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ABSTRACT

Score-based generative models (SGMs) are a popular family of deep generative
models that achieve leading image generation quality. Early studies extend SGMs
to tackle class-conditional generation by coupling an unconditional SGM with the
guidance of a trained classifier. Nevertheless, such classifier-guided SGMs do
not always achieve accurate conditional generation, especially when trained with
fewer labeled data. We argue that the problem is rooted in the classifier’s tendency
to overfit without coordinating with the underlying unconditional distribution. We
propose improving classifier-guided SGMs by letting the classifier regularize it-
self to respect the unconditional distribution. Our key idea is to use principles
from energy-based models to convert the classifier as another view of the uncon-
ditional SGM. Then, existing loss for the unconditional SGM can be leveraged to
achieve regularization by calibrating the classifier’s internal unconditional scores.
The regularization scheme can be applied to not only the labeled data but also
unlabeled ones to further improve the classifier. Empirical results show that the
proposed approach significantly improves conditional generation quality across
various percentages of fewer labeled data. The results confirm the potential of the
proposed approach for generative modeling with limited labeled data.

1 INTRODUCTION

Score-based generative models (SGMs) capture the underlying data distribution by learning the gra-
dient function of the log-likelihood on data, also known as the score function. SGMs, when coupled
with a diffusion process that gradually converts noise to data, can often synthesize higher-quality
images than other popular alternatives, such as generative adversarial networks (Song et al., 2021;
Dhariwal & Nichol, 2021). The community’s research dedication on SGMs demonstrates promising
performance in image generation (Song et al., 2021) and other fields such as audio synthesis (Kong
et al., 2021; Jeong et al., 2021; Huang et al., 2022) and natural language generation (Li et al., 2022).
Many such successful SGMs focus on unconditional generation, which models the distribution with-
out considering other variables (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021). When
seeking to generate images controllably from a particular class, it is necessary to model the condi-
tional distribution concerning another variable. Such conditional SGMs (Song et al., 2021; Dhariwal
& Nichol, 2021; Chao et al., 2022) will be the focus of this paper.

There are two major families of conditional SGMs. Classifier-free SGMs (CFSGMs) adopt specific
conditional network architectures and losses (Dhariwal & Nichol, 2021; Ho & Salimans, 2021).
Such SGMs are known to generate high-fidelity images when all data are labeled. Nevertheless,
our findings indicate that their performance drops significantly as the proportion of labeled data de-
creases. This makes them less preferable in the semi-supervised setting with fewer labeled data,
which is a realistic scenario when obtaining class labels takes significant time and costs. Classifier-
guided SGMs (CGSGMs) form another family of conditional SGMs (Song et al., 2021; Dhariwal
& Nichol, 2021) based on decomposing the conditional score into the unconditional score plus the
gradient of an auxiliary classifier. A vanilla CGSGM can then be constructed by learning a classifier
in parallel to training an unconditional SGM with the popular denoising score matching (DSM; Vin-
cent, 2011) technique. The additional classifier can control the trade-off between generation diver-
sity and fidelity better (Dhariwal & Nichol, 2021). Furthermore, because the unconditional SGM can
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Figure 1: Illustration of proposed ap-
proach. A vanilla CGSGM takes the
orange (DSM loss) and green (cross-
entropy loss) arrows. The proposed
CGSGM-SC additionally considers the
two blue arrows representing the pro-
posed self-calibration loss on both la-
beled and unlabeled data.

be trained with both labeled and unlabeled data in princi-
ple, CGSGMs emerge with more potential than CFSGMs
for the semi-supervised setting with fewer labeled data.

The quality of the classifier gradients is critical for CGS-
GMs. If the classifier overfits (Lee et al., 2018; Müller
et al., 2019; Mukhoti et al., 2020; Grathwohl et al.,
2020) and predicts highly inaccurate gradients, the result-
ing conditional scores may be unreliable, which lowers
the generation quality even if the reliable unconditional
scores can ensure decent generation fidelity. Although
there are general regularization techniques (Zhang et al.,
2019; Müller et al., 2019; Hoffman et al., 2019) that miti-
gate overfitting, their specific benefits for CGSGMs have
not been fully studied except for a few cases (Kawar et al.,
2022). In fact, we find that those techniques are often not
aligned with the unconditional SGM’s view of the underlying distribution and offer limited bene-
fits for improving CGSGMs. One pioneering enhancement of CGSGM on distribution alignment,
denoising likelihood score matching (CG-DLSM; Chao et al., 2022), calibrates the classifier with a
regularization loss that aligns the classifier’s outputs to the unconditional SGM’s outputs on labeled
data. CG-DLSM addresses the alignment issue with the external help of the unconditional SGM and
achieves state-of-the-art performance within the CGSGM family. However, DLSM is only designed
for labeled data and is not applicable to unlabeled data.

In this work, we design a regularization term that calibrates the classifier internally, without relying
on the unconditional SGM. Such an internal regularization has been previously achieved by the joint
energy-based model (JEM; Grathwohl et al., 2020), which interprets classifiers as energy-based
models. The interpretation allows JEM to define an auxiliary loss term that respects the underlying
distribution and can unlock the generation capability of classifiers when using MCMC sampling.
Nevertheless, extending JEM as CGSGM is non-trivial, as the sampling process is time-consuming
and results in unstable loss values when coupled with the diffusion process of CGSGM. We thus
take inspiration from JEM to derive a novel CGSGM regularizer instead of extending JEM directly.

Our design broadens the JEM interpretation of classifiers to be unconditional SGMs. Then, a stable
and efficient self-calibration (SC) loss (as illustrated with LSC in Fig. 1) can be computed from the
classifier internally for regularization. The SC loss inherits a sound theoretical guarantee from the
DSM technique for training unconditional SGMs. Our proposed CGSGM-SC approach, as shown
in Fig. 1, allows separate training of the unconditional SGM and the classifier. The approach applies
the SC loss on both labeled and unlabeled data, resulting in immediate advantages in the semi-
supervised setting with fewer labeled data.

Following earlier studies on CGSGMs (Chao et al., 2022), we visually study the effectiveness of
CGSGM-SC on a synthesized data set. The results reveal that the CGSGM-SC leads to more accu-
rate classifier gradients than vanilla CGSGM, thus enhancing the estimation of conditional scores.
We further conduct thorough experiments on CIFAR-10 and CIFAR-100 datasets to validate the ad-
vantages of CGSGM-SC. The results confirm that CGSGM-SC is superior to the vanilla CGSGM
and the state-of-the-art CGSGM-DLSM approach. Furthermore, in an extreme setting for which
only 5% of the data is labeled, CGSGM-SC, which more effectively utilizes unlabeled data, is sig-
nificantly better than all CGSGMs and CFSGMs. This confirms the potential of CGSGM-SC in
scenarios where labeled data are costly to obtain. We summarize the contributions of this paper as:

• We proposed to further reinterpret classifiers as SGMs for regularization.
• We discovered the potential of CGSGMs in semi-supervised settings.
• We verified CGSGM-SC’s effectiveness in improving CGSGM, especially in semi-

supervised settings.

2 BACKGROUND

Consider a data distribution p(x) where x ∈ Rd. The purpose of an SGM is to generate samples
from p(x) via the information contained in the score function ∇x log p(x), which is learned from
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data. We first introduce how a diffusion process can be combined with learning a score function
to effectively sample from p(x) in Section 2.1. Next, a comprehensive review of works that have
extended SGMs to conditional SGMs is presented in Section 2.2, including those that incorporates
classifier regularization for CGSGMs. Finally, JEM (Grathwohl et al., 2020) is introduced in Sec-
tion 2.3, highlighting its role in inspiring our proposed methodology.

