007) 0.062 (0.013) 28.4 (10.2) 416.6 (154.3)

E (480) DAG-GNN 0.065 (0.024) 0.028 (0.006) 5.8 (2.6) 44.8 (6.1)
GES 0.032 (0.006) 0.035 (0.007) 12.5 (2.9) 446.0 (99.0)
PC 0.025 (0.006) 0.024 (0.0) 2.1 (0.7) 60.9 (5.5)
DirectLiNGAM 0.033 (0.004) 0.035 (0.005) 11.4 (4.5) 384.6 (130.1)

Table 4: Metrics for recovery of the test split on the partial ground truth network for all doses. TP
stands for true positive, FP stands for false positive. Values in parentheses are standard error.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim to provide RNA-seq expression data, a thorough evaluation of three
algorithms, and a demonstration of how GENIE3 and DAG-GNN enrich known pathways
for radiation response. We support all these claims in our experiments and discussions
section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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Dose Method AUC-PR ↑ F1 ↑ TP↑ FP ↓
GENELink 0.113 (0.141) 0.125 (0.0) 11339.7 (13569.9) 163367.7 (162630.6)
GENIE3 0.172 (0.008) 0.127 (0.006) 3226.3 (1388.9) 9579.8 (5354.5)

A DAG-GNN 0.130 (0.002) 0.125 (0.0) 239.8 (159.4) 1451.6 (2187.7)
GES 0.105 (0.003) 0.126 (0.0) 1743.7 (0.0) 11907.0 (2435.3)
PC 0.116 (0.007) 0.125 (0.0) 176.8 (14.7) 910.8 (0.1)
DirectLiNGAM 0.100 (0.003) 0.125 (0.0) 1784.8 (85.5) 13305.8 (1290.5)

GENELink 0.108 (0.140) 0.104 (0.0) 15258.1 (22406.8) 265531.6 (403917.5)
GENIE3 0.135 (0.005) 0.126 (0.029) 11553.2 (8115.0) 50422.6 (40052.1)

B DAG-GNN 0.085 (0.016) 0.104 (0.0) 1198.6 (2295.8) 14439 (29548.0)
GES 0.084 (0.001) 0.100 (0.0) 2849.7 (188.1) 24595.5 (1683.1)
PC 0.100 (0.005) 0.104 (0.0) 275.3 (219.2) 1666.7 (80.9)
DirectLiNGAM 0.083 (0.002) 0.104 (0.0) 2759.7 (251.5) 24463.1 (2970.8)

GENELink 0.102 (0.142) 0.100 (0.0) 11600.5 (17924.9) 216024.3 (337188.2)
GENIE3 0.122 (0.002) 0.178 (0.023) 25509.0 (8810.6) 135448.8 (51799.5)

C DAG-GNN 0.094 (0.018) 0.100 (0.0) 360.3 (591.4) 4189.2 (9018.0)
GES 0.081 (0.002) 0.100 (0.0) 2631.8 (169.7) 24024.4 (1668.4)
PC 0.094 (0.005) 0.100 (0.0) 249.7 (0.0) 1618.7 (77.1)
DirectLiNGAM 0.079 (0.002) 0.100 (0.0) 2591.0 (121.6) 23997.5 (1721.7)

GENELink 0.033 (0.008) 0.063 (0.001) 21071.5 (230207.6) 614387.1 (680192.4)
GENIE3 0.108 (0.005) 0.066 (0.011) 3941.3 (2081.7) 19179.1 (12234.4)

D DAG-GNN 0.072 (0.029) 0.062 (0.0) 545.4 (982.5) 14647 (32770.0)
GES 0.054 (0.002) 0.062 (0.0) 1987.4 (482.6) 27406.0 (6597.0)
PC 0.067 (0.004) 0.062 (0.0) 260.5 (0.0) 2363.1 (154.2)
DirectLiNGAM 0.052 (0.002) 0.062 (0.0) 2114.0 (92.7) 31581.4 (2624.4)

GENELink 0.112 (0.142) 0.131 (0.0) 10000.4 (12228.4) 135080.7 (165169.6)
GENIE3 0.183 (0.008) 0.131 (0.0) 1716.8 (563.6) 4349.5 (1622.1)

E DAG-GNN 0.124 (0.008) 0.131 (0.0) 135.6 (25.6) 621.6 (88.7)
GES 0.109 (0.003) 0.131 (0.0) 1654.6 (117.0) 11008.4 (978.3)
PC 0.130 (0.005) 0.131 (0.0) 180.1 (12.1) 784.9 (33.9)
DirectLiNGAM 0.104 (0.002) 0.131 (0.0) 1628.1 (106.8) 11856.9 (697.5)

Table 5: Metrics for recovery of the entire partial ground truth network for all doses. TP stands for
true positive, FP stands for false positive. Values in parentheses are standard error.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have a limitations paragraph in the discussion section, mainly relating to
the fact that we have a small sample size and that the actual pathways are not necessarily
being recovered in the learned graphs.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This is not a theoretical paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a description of how the data was collected from cell cultures in
Appendix B and Model training in Appendix C. Due to space limitations we could not fit
them in paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will provide the datasets described in Table 1 and the code for model
training and evaluation if the paper is accepted and we can deanonymize our work.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a description of model training in Appendix C. paper.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all metrics in Tables 2 we report the standard error over 10 bootstrap runs.
For the pathway analysis we do not provide error bars, as this is not standard practice in
pathway enrichment however we include the -logp values for the pathways of interest.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the compute specs in Appendix C and training times for each model.
Results are over 10 bootstrapped runs, so the runtimes to replicated the evalutions are
ten-fold of what is report in this section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and followed the guidelines. Regarding human cells, the cells
are grown in lab and there are no patient identifiers in the dataset.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The main societal impact for this paper relates to public health, as the research
conducted in this paper is meant to understand the onset of cancer from radiation exposure.
We mention this in the introduction and conclusion of the paper. We do not believe there are
potential negative impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t believe this paper poses this risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the authors of GENIE3, GENELink and DAG-GNN. Each paper has
an associated code base.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The Central Department of Energy Institutional Review Board has determined
that this project is Exempt human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The Central Department of Energy Institutional Review Board has determined
that this project is Exempt human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used for the research in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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