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Abstract

Collecting gold-standard phenotype data via man-
ual extraction is typically labor-intensive and
slow, whereas automated computational pheno-
types (ACPs) offer a systematic and much faster
alternative. However, simply replacing the gold-
standard with ACPs, without acknowledging their
differences, could lead to biased results and mis-
leading conclusions. Motivated by the complexity
of incorporating ACPs while maintaining the va-
lidity of downstream analyses, in this paper, we
consider a semi-supervised learning setting that
consists of both labeled data (with gold-standard)
and unlabeled data (without gold-standard), un-
der the covariate shift framework. We develop
doubly robust and semiparametrically efficient
estimators that leverage ACPs for general target
parameters in the unlabeled and combined pop-
ulations. In addition, we carefully analyze the
efficiency gains achieved by incorporating ACPs,
comparing scenarios with and without their in-
clusion. Notably, we identify that ACPs for the
unlabeled data, instead of for the labeled data,
drive the enhanced efficiency gains. To validate
our theoretical findings, we conduct comprehen-
sive synthetic experiments and apply our method
to multiple real-world datasets, confirming the
practical advantages of our approach. Code: §
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1. Introduction
Automated computational phenotype (ACP) refers to the
process of using advanced algorithms and models, includ-
ing but not limited to, machine learning, natural language
processing (NLP), large language model (LLM) and gener-
ative AI, to automatically compute and define phenotypes
from complex data such as electronic health records (EHRs).
Though obtaining gold-standard phenotype data via man-
ual extraction is labor-intensive and slow, ACP allows re-
searchers to obtain phenotypes systemically and quickly,
scaling their efforts in precision medicine and supporting
the broader goal of turning raw data into actionable insights
for research and healthcare improvements.

Despite these benefits, simply replacing gold-standard data
with ACPs in downstream analyses introduces new chal-
lenges. As computational phenotyping algorithms are of-
ten trained to minimize prediction error such as the mean
squared error (MSE), ACPs may contain a non-negligible
bias for important downstream tasks such as statistical in-
ference. Therefore, the indiscriminate use of ACPs, without
acknowledging their distinction from gold-standard pheno-
type data, can lead to biased results and misleading con-
clusions. In this work, instead of replacing gold-standard
phenotype data, we investigate the benefits of appropriately
incorporating these ACPs, in order to enhance the estima-
tion efficiency and to achieve the more powerful statistical
inference.

In many applications, gold-standard phenotypes (labels)
are only available for a small subset of individuals due to
the high cost of manual extraction, while unlabeled data are
more readily accessible. Meanwhile, the selection of labeled
individuals is often based on baseline characteristics rather
than being purely random. This creates a semi-supervised
learning setting, where the covariate distribution differs
between labeled and unlabeled data. In this paper, we aim
to integrate ACPs into classical semi-supervised learning
frameworks to enable efficient estimation and inference.

Our motivating study is an analysis on diabetes among chil-
dren and adolescents from the UF (University of Florida)
health system (Li et al., 2025), where diabetes status is adju-
dicated by medical experts through manual chart reviews for
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a subset of patients selected via stratified random sampling,
while ACPs are available for all patients in the EHR through
a previously validated decision-tree-based algorithm. The
stratified sampling introduces potential covariate shift be-
tween the chart-review population and the general EHR
population. Our work focuses on how to incorporate these
ACPs with chart review data to improve parameter estima-
tion and inference in a prediction model under possible
covariate shifts.

1.1. Related Work

Semi-supervised learning and inference. Semi-supervised
learning has been popular in both machine learning and
statistics in the past several decades (Zhu, 2005; Chapelle
et al., 2009). Based on different assumptions, computational
algorithms and estimation methods have been proposed
in classification (Rigollet, 2006; Wang et al., 2022), non-
parametric regression (Wasserman & Lafferty, 2008), and
semi-supervised regression (Kostopoulos et al., 2018), to
understand the benefits of the abundant unlabeled data.