2.1 SCORE-BASED GENERATIVE MODELING BY DIFFUSION

Song et al. (2021) propose to model the transition from a known prior distribution pT (x), typically
a multivariate gaussian noise, to an unknown target distribution p0(x) = p(x) using the markov
chain described by the following stochastic differential equation (SDE):

dx =
[
f(x, t)− g(t)2s(x, t)

]
dt+ g(t)dw̄, (1)

where w̄ is a standard Wiener process when the timestep flows from T back to 0, s(x, t) =
∇x log pt(x) denotes a time-dependent score function, and f(x, t) and g(t) are some prespecified
functions that describe the overall movement of the distribution pt(x). The score function is learned
by optimizing the following time-generalized denoise score matching (DSM) (Vincent, 2011) loss

LDSM (θ) = Et

[
λ(t)Ext,x0

[
1

2
∥s(xt, t;θ)− st(xt|x0)∥22

]]
, (2)

where t is selected uniformly between 0 and T , xt ∼ pt(x), x0 ∼ p0(x), st(xt|x0) denotes the
score function of the noise distribution pt(xt|x0), which can be calculated using the prespecified
f(x, t) and g(t), and λ(t) is a weighting function that balances the loss of different timesteps. In
this paper, we use the drift f(x, t), dispersion g(t), and weighting λ(t) functions from the original
VE-SDE framework (Song et al., 2021). A more detailed introduction on learning the score function
and sampling through SDEs is described in Appendix B.

2.2 CONDITIONAL SCORE-BASED GENERATIVE MODELS

In conditional SGMs, we are given labeled data {(xm, ym)}Mm=1 in addition to unlabeled data
{xn}M+N

n=M+1, where ym ∈ {1, 2, . . . ,K} denotes the class label. The case of N = 0 is called
the fully-supervised setting; in this paper, we consider the semi-supervised setting with N > 0, with
a particular focus on the challenging scenario where M

N+M is small. The goal of conditional SGMs
is to learn the conditional score function ∇x log p(x|y) and then generate samples from p(x|y),
typically using a diffusion process as discussed in Section 2.1 and Appendix B.2.

One approach for conditional SGMs is classifier-free SGM (Dhariwal & Nichol, 2021; Ho & Sal-
imans, 2021), which parameterizes its model with a joint architecture such that the class labels y
can be included as inputs. Classifier-free guidance (Ho & Salimans, 2021), also known as CFG,
additionally uses a null token yNIL to indicate unconditional score calculation, which is linearly
combined with conditional score calculation for some specific y to form the final estimate of s(x|y).
CFG is a state-of-the-art conditional SGM in the fully-supervised setting. Nevertheless, as we shall
show in our experiments, its performance drops significantly in the semi-supervised setting, as the
conditional parts of CFG may lack sufficient labeled data during training.

Another popular family of conditional SGM is CGSGM. Under this framework, we decompose the
conditional score function using Bayes’ theorem (Song et al., 2021; Dhariwal & Nichol, 2021):

∇x log p(x|y) = ∇x[log p(x) + log p(y|x)− log p(y)] = ∇x log p(x) +∇x log p(y|x) (3)

The log p(y) term can be dropped because it is not a function of x and is thus of gradient 0. The
decomposition shows that conditional generation can be achieved by an unconditional SGM that
learns the score function ∇x log p(x) plus an extra conditional gradient term ∇x log p(y|x).
The vanilla classifier-guidance (CG) estimates ∇x log p(y|x) with an auxiliary classifier trained
from the cross-entropy loss on the labeled data and learns the unconditional score function by the
denoising score matching loss LDSM, which in principle can be applied on unlabeled data along with
labeled data. Nevertheless, the classifier within the vanilla CG approach is known to be potentially
overconfident (Lee et al., 2018; Müller et al., 2019; Mukhoti et al., 2020; Grathwohl et al., 2020)
in its predictions, which in turn results in inaccurate gradients. This can mislead the conditional
generation process and decrease class-conditional generation quality.
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Dhariwal & Nichol (2021) propose to address the issue by post-processing the term ∇x log p(y|x)
with a scaling parameter λCG ̸= 1.

∇x log p(x|y) = ∇x log p(x) + λCG∇x log p(y|x;ϕϕϕ), (4)

where p(y|x;ϕϕϕ) is the posterior probability distribution outputted by a classifier parameterized byϕϕϕ.
Increasing λCG sharpens the distribution p(y|x;ϕϕϕ), guiding the generation process to produce less
diverse but higher fidelity samples. While the tuning heuristic is effective in improving the vanilla
CG approach, it is not backed by sound theoretical explanations.

Other attempts to regularize the classifier during training for resolving the issue form a promising
research direction. For instance, CGSGM with denoising likelihood score matching (CG-DLSM;
Chao et al., 2022) presents a regularization technique that employs the DLSM loss below formulated
from the classifier gradient ∇x log p(y, t|x;ϕϕϕ) and unconditional score function st(x).

LDLSM(ϕϕϕ) = Et

[
λ(t)Ext,x0

[
1

2
∥∇x log p(y, t|xt;ϕϕϕ) + st(xt)− st(xt|x0)∥22

]]
, (5)

where the unconditional score function st(x) is estimated via an unconditional SGM s(xt, t;θ).
The CG-DLSM authors (Chao et al., 2022) prove that Eq. 5 can calibrate the classifier to produce
more accurate gradients ∇x log p(y|x).
Robust CGSGM (Kawar et al., 2022), in contrast to CG-DLSM, does not regularize by modeling
the unconditional distribution. Instead, robust CGSGM leverages existing techniques to improve the
robustness of the classifier against adversarial perturbations. Robust CGSGM applies a gradient-
based adversarial attack to the xt generated during the diffusion process, and uses the resulting
adversarial example to make the classifier more robust.

2.3 REINTERPRETING CLASSIFIERS AS ENERGY-BASED MODELS (EBMS)

Our proposed methodology draws inspiration from JEM (Grathwohl et al., 2020), which shows
that reinterpreting classifiers as EBMs and enforcing regularization with related objectives helps
classifiers to capture more accurate probability distributions. EBMs are models that estimate en-
ergy functions E(x) of distributions (LeCun et al., 2006), which satisfies log p(x) = −E(x) +
log

∫
x
exp(E(x))dx. Given the logits of a classifier to be f(x, y;ϕϕϕ), the estimated joint distribu-

tion can be written as p(x, y;ϕϕϕ) = exp(f(x,y;ϕϕϕ))
Z(ϕϕϕ) , where exp(·) means exponential and Z(ϕϕϕ) =∫

x,y
exp(f(x, y;ϕϕϕ)) dx dy. After that, the energy function E(x;ϕϕϕ) can be obtained by

E(x;ϕϕϕ) = − log Σy exp(f(x, y;ϕϕϕ)) (6)

Then, losses used to train EBMs can be seamlessly leveraged in JEM to regularize the classifier, such
as the typical EBM loss LEBM = Ep(x) [− log p(x;ϕϕϕ)]. JEM uses MCMC sampling for computing
the loss, and is shown to result in a well-calibrated classifier in their empirical study. The original
JEM work (Grathwohl et al., 2020) also reveals that classifiers can potentially be used as a reasonable
generative model, but its (unconditional) generation performance is knowingly worse than state-of-
the-art SGMs (Song et al., 2021).

3 THE PROPOSED SELF-CALIBRATION METHODOLOGY

In this work, we consider CGSGMs under the diffusion generation process as discussed in Sec-
tion 2.1. Such CGSGMs require learning an unconditional SGM, which is assumed to be trained
with denoising score matching (DSM; Vincent, 2011) due to its close relationship with the diffu-
sion process. Such CGSGMs also require a time-dependent classifier that models pt(y|x) instead of
p(y|x), which can be done by applying a time-generalized cross-entropy loss.

Section 2.2 has illustrated the importance of regularizing the (time-dependent) classifier to prevent
it from misguiding the conditional generation process. One naive thought is to use established
regularization mechanisms, such as label-smoothing and Jacobian regularization (Hoffman et al.,
2019). Those regularization possibilities that are less attached to the underlying distribution will be
studied in Section 4. Our proposed regularization loss, inspired by the success of CG-DLSM Chao
et al. (2022), attempts to connect with the underlying distribution better.
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Figure 2: Calculation of proposed self-calibration loss

3.1 FORMULATION OF SELF-CALIBRATION LOSS

We extend JEM (Grathwohl et al., 2020) to connect the time-dependent classifier to the underlying
distribution. In particular, we reinterpret the classifier as a time-dependent EBM. The interpretation
allows us to obtain a time-dependent version of pt(x) within the classifier, which can be used to
obtain a classifier-internal version of the score function. Then, instead of regularizing the classifier
by the EBM loss − log pt(x) like JEM (as unsuccessfully studied in Appendix E), we propose to
regularize by score function ∇x log pt(x) instead.

Under the EBM interpretation, the energy function is E(x, t;ϕϕϕ) = − log Σy exp(f(x, y, t;ϕϕϕ)),
where f(x, y, t;ϕϕϕ) is the output logits of the time-dependent classifier. Then, the internal time-
dependent unconditional score function is sc(x, t;ϕϕϕ) = ∇x log Σy exp(f(x, y, t;ϕϕϕ)), where sc is
used instead of s to indicate that the unconditional score is computed within the classifier. Then,
we adopt the standard DSM technique in Eq. 2 to “train” the internal score function, forcing it to
follow its physical meaning during the diffusion process. The resulting self-calibration loss can then
be defined as

LSC(ϕϕϕ) = Et

[
λ(t)Ext,x0

[
1

2
∥sc(xt, t;ϕϕϕ)− st(xt|x0)∥22

]]
, (7)

where xt ∼ pt, x0 ∼ p0, and st(xt|x0) denotes the score function of the noise centered at x0.

Fig. 2 summarizes the calculation of the proposed SC loss. Note that in practice, t is uniformly
sampled over [0, T ]. After the self-calibration loss is obtained, it is mixed with the cross-entropy
loss LCE to train the classifier. The total loss can be written as:

LCLS(ϕϕϕ) = LCE(ϕϕϕ) + λSCLSC(ϕϕϕ), (8)

where λSC is a tunable hyper-parameter. The purpose of self-calibration is to cause the classifier
to more accurately estimate the score function of the underlying data distribution, implying that the
underlying data distribution itself is also more accurately estimated. As a result, the gradients of
the classifiers are more aligned with the ground truth. After self-calibration, the classifier is then
used in CGSGM to guide an unconditional SGM for conditional generation. Note that since our
approach regularizes the classifier during training while classifier gradient scaling (Eq. 4) is done
during sampling, we can easily combine the two techniques to enhance performance.

3.2 COMPARISON WITH RELATED REGULARIZATION METHODS

This section provides a comparative analysis of the regularization methods employed in
DLSM (Chao et al., 2022), robust classifier guidance (Kawar et al., 2022), JEM Grathwohl et al.
(2020), and our proposed self-calibration loss.

DLSM (Chao et al., 2022) DLSM and our proposed method both regularize the classifier to align
better with unconditional SGMs’ view of the underlying distribution. DLSM achieves this by relying
on the help of an external trained SGM, whereas self-calibration regularizes the classifier by using
a classifier-internal SGM. Furthermore, DLSM loss only utilizes labeled data during training, while
our method is able to make use of unlabeled data in addition to labeled data.

Robust CGSGM (Kawar et al., 2022) Robust CGSGM proposes to regularize classifiers with
gradient-based adversarial training without explicitly aligning with the distribution, in contrast to
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(a) Toy data

(b) Ground truth (c) Vanilla (d) CG-DLSM (e) CG-JEM (f) CG-SC (Ours)

Figure 3: Gradients of classifiers ∇x log p(y|x) for toy dataset. The upper row contains the gradients
for class 1 (red) and the lower contains the gradients for class 2 (blue). (a) Real data distribution.
(b) Ground truth classifier gradients. Gradients estimated by (c) Vanilla CG, (d) CG-DLSM, (e) CG-
JEM, and (f) CG with proposed self-calibration.

our self-calibration method, where direct calibration of the classifier-estimated score function is em-
ployed. Although adversarial robustness is correlated with more interpretable gradients (Tsipras
et al., 2019), EBMs (Zhu et al., 2021), and generative modeling (Santurkar et al., 2019), the theoret-
ical foundation for whether adversarially robust classifiers accurately estimate underlying distribu-
tions remains ambiguous.

JEM (Grathwohl et al., 2020) JEM and the proposed self-calibration both interpret classifiers as
unconditional EBMs, and self-calibration further extends the interpretation to unconditional SGMs.
The training stage of EBM that incorporates MCMC sampling is known to be unstable and time-
consuming, whereas self-calibration precludes the need for sampling during training and substan-
tially improves both stability and efficiency. Even though one can mitigate the instability issue by
increased sampling steps and additional hyperparameter tuning, doing so largely lengthens training
times.

CG-JEM In contrast to the previous paragraph, this paragraph discusses the incorporation of JEM
into the time-dependent CGSGM framework. Coupling EBM training with additional training ob-
jectives is known to introduce increased instability, especially for time-dependent classifiers consid-
ering it is more difficult to generate meaningful time-dependent data through MCMC sampling. For
example, in our naive implementation of time-dependent JEM, it either (1) incurs high instability
(loss diverges within 10, 000 steps in all 10 runs; requires 4.23s per step) or (2) poses unaffordable
resource consumption requirements (requires 20s per step, approximately 50 days in total). In com-
parison, our proposed method only requires 0.75s per step. Details of our attempts to incorporate
JEM into the current framework are provided in Appendix E.

3.3 2D TOY DATASET

Following DLSM (Chao et al., 2022), we use a 2D toy dataset containing two classes to demonstrate
the effects of self-calibration loss and visualize the training results. The data distribution is shown
in Fig. 3a, where the two classes are shown in two different colors. After training the classifiers on
the toy dataset with different methods, we plot the gradients ∇x log p(y|x) at minimum timestep
t = 0 estimated by the classifiers and compare them with the ground truth. Additional quantitative
measurements of the toy dataset are included in Appendix F.

Figure 3 shows the ground truth classifier gradient (Fig. 3b) and the gradients estimated by classi-
fiers trained using different methods. Unregularized classifiers produce gradients that contain rapid
changes in magnitude across the 2D space, with frequent fluctuations and mismatches with the
ground truth. Such fluctuations can impede the convergence of the reverse diffusion process to a sta-
ble data point, leading SGMs to generate noisier samples. Moreover, the divergence from the ground
truth gradient can misguide the SGM, leading to generation of samples from incorrect classes. Un-
regularized classifiers also tend to generate large gradients near the distribution borders and tiny
gradients elsewhere. This implies that when the sampling process is heading toward the incorrect
class, such classifiers are not able to “guide” the sampling process back towards the desired class.
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In comparison, the introduction of various regularization techniques such as DLSM, JEM, and the
proposed self-calibration results in estimated gradients that are more stable, continuous across the
2D space, and better aligned with the ground truth. This stability brings about a smoother genera-
tion process and the production of higher-quality samples. In Section 4, we will further examine the
generation performance of various methods with the CIFAR-10 and CIFAR-100 dataset.

3.4 USING SELF-CALIBRATION LOSS ON SEMI-SUPERVISED LEARNING

In this work, we also explore the benefit of self-calibration loss in the semi-supervised setting, where
only a small proportion of data are labeled. In the original classifier guidance, the classifiers are
trained only on labeled data. The lack of labels in the semi-supervised setting constitutes a greater
challenge to learning an unbiased classifier. With self-calibration, we better utilize the large amount
of unlabeled data by calculating the self-calibration loss with all data.

To incorporate the loss and utilize unlabeled data during training, we change the way LCLS is calcu-
lated from Eq. 8. As illustrated in Fig. 1, the entire batch of data is used to calculate LSC, whereas
only the labeled data is used to calculate LCE. During training, we observe that when the majority is
unlabeled data, the cross-entropy loss does not converge to a low-and-steady stage if the algorithm
randomly samples from all training data. As this may be due to the low percentage of labeled data in
each batch, we change the way we sample batches by always ensuring that exactly half of the data
is labeled. Appendix C summarizes the semi-supervised training process of the classifier.

Note that even though the classifier is learning a time-generalized classification task, we can still
make it perform as an ordinary classifier that classifies the unperturbed data by setting the input
timestep t = 0. This greatly facilitates the incorporation of common semi-supervised classification
methods such as pseudo-labeling (Lee, 2013), self-training, and noisy student (Xie et al., 2020).
Integrating semi-supervised classification methodologies is an interesting future research direction,
and we reserve the detailed exploration of this topic for future studies.

4 EXPERIMENTS

We tested our method on a toy dataset (Section 3.3) to provide a high-level view of how SC loss
improves classifiers in terms of producing accurate gradients. In the following sections, we test our
methods on the CIFAR-10 and CIFAR-100 datasets for image generation. We demonstrate that our
method improves generation both conditionally and unconditionally with different percentages of
labeled data (Section 4.2). Randomly selected images of CGSGM before and after self-calibration
on CIFAR-10 are shown in Appendix I. Addtional experimental details are included in Appendix D.