In particular, there are considerable progresses in the past
several years on how to make use of the unlabeled data
for parameter estimation, either with a faster convergence
rate or with a smaller asymptotic variance. For example,
Chakrabortty & Cai (2018) and Azriel et al. (2022) pro-
posed estimators that are more efficient than the ordinary
least square (OLS) that uses labeled data only, under the
assumption-lean regression framework (Buja et al., 2019;
Berk et al., 2019). Similar conclusions could also be found
under the general M-estimation framework (Song et al.,
2023). The idea was also extended to the high-dimensional
setting where the number of features is allowed to be greater
than the sample size (Zhang et al., 2019; Zhang & Bradic,
2022; Cai & Guo, 2020; Deng et al., 2024), as well as in
the situation without the sparsity assumption (Livne et al.,
2022; Hou et al., 2023).

Distribution shift. Distribution shift (Quinonero-Candela
et al., 2008) refers to the phenomenon that the joint distri-
butions between the training and testing data are different,
or, in our context, between the labeled and unlabeled data.
Therefore, the knowledge learnt from the labeled data may
no longer be appropriate to be directly used in the unlabeled
data or in the combined data. This also motivates the study
of unsupervised domain adaptation (Kouw & Loog, 2021),
aiming to address the distributional shift between the labeled
and unlabeled data domains.

Two dominating types of distribution shifts are covariate
shift (the marginal distribution of the feature changes) and
label shift (the marginal distribution of the label changes;
see, e.g., Storkey (2009); Zhang et al. (2013); Du Plessis &
Sugiyama (2014); Iyer et al. (2014); Nguyen et al. (2016);
Tasche (2017); Lipton et al. (2018); Garg et al. (2020); Tian

et al. (2023); Kim et al. (2024); Lee et al. (2025)). They
are suitable assumptions under different contexts. Covariate
shift, the focus in this paper, aligns with the causal learn-
ing setting (Schölkopf et al., 2012) and has been studied
comprehensively in the literature (Shimodaira, 2000; Huang
et al., 2006; Sugiyama et al., 2008; Gretton et al., 2009;
Sugiyama & Kawanabe, 2012; Kpotufe & Martinet, 2021;
Aminian et al., 2022; Rodemann et al., 2023).

Prediction-powered inference. To our best knowledge, in-
ference with predicted data derived from black-box AI/ML
models started from Wang et al. (2020), followed by Mot-
wani & Witten (2023). More recently, Angelopoulos et al.
(2023a) proposed the approach termed prediction-powered
inference (PPI), which yields valid inference even when
the predictions were of a low quality. However, PPI might
be worse, in terms of estimation efficiency, than the bench-
mark method that uses labeled data only. This motivates
a growing literature of research that investigates the statis-
tical efficiency gains from different perspectives, such as
Angelopoulos et al. (2023b); Miao et al. (2023); Gronsbell
et al. (2024); Miao et al. (2024); Ji et al. (2025).

Surrogacy in biostatistics and causal inference. In the
literature of biostatistics especially clinical trails, there is
a line of research on identifying, evaluating and validating
surrogate variables, motivated by the fact that primary end-
point may be invasive, costly, or take a long time to measure.
This dates back to Prentice (1989) who first proposed the
definition and the criterion for surrogacy. Readers of interest
could refer to Elliott (2023) for a comprehensive review of
surrogate evaluation. This type of research usually seeks the
replacement of primary endpoint with surrogate variable,
enabling traditional or provisional approval of treatment in
clinical trials. Not surprisingly, the replacement process
often requires stringent, unverifiable assumptions, such as
the strong surrogate assumption in Prentice (1989). More re-
cently, surrogate variables were also analyzed in the causal
inference framework to enhance the efficiency of treatment
effect estimation on long-term or primary outcomes; see,
e.g., Athey et al. (2019); Gupta et al. (2019); Athey et al.
(2020); Cheng et al. (2021); Tran et al. (2023); Zhang et al.
(2023); Kallus & Mao (2024); Imbens et al. (2024); Gao
et al. (2024).

Additionally, surrogate variable is relevant to the misclassifi-
cation problem or the label noise issue in machine learning
(e.g., Lawrence & Schölkopf 2001; Scott 2015; Li et al.
2021; Liu et al. 2023; Guo et al. 2024), also the measure-
ment error issue in statistical literature (e.g., Carroll et al.
2006; Buonaccorsi 2010; Yi 2017; 2021).

1.2. Our Contributions

Firstly, we consider a semi-supervised learning setting under
the covariate shift framework; that is, the labeling mecha-
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nism may depend on features so might not necessarily be
purely random. As discussed in our motivating study, the la-
beling mechanism is often unknown in applications, making
it more flexible to assume dependence on features (covariate
shift