4.1 EXPERIMENTAL SETUP

Evaluation metrics We evaluated the class-conditional performance of our methods using intra-
FID, which measures the average FID for each class, and generation accuracy, which uses a pre-
trained ViT (Dosovitskiy et al., 2021) classifier to determine whether the samples are generated in
the correct class, in addition to commonly used metrics Frechet inception distance (FID; Heusel
et al., 2017) and inception score (IS; Salimans et al., 2016). The test accuracy of the pre-trained
ViT is 98.52% on CIFAR-10. Note that nearly-accurate classification is desired for meaningful
evaluation of the generation accuracy, but we were unable to locate such a classifier for the CIFAR-
100 dataset. Therefore, generation accuracy is not included for the CIFAR-100 dataset.

Baseline methods CG: vanilla classifier guidance; CG-DLSM: classifier guidance with DLSM
loss (Chao et al., 2022); CG-LS: classifier guidance with label smoothing; CG-JR: classifier guid-
ance with Jacobian regularization (Hoffman et al., 2019); Cond: conditional SGMs by conditional
normalization (Dhariwal & Nichol, 2021); CFG-labeled: CFG (Ho & Salimans, 2021) using only
labeled data; CFG-all: CFG using all data to train the unconditional part of the model.

4.2 RESULTS

Table 1 and Fig. 4 present the performance of all methods when applied to various percentages
of labeled data. Notice that this includes the fully-supervised setting when 100% of data are la-
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Figure 4: Results of class-conditional generation. The performance ranking is shown for reference.

beled. CG-SC-labeled implies that self-calibration is applied only on labeled data whereas CG-
SC-all implies that self-calibration is applied on all data. In Table 1, bold entries represent the
best performance among all methods, and underlined entries represent the best performance among
classifier-guidance-based methods. Supplementary experimental results on CIFAR-10 are included
in Appendix A.

Classifier-Free SGMs (CFSGMs) The first observation from the results is that CFSGMs, includ-
ing Cond, CFG-labeled, and CFG-all, consistently excel in generation accuracy (Table 1a). How-
ever, when the quantity of labeled data falls below 20%, we witness a significant performance drop
in these models (Table 1 and Fig. 4). CFSGMs, while generating high-quality images, tend to lack
diversity when working with fewer labeled data. This occurs mainly due to the lack of sufficient
labeled data in the training phase, causing them to generate samples that closely mirror the distribu-
tion of only the labeled data, as opposed to that of all data. This shows that such methods only learn
to generate samples highly correlated to the labeled data, failing to capture the diversity of the entire
data; they thus exhibit poor performance when evaluated with related measures (FID, intra-FID).

Classifier-Guided SGMs (CGSGMs) CGSGMs demonstrate superior performance in semi-
supervised settings, as they leverage both labeled and unlabeled data during training. CGSGMs
exhibit consistent performance in terms of FID and IS across various percentages of labeled data
(Table 1). Notably, when unlabeled data is in the majority, we observe a 16% drop in generation
accuracy on the CIFAR-10 dataset (Table 1a). Despite this, the intra-FID of CG significantly outper-
forms that of CFSGMs on both datasets. This superior performance is consistent across all CG-based
methods, including the vanilla CGSGM and CGSGM with various regularization techniques. This
shows that CGSGM-based methods are preferable under semi-supervised settings, as they capture
the diversity of training data through higher utilization of unlabeled data.

Regularized CGSGMs vs Vanilla CGSGM Basic regularization methods like label-smoothing
and Jacobian regularization (Hoffman et al., 2019) show marginal improvement over vanilla
CGSGM. This points out that although these methods mitigate overfitting on training data, the con-
straints they enforce do not align with SGMs, limiting the benefit of including such methods. CG-
DLSM (Chao et al., 2022), on the other hand, always achieves great unconditional generation per-
formance. However, its class-conditional performance suffers from a significant performance drop
as labeled data is lowered from 100% to 5% (Table 1). Incorporating the proposed self-calibration
with labeled data substantially improves conditional metrics (Table 1). Notably, CG-SC (Ours) con-
sistently achieves the best intra-FID and generation accuracy among all CG-based methods. On
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Table 1: Sample quality comparison of all methods with various percentages of labeled data. Bold:
best performance among all methods; underlined: best performance among CG-based methods.

(a) Results of semi-supervised settings on CIFAR-10 dataset

5% labeled data 20% labeled data 100% labeled data

Method intra-FID (↓) Acc (↑) FID (↓) IS (↑) intra-FID (↓) Acc (↑) FID (↓) IS (↑) intra-FID (↓) Acc (↑) FID (↓) IS (↑)

CG-SC-labeled (Ours) 24.93 0.525 2.84 9.78 16.62 0.672 2.75 9.83 11.70 0.829 2.23 9.82
CG-SC-all (Ours) 18.95 0.676 2.72 9.95 13.97 0.752 2.63 9.94 11.70 0.829 2.23 9.82

CG 31.17 0.448 2.61 9.98 24.94 0.530 3.09 9.92 18.99 0.611 2.48 9.88
CG-DLSM 36.55 0.354 2.18 9.76 31.78 0.419 2.10 9.91 21.59 0.564 2.36 9.92
CG-LS 29.24 0.466 2.62 9.92 26.15 0.522 4.18 9.98 18.10 0.636 2.15 9.98
CG-JR 30.59 0.455 2.80 9.84 23.03 0.552 2.49 10.04 17.24 0.643 2.17 9.89
Cond 45.73 0.959 15.57 9.87 34.36 0.927 19.77 8.82 10.29 0.970 2.13 10.06
CFG-labeled 45.07 0.950 15.31 10.20 32.66 0.893 18.48 8.93 10.58 0.971 2.28 10.05
CFG-all 47.33 0.964 16.57 9.89 31.24 0.936 17.37 9.15 10.58 0.971 2.28 10.05

(b) Results of semi-supervised settings on CIFAR-100 dataset

5% labeled data 20% labeled data 100% labeled data

Method intra-FID (↓) FID (↓) IS (↑) intra-FID (↓) FID (↓) IS (↑) intra-FID (↓) FID (↓) IS (↑)

CG-SC-labeled (Ours) 113.21 4.80 12.06 90.76 3.74 12.25 79.57 3.70 11.69
CG-SC-all (Ours) 101.75 4.31 12.49 80.42 3.60 12.60 79.57 3.70 11.69

CG 124.92 5.24 12.06 108.86 4.10 12.02 98.72 3.83 11.89
CG-DLSM 134.11 4.46 11.94 126.12 7.24 11.40 102.85 3.85 11.76
CG-LS 118.52 4.18 12.34 103.39 3.70 12.60 98.53 3.39 12.09
CG-JR 119.78 4.64 12.32 105.91 3.92 12.48 100.34 3.50 11.97
Cond 129.82 10.58 14.90 111.73 29.45 9.98 64.77 3.02 12.97
CFG-labeled 133.03 11.25 14.81 117.09 32.68 9.75 63.03 2.60 13.61
CFG-all 133.18 10.68 14.87 113.38 30.84 10.09 63.03 2.60 13.61

average, CG-SC-all improves intra-FID by 10.16 and 23.59 over CG on CIFAR-10 and CIFAR-100,
respectively. Furthermore, self-calibration increases generation accuracy on CIFAR-10 by up to
23% (Table 1a). These results demonstrate that self-calibration enables the classifier to estimate the
class-conditional distribution more accurately, even when labeled data is limited.

Leverage unlabeled data for semi-supervised conditional generation Intuitively, we expect in-
corporating unlabeled data into the computation of SC loss to enhance the quality of conditional
generation, because the classifier can exploit additional information from unlabeled data during the
training phase. As the proportion of unlabeled data increases, we expect this benefit of leveraging
unlabeled data to become more significant. As our experimental results indicate in Fig. 4, condi-
tional metrics do not differ greatly in the fully-supervised scenario. However, when the percentage
of labeled data falls below 20%, the utilization of unlabeled data significantly improves intra-FID
and accuracy (Table 1a). Specifically, with only 5% of the data labeled, intra-FID, and generation ac-
curacy are improved by 12.22 and 22.8% over the original CG on CIFAR-10. These results confirm
our expectation that as the percentage of labeled data decreases, the beneficial impact of utilizing
unlabeled data increases.

5 CONCLUSION

We tackle the overfitting issue for the classifier within CGSGM from a novel perspective: self-
calibration. We leverage the EBM interpretation like JEM to reveal that the classifier is internally
an unconditional score estimator and design a loss with the DSM technique to calibrate the internal
estimation. This self-calibration loss regularizes the classifier directly towards better scores with-
out relying on an external score estimator. We demonstrate three immediate benefits of the proposed
self-calibrating CGSGM approach. Using a standard synthetic dataset, we show that the scores com-
puted using this approach are indeed closer to the ground-truth scores. Second, across all percent-
ages of labeled data, the proposed approach outperforms the existing CGSGM. Last, our empirical
study justifies that when compared to other conditional SGMs, the proposed approach consistently
achieves the best intra-FID in the focused semi-supervised settings by seamlessly leveraging the
power of unlabeled data. The benefits establish the rich potential of the proposed approach.
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6 REPRODUCIBILITY

We included source code for the implemented self-calibration loss in the supplementary materials.
A readme file is included to provide instructions on the usage of the code. One can also refer
to Appendix C for algorithmic details and Appendix D for experimental details to implement the
proposed self-calibration loss.
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A SUPPLEMENTARY EXPERIMENTAL RESULTS ON CIFAR-10

A.1 ADDITIONAL SEMI-SUPERVISED LEARNING SETTINGS

In Section 4, we discussed the generative performance using 5%, 20%, and 100% labeled data from
CIFAR-10. In this section, we provide further results for scenarios where 40%, 60%, and 80% of
the data is labeled.

Table 2: Sample quality comparison of all methods with 40%, 60%, and 80% labeled data. Bold:
best performance among all methods; underlined: best performance among CG-based methods.

40% labeled data 60% labeled data 80% labeled data

Method intra-FID (↓) Acc (↑) FID (↓) IS (↑) intra-FID (↓) Acc (↑) FID (↓) IS (↑) intra-FID (↓) Acc (↑) FID (↓) IS (↑)

CG-SC-labeled (Ours) 12.08 0.862 2.78 10.00 11.65 0.850 2.37 9.91 11.86 0.823 2.24 9.78
CG-SC-all (Ours) 12.67 0.809 2.72 10.04 12.22 0.810 2.42 9.95 12.47 0.788 2.25 9.83

CG 18.31 0.628 2.42 9.95 16.94 0.656 2.35 10.03 20.15 0.609 3.30 9.76
CG-DLSM 29.33 0.457 2.35 9.85 23.52 0.531 2.15 9.83 21.76 0.563 2.30 9.96
CG-LS 17.89 0.638 2.32 9.95 17.72 0.638 2.27 9.91 22.30 0.576 2.40 9.84
CG-JR 18.63 0.625 2.43 10.01 19.05 0.609 2.25 10.06 18.36 0.622 2.15 9.90
Cond 13.65 0.962 4.36 9.94 10.93 0.968 2.55 10.00 10.61 0.968 2.37 10.03
CFG-labeled 13.93 0.948 4.59 9.84 11.28 0.966 2.73 10.12 10.75 0.972 2.48 10.09
CFG-all 13.43 0.970 4.30 9.98 11.38 0.972 2.83 10.05 10.94 0.970 2.50 10.03

Table 2 presents the results, further confirming the observations made in Section 4.2. The CFS-
GMs consistently exhibit high generation accuracy, but suffer from significant performance drop
as the labeled data percentage decreases. Conversely, the CGSGMs maintain stable performance
across various settings. Furthermore, our proposed CG-SC consistently outperforms other CG-based
methodologies in terms of intra-FID and generation accuracy.

A.2 EVALUATION OF EXPECTED CALIBRATION ERROR

Beyond the generative performance metrics, we present the Expected Calibration Error (ECE) to
assess the calibration of classifiers regarding accurate probability estimation. ECE serves as a metric
that evaluates the alignment of a classifier’s confidence with its prediction accuracy. The classifier’s
confidence is defined as:

conf(x) = max
y

p(y|x) = max
y

exp(f(x, y;ϕϕϕ))∑
y′ exp(f(x, y′;ϕϕϕ))

,

where f(x, y;ϕϕϕ) is the classifier’s logits. We then divide the classifier’s predictions based on confi-
dence into several buckets. The average absolute difference between the confidence and prediction
accuracy is calculated for each bucket. Then, given a labeled test set Dt = {(xm, ym)}Mm=1, ECE
is defined as:

ECE =

N∑
i=1

|Bi|
|Dt|

·

∣∣∣∣∣Acc(Bi)−
1

|Bi|
∑
x∈Bi

conf(x)

∣∣∣∣∣ ,
where N is the number of buckets, Bi =

{
x|conf(x) ∈ [ i−1

N , i
N )

}
, Acc(Bi) is the averaged classi-

fication accuracy of Bi, and 1
|Bi|

∑
x∈Bi

conf(x) is the averaged confidence of Bi.

Table 3: Expected calibration error (↓) of all methods with various percentages of labeled data

Method 5% 20% 40% 60% 80% 100%

CG-SC-labeled (Ours) 0.369 0.316 0.087 0.057 0.063 0.031
CG-SC-all (Ours) 0.210 0.243 0.102 0.109 0.111 0.031

CG 0.460 0.330 0.269 0.190 0.163 0.112
CG-DLSM 0.468 0.343 0.307 0.237 0.180 0.183
CG-LS 0.194 0.257 0.101 0.063 0.081 0.050
CG-JR 0.407 0.348 0.279 0.225 0.183 0.173
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We follow the setup in Grathwohl et al. (2020), setting N = 20 for our calculations. The results are
shown in Table 3, illustrating the ECE values for all CG-based methods across various percentages
of labeled data. Our observations underscore that the self-calibration method consistently enhances
classifier ECE in comparison to the vanilla CG and delivers the most superior ECE in most cases.
This validates our claim that self-calibrated classifiers offer a more accurate probability estimation.

A.3 DETAILED CLASS-CONDITIONAL METRICS

The conditional metrics in Section 4.2 are averaged among all classes. Here, we also included the
detailed conditional metrics for each class in CIFAR-10.

Table 4: CG-SC-labeled (Ours)

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 23.24 0.640 16.43 0.759 14.09 0.890 12.78 0.883 11.91 0.858 11.98 0.858
Automobile 18.01 0.634 10.56 0.806 9.04 0.937 8.71 0.941 8.43 0.912 8.29 0.921
Bird 31.57 0.367 21.54 0.514 13.20 0.790 13.30 0.779 14.17 0.751 14.30 0.755
Cat 27.67 0.342 19.44 0.475 14.54 0.696 14.31 0.705 15.43 0.664 14.91 0.670
Deer 28.13 0.381 18.69 0.529 11.32 0.828 10.99 0.800 11.00 0.766 10.74 0.779
Dog 27.32 0.515 20.96 0.640 14.85 0.835 15.43 0.817 16.82 0.777 16.32 0.781
Frog 30.05 0.507 18.39 0.679 12.50 0.909 12.24 0.892 12.01 0.889 12.00 0.899
Horse 21.38 0.638 16.38 0.761 13.63 0.910 11.88 0.890 10.98 0.865 11.09 0.870
Ship 19.61 0.640 12.38 0.776 9.86 0.906 9.18 0.900 9.38 0.875 8.99 0.890
Truck 22.27 0.584 11.38 0.781 7.74 0.919 7.65 0.893 8.46 0.869 8.36 0.871

Table 5: CG-SC-all (Ours)

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 19.95 0.805 14.88 0.823 14.66 0.858 12.72 0.852 12.75 0.809 11.98 0.858
Automobile 13.15 0.758 9.37 0.846 9.20 0.907 8.79 0.916 8.47 0.881 8.29 0.921
Bird 25.12 0.479 16.68 0.647 14.45 0.716 14.99 0.715 15.76 0.697 14.30 0.755
Cat 22.95 0.448 16.93 0.566 15.78 0.590 15.31 0.617 15.49 0.653 14.91 0.670
Deer 20.10 0.532 13.50 0.675 11.61 0.763 11.47 0.761 11.36 0.729 10.74 0.779
Dog 23.03 0.648 19.39 0.694 16.08 0.780 16.19 0.763 17.67 0.755 16.32 0.781
Frog 19.12 0.721 13.80 0.787 13.06 0.839 12.64 0.857 13.05 0.838 12.00 0.899
Horse 19.05 0.815 14.56 0.821 13.51 0.887 12.25 0.869 11.41 0.822 11.09 0.870
Ship 13.34 0.798 10.85 0.836 9.97 0.887 9.62 0.869 9.75 0.855 8.99 0.890
Truck 13.68 0.752 9.78 0.826 8.32 0.859 8.21 0.878 9.00 0.844 8.36 0.871

Table 6: CG

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 25.99 0.586 20.00 0.645 17.13 0.706 15.85 0.725 16.79 0.677 17.92 0.649
Automobile 27.78 0.522 19.55 0.617 13.75 0.718 12.24 0.770 13.08 0.729 12.84 0.713
Bird 39.10 0.268 34.35 0.345 23.40 0.485 22.01 0.521 26.35 0.485 25.71 0.506
Cat 30.95 0.297 25.73 0.383 22.19 0.430 20.35 0.458 24.74 0.430 21.49 0.460
Deer 33.70 0.330 32.25 0.370 18.94 0.530 18.02 0.555 22.22 0.496 18.98 0.531
Dog 31.27 0.473 27.24 0.546 22.59 0.596 22.74 0.612 29.63 0.539 25.47 0.559
Frog 39.26 0.413 30.36 0.501 19.77 0.654 16.08 0.707 20.71 0.646 19.14 0.667
Horse 26.60 0.543 20.32 0.620 16.18 0.713 14.97 0.722 17.92 0.662 15.95 0.656
Ship 26.72 0.539 19.04 0.640 13.94 0.743 13.84 0.737 15.04 0.724 16.12 0.695
Truck 30.37 0.505 20.51 0.634 15.18 0.710 13.33 0.752 15.00 0.702 16.28 0.675

Table 7: CG-DLSM

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 38.28 0.421 26.93 0.466 24.49 0.515 20.47 0.585 19.69 0.609 19.77 0.609
Automobile 30.96 0.440 28.17 0.511 23.32 0.565 19.67 0.620 17.87 0.657 16.97 0.670
Bird 34.03 0.245 36.13 0.303 33.32 0.335 26.80 0.429 24.45 0.464 25.44 0.453
Cat 42.70 0.240 31.44 0.294 29.76 0.320 26.44 0.351 24.26 0.394 23.09 0.404
Deer 36.83 0.261 33.23 0.317 30.77 0.359 23.50 0.447 22.39 0.472 20.83 0.487
Dog 39.17 0.325 36.51 0.394 34.49 0.426 29.87 0.482 28.01 0.508 28.38 0.507
Frog 43.88 0.341 35.97 0.428 32.25 0.475 23.70 0.587 20.24 0.631 21.50 0.612
Horse 47.08 0.389 27.87 0.476 26.50 0.510 21.22 0.586 20.11 0.602 19.01 0.614
Ship 38.17 0.453 28.90 0.514 27.44 0.543 19.92 0.628 20.14 0.643 18.76 0.653
Truck 33.38 0.425 32.65 0.486 30.91 0.520 23.63 0.597 20.45 0.648 22.11 0.628
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Table 8: CG-LS

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 25.68 0.581 21.84 0.618 15.97 0.721 16.71 0.689 20.65 0.605 16.97 0.685
Automobile 23.91 0.552 23.17 0.582 13.64 0.726 13.52 0.742 16.83 0.694 14.79 0.726
Bird 37.44 0.290 37.86 0.324 23.09 0.497 21.56 0.516 25.78 0.473 21.72 0.534
Cat 29.78 0.305 26.32 0.394 21.77 0.433 20.71 0.454 24.02 0.425 21.28 0.439
Deer 32.02 0.353 29.87 0.360 18.83 0.545 18.48 0.540 23.44 0.488 17.63 0.568
Dog 30.47 0.484 25.72 0.564 22.81 0.592 23.42 0.587 28.91 0.523 22.22 0.600
Frog 35.59 0.444 31.11 0.510 17.79 0.688 17.99 0.680 23.07 0.613 18.95 0.682
Horse 25.50 0.555 18.66 0.646 15.70 0.716 15.50 0.704 20.11 0.615 15.99 0.687
Ship 24.41 0.572 24.08 0.588 13.61 0.749 14.47 0.742 19.35 0.679 15.31 0.728
Truck 27.57 0.527 22.91 0.636 15.67 0.716 14.87 0.725 20.86 0.650 16.19 0.712

Table 9: CG-JR

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 27.09 0.570 20.21 0.659 17.60 0.697 16.95 0.675 17.85 0.657 15.70 0.704
Automobile 25.44 0.549 18.70 0.638 13.21 0.734 14.88 0.711 13.71 0.740 13.20 0.746
Bird 38.41 0.273 29.47 0.387 23.78 0.467 24.24 0.474 22.10 0.514 21.69 0.518
Cat 31.38 0.299 25.24 0.368 22.12 0.425 21.10 0.431 20.67 0.435 19.94 0.456
Deer 33.47 0.331 25.95 0.421 20.10 0.524 20.97 0.491 18.47 0.546 17.64 0.562
Dog 30.76 0.483 25.28 0.549 22.70 0.593 22.64 0.597 23.90 0.569 22.87 0.592
Frog 39.77 0.413 27.06 0.546 20.11 0.646 19.83 0.649 18.81 0.662 17.82 0.683
Horse 25.58 0.561 19.47 0.649 16.34 0.726 16.61 0.675 16.82 0.673 14.74 0.708
Ship 25.52 0.547 17.91 0.677 14.39 0.736 15.96 0.706 14.39 0.732 14.04 0.735
Truck 28.50 0.518 20.99 0.628 15.99 0.706 17.27 0.682 16.92 0.695 14.73 0.724

Table 10: Cond

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 19.95 0.805 14.88 0.823 14.66 0.858 12.72 0.852 12.75 0.809 11.98 0.858
Automobile 13.15 0.758 9.37 0.846 9.20 0.907 8.79 0.916 8.47 0.881 8.29 0.921
Bird 25.12 0.479 16.68 0.647 14.45 0.716 14.99 0.715 15.76 0.697 14.30 0.755
Cat 22.95 0.448 16.93 0.566 15.78 0.590 15.31 0.617 15.49 0.653 14.91 0.670
Deer 20.10 0.532 13.50 0.675 11.61 0.763 11.47 0.761 11.36 0.729 10.74 0.779
Dog 23.03 0.648 19.39 0.694 16.08 0.780 16.19 0.763 17.67 0.755 16.32 0.781
Frog 19.12 0.721 13.80 0.787 13.06 0.839 12.64 0.857 13.05 0.838 12.00 0.899
Horse 19.05 0.815 14.56 0.821 13.51 0.887 12.25 0.869 11.41 0.822 11.09 0.870
Ship 13.34 0.798 10.85 0.836 9.97 0.887 9.62 0.869 9.75 0.855 8.99 0.890
Truck 13.68 0.752 9.78 0.826 8.32 0.859 8.21 0.878 9.00 0.844 8.36 0.871

Table 11: CFG-labeled

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 46.22 0.961 33.58 0.877 16.37 0.931 12.24 0.965 11.80 0.970 11.26 0.963
Automobile 30.55 0.989 19.50 0.968 11.17 0.988 9.16 0.992 8.83 0.994 8.59 0.992
Bird 57.41 0.930 37.85 0.847 15.50 0.912 12.19 0.941 11.79 0.950 11.53 0.954
Cat 64.70 0.917 46.44 0.861 18.16 0.900 13.85 0.911 13.74 0.930 13.24 0.926
Deer 46.66 0.959 29.04 0.846 11.95 0.938 10.49 0.957 10.52 0.969 9.87 0.967
Dog 51.47 0.876 42.24 0.849 16.16 0.930 12.86 0.956 12.31 0.954 12.22 0.959
Frog 52.77 0.946 44.03 0.920 15.54 0.978 13.41 0.990 11.79 0.994 11.77 0.994
Horse 37.29 0.956 25.04 0.914 13.67 0.964 12.11 0.976 10.61 0.984 11.40 0.990
Ship 36.18 0.995 28.75 0.952 11.45 0.972 8.85 0.983 8.60 0.986 8.31 0.983
Truck 27.44 0.965 20.18 0.897 9.29 0.966 7.60 0.985 7.51 0.983 7.58 0.984

Table 12: CFG-all

5% labeled data 20% labeled data 40% labeled data 60% labeled data 80% labeled data 100% labeled data

Class intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc intra-FID Acc

Airplane 45.06 0.982 31.93 0.918 15.57 0.958 12.64 0.964 11.76 0.967 11.26 0.963
Automobile 29.94 0.993 18.53 0.992 11.54 0.997 9.99 0.995 8.48 0.992 8.59 0.992
Bird 55.92 0.930 36.37 0.880 14.07 0.952 12.06 0.955 11.90 0.951 11.53 0.954
Cat 69.53 0.962 44.56 0.918 16.92 0.930 14.34 0.936 13.51 0.922 13.24 0.926
Deer 56.38 0.970 28.75 0.907 12.50 0.966 10.13 0.961 10.25 0.972 9.87 0.967
Dog 52.48 0.907 39.27 0.884 15.23 0.962 12.88 0.959 12.44 0.953 12.22 0.959
Frog 64.09 0.966 45.12 0.960 14.54 0.990 12.54 0.992 12.89 0.993 11.77 0.994
Horse 37.65 0.946 24.21 0.950 13.95 0.981 12.38 0.983 12.40 0.982 11.40 0.990
Ship 35.75 0.998 24.28 0.977 10.98 0.983 9.03 0.983 8.42 0.985 8.31 0.983
Truck 26.52 0.985 19.39 0.971 8.96 0.981 7.81 0.988 7.33 0.984 7.58 0.984
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B MORE DETAILED INTRODUCTION ON SCORE-BASED GENERATIVE
MODELING THROUGH SDE

B.1 LEARNING THE SCORE FUNCTION

When learning the score function, the goal is to choose the best function from a family of functions
{s(x;θ)}θ, such as deep learning models parameterized by θ, to approximate the score function
∇x log p(x) of interest. Learning is based on data {xn}Nn=1 assumed to be sampled from p(x).
It has been shown that this can be achieved by optimizing the in-sample version of the following
score-matching loss over θ:

LSM = Ep(x)

[
tr(∇xs(x;θ)) +

1

2
∥s(x;θ)∥22

]
,

where tr(·) denotes the trace of a matrix and ∇xs(x;θ) = ∇2
x log p(x) is the Hessian matrix of

log-likelihood log p(x). Calculating the score-matching loss requires O(d) computation passes for
x ∈ Rd, which makes the optimization process computationally prohibitive on high-dimensional
data.

Several attempts (Kingma & Cun, 2010; Martens et al., 2012; Vincent, 2011; Song et al., 2019)
have been made to address these computational challenges by approximating or transforming score
matching into equivalent objectives. One current standard approach is called denoise score matching
(DSM) (Vincent, 2011), which instead learns the score function of a noise-perturbed data distribution
q(x̃). DSM typically assumes that q(x̃) comes from the original distribution p(x) injected with a
pre-specified noise q(x̃|x). It has been proved (Vincent, 2011) that the score function can be learned
by minimizing the in-sample version of

Eq(x̃|x)p(x)

[
1

2
∥s(x̃;θ)−∇x̃ log q(x̃|x)∥22

]
,

where ∇x̃ log q(x̃|x) is the score function of the noise distribution centered at x. DSM is generally
more efficient than the original score matching and is scalable to high-dimensional data as it replaces
the heavy computation on the Hessian matrix with simple perturbations that can be efficiently com-
puted from data.

B.2 GENERATION FROM THE SCORE FUNCTION BY DIFFUSION

Assume that we seek to sample from some unknown target distribution p(x) = p0(x), and the
distribution can be diffused to a known prior distribution pT (x) through a Markov chain that is
described with a stochastic differential equation (SDE) (Song et al., 2021): dx = f(x, t)dt +
g(t)dw, where the Markov chain is computed for 0 ≤ t < T using the drift function f(x, t) that
describes the overall movement and the dispersion function g(t) that describes how the noise w
from a standard Wiener process enters the system.

To sample from p(x) = p0(x), Song et al. (2021) proposes to reverse the SDE from pT (x) to p0(x),
which turns out to operate with another SDE (Eq. 1). Given the score function s(x, t), the diffusion
process in Eq. 1 can then be used to take any data sampled from the known pT (x) to a sample from
the unknown p(x) = p0(x).

The time-dependent score function s(x, t;θ) can be learned by minimizing a time-generalized (in-
sample) version of the DSM loss because the diffusion process can be viewed as one particular way
of injecting noise. The extended DSM loss is defined as

LDSM (θ) = Et

[
λ(t)Ext,x0

[
1

2
∥s(xt, t;θ)− st(xt|x0)∥22

]]
,

where t is selected uniformly between 0 and T , xt ∼ pt(x), x0 ∼ p0(x), st(xt|x0) denotes the
score function of pt(xt|x0), and λ(t) is a weighting function that balances the loss of different
timesteps.
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C TRAINING ALGORITHM FOR SEMI-SUPERVISED SELF-CALIBRATING
CLASSIFIER

Algorithm 1 Semi-supervised classifier training with self-calibration loss

Input: Labeled data Dl, unlabeled data Du

Initialize the time-dependent classifier f(x, y, t;ϕϕϕ) randomly
repeat

Sample data (xl, yl) ∼ Dl, xu ∼ Du

Sample timesteps tl, tu ∼ Uniform(1, T )
Obtain perturbed data x̃l ∼ ptl(x|xl), x̃u ∼ ptu(x|xu)
Calculate LCE = CrossEntropy(f(xl, y, t;ϕϕϕ), yl)
Calculate LSC = E(x,t)∈{(xl,tl),(xu,tu)}

[
1
2λ(t)∥∇x log Σy exp(f(x, y, t;ϕϕϕ))− st(xt|x0)∥22

]
Take gradient step on LCLS = LCE + LSC

until converged

D ADDITIONAL EXPERIMENTAL DETAILS

We followed NCSN++ (Song et al., 2021) to implement the unconditional score estimation model.
We also adapted the encoder part of NCSN++ as the classifier used in CGSGM (Dhariwal & Nichol,
2021) and its variants, e.g., CG-DLSM or the proposed CG-SC. For the sampling method, we used
Predictor-Corrector (PC) samplers (Song et al., 2021) with 1000 sampling steps. The SDE was
selected as the VE-SDE framework proposed by Song et al. (2021). The hyper-parameter introduced
in Eq. 8 is tuned between {10, 1, 0.1, 0.01} for fully-supervised settings, and selected to be 1 in semi-
supervised settings due to limited computational resources. The scaling factor λCG introduced in
Eq. 4 is tuned within {0.5, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5} to obtain the best intra-FID. A similar scaling
factor λCFG for classifier-free SGMs is tuned within {0, 0.1, 0.2, 0.4} to obtain the best intra-FID.
The balancing factors of the DLSM loss and the Jacobian regularization loss are selected to be 1 and
0.01, respectively, as suggested in the original papers. The smoothing factor of label-smoothing is
tuned between {0.1, 0.05} for the better intra-FID.

E ATTEMPTS TO INCORPORATE JEM INTO THE TIME-DEPENDENT
FRAMEWORK

There are two key differences between the original JEM framework and the time-dependent frame-
work. First, the classifier has been augmented to take timestep t as an additional input. Second,
the MCMC sampling component of the JEM training algorithm has been modified to fit in the time-
dependent framework.

The adaptation for the first difference is intuitive, having been addressed when we transitioned from
standard classifiers to those that are time-dependent. For the second difference, when initially in-
tegrating MCMC sampling with the time-dependent framework, we employed a methodology that
uniformly sampled timesteps and directly incorporated the remaining parts of the JEM training al-
gorithm. However, we observed early divergence in the training loss during multiple runs, both with
the CIFAR-10 and the toy dataset. A pattern emerged: the MCMC algorithm often produced ex-
tremely high-energy samples. The loss and magnitude of backpropagated gradients resulting from
this corrupted sample became substantially larger than other samples. This often caused the training
loss to diverge. Consequently, we made the following refinements:

1. Sample Initialization: Instead of uniformly initializing samples between 0 and 1 without
considering the corresponding timestep, we opted to diffuse those samples to the corre-
sponding timestep using the forward SDE to bring the initialized samples closer to the
perturbed data distributions at different timesteps.

2. Step Size: Rather than employing a consistent step size across all timesteps, we adopted
the step-size-selection strategy proposed for annealed Langevin dynamics (Song & Ermon,
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2019), where step sizes are selected to be directly proportional to the variance of the in-
jected noise. Note that the ratio of step-size to noise was retained from the original JEM
framework.

3. Short-run MCMC: Instead of using PCD with 20 steps, we adopted short-run MCMC
with 100 steps. This change, as suggested in Grathwohl et al. (2020), is known to improve
the stability of JEM training.

Following these refinements, we observed enhanced stability in training. However, we still observed
occasional divergences in training loss. Nevertheless, successful training of a time-dependent clas-
sifier was achieved on the toy dataset, as shown in Section 3.3), but the expected timeframe for
incorporating relatively stable JEM training into the CIFAR-10 dataset stands at approximately 50
days. This cost is prohibitive, especially when considering the additional fine-tuning required to
obtain hyperparameters that are reasonably close to the optimal configuration.

F QUANTITATIVE MEASUREMENTS OF TOY DATASET

Table 13: Mean squared error (MSE) and cosine similarity (CS) of all CGSGM methods tested on
the toy dataset

Method Gradient MSE (↓) Gradient CS (↑) Cond-Score CS (↑)

CG 8.7664 0.3265 0.9175
CG + scaling 8.1916 0.3348 0.9447

CG-SC 7.1558 0.5667 0.9454
CG-SC + scaling 5.6376 0.5758 0.9689

CG-DLSM 8.1183 0.4450 0.9316
CG-DLSM + scaling 8.0671 0.4450 0.9328

CG-JEM 8.5577 0.6422 0.9670
CG-JEM + scaling 8.5577 0.6429 0.9709

Table 13 shows the quantitative measurements of the methods on the toy dataset. First, we com-
pared the gradients ∇x log p(y|x) estimated by the classifiers with the ground truth by calculat-
ing the mean squared error (first column) and cosine similarity (second column). The results
were calculated by averaging over all (x, y) ∈ {(x, y)|x ∈ {−12,−11.5, . . . , 11.5, 12}, y ∈
{−8,−7.5, . . . , 7.5, 8.0}}. We observe that after self-calibration, the mean squared error of the
estimated gradients is 18% lower; tuning the scaling factor further improves this to 36%. This im-
provement after scaling implies that the direction of gradients better aligns with the ground truth, and
scaling further reduces the mismatch between the magnitude of the classifier and the ground truth.
In terms of cosine similarity, self-calibration grants the classifiers an improvement of 42%. The nu-
merical results agree with our previous observation that after self-calibration, classifiers better align
with the ground truth in terms of both direction and magnitude.

Then, we add the unconditional score of the training data distribution to the classifier gradients to
calculate the conditional scores and compare the results with the ground truth. The resulting clas-
sifiers estimate conditional scores with a cosine similarity of 0.9175 even without self-calibration.
This shows that with a well-trained unconditional SGM—in this case, where we use the ground-truth
unconditional score—CGSGM is able to produce conditional scores pointing in the correct direc-
tions in most cases. This explains why the original CGSGM generates samples with decent quality.
After applying self-calibration loss and the scaling method, we further improve the cosine similarity
to 0.9689, which we believe enhances the quality of class-conditional generation.

G CLASSIFIER-ONLY GENERATION BY INTERPRETING CLASSIFIERS AS
SGMS

In this section, we show the results when taking the score estimated by a classifier as an uncondi-
tional SGM. For unconditional generation, the classifier is used to estimate the unconditional score;
for conditional generation, both terms in Eq. 3 are estimated by classifiers. In other words, the
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(a) Vanilla classifier (b) DLSM

(c) Unconditional generation with
Self-calibration

(d) Conditional generation with Self-
calibration

Figure 5: Generated images from classifier-only score estimation

time-dependent unconditional score ∇x log pt(x) can be written as

∇x log pt(x) = ∇x log Σy exp f(x, y, t;ϕϕϕ) (9)

where f(x, y, t;ϕϕϕ) is the logits of the classifier. By adding the gradient of classifier ∇x log pt(y|x)
to Eq. 9, we obtain the conditional score estimated by a classifier:

∇x log pt(x|y) = ∇x log pt(x) +∇x log pt(y|x)

= ∇x log Σy exp f(x, y, t;ϕϕϕ) +∇x log
exp (f(x, y, t;ϕϕϕ))∑
y exp (f(x, y, t;ϕϕϕ))

= ∇x log Σy exp f(x, y, t;ϕϕϕ) +∇xf(x, y, t;ϕϕϕ)−∇x log Σy exp f(x, y, t;ϕϕϕ)

= ∇xf(x, y, t;ϕϕϕ)

Here, the conditional score is essentially the gradient of the logits. Therefore, we sample from
∇xLogSumExpyf(x, y, t;ϕϕϕ) for unconditional generation and ∇xf(x, y, t;ϕϕϕ) for conditional gen-
eration.

Table 14: Quantitative measurements of classifier-only generation with classifier trained using self-
calibration loss as regularization

Method FID (↓) IS (↑) intra-FID (↓) Acc (↑)

∇x log Σy exp f(x, y, t;ϕϕϕ) 7.54 8.93
∇xf(x, y, t;ϕϕϕ) 7.26 8.93 18.86 0.890

Without self-calibration, both the vanilla classifier (Fig. 5a) and DLSM (Fig. 5b) are unable to gen-
erate meaningful images when interpreted as conditional SGMs; this also occurs for unconditional
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generation. This shows that without related regularization, the interpretation of classifiers as SGMs
is not naturally learned through the classification task. After adopting self-calibration loss as regu-
larization, Figures 5c and 5d show that not only does ∇xLogSumExpyf(x, y, t;ϕϕϕ) become a more
accurate estimator of unconditional score through direct training, ∇xf(x, y, t;ϕϕϕ) also becomes a
better estimator of the conditional score as a side effect. Here, we also include the quantitative
measurements of unconditional and conditional classifier-only generation in Table 14.

H TUNING THE SCALING FACTOR FOR CLASSIFIER GUIDANCE

This section includes the results when tuning the scaling factor λCG for classifier guidance with and
without self-calibration under the fully-supervised setting.
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Figure 6: Results when tuning scaling factor λCG for CGSGM (blue, without self-calibration) and
CGSGM-SC (red, with self-calibration). (a) FID vs. λCG. (b) Inception score vs. λCG. (c) Intra-
FID vs. λCG. (d) Generation accuracy vs. λCG. Unconditional metrics (FID and IS) differ little, but
we observe a distinct performance gap when evaluated conditionally (intra-FID and accuracy).

Figure 6 shows the result when tuning the scaling factor λCG for classifier guidance. When tun-
ing λCG with and without self-calibration, self-calibration has little affect on unconditional perfor-
mance. However, when evaluated with conditional metrics, the improvement after incorporating
self-calibration becomes more significant. The improvement in intra-FID reaches 7.9 whereas gen-
eration accuracy improves by as much as 13%.
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I IMAGES GENERATED BY CLASSIFIER GUIDANCE WITH AND WITHOUT
SELF-CALIBRATION

This section includes images generated by classifier guidance with (first 6 images) and without
(last 6 images) self-calibration after training on various percentages of labeled data. Each row
corresponds to a class in the CIFAR-10 dataset. Generated images of all method can be found in the
supplementary material.

Figure 7: Randomly selected images of classifier guidance with self-calibration (5% labeled data)
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Figure 8: Randomly selected images of classifier guidance with self-calibration (20% labeled data)
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Figure 9: Randomly selected images of classifier guidance with self-calibration (40% labeled data)
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Figure 10: Randomly selected images of classifier guidance with self-calibration (60% labeled data)
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Figure 11: Randomly selected images of classifier guidance with self-calibration (80% labeled data)
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Figure 12: Randomly selected images of classifier guidance with self-calibration (100% labeled
data)
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Figure 13: Randomly selected images of vanilla classifier guidance (5% labeled data)
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Figure 14: Randomly selected images of vanilla classifier guidance (20% labeled data)
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Figure 15: Randomly selected images of vanilla classifier guidance (40% labeled data)

28



Under review as a conference paper at ICLR 2024

Figure 16: Randomly selected images of vanilla classifier guidance (60% labeled data)
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Figure 17: Randomly selected images of vanilla classifier guidance (80% labeled data)
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Figure 18: Randomly selected images of vanilla classifier guidance (100% labeled data)
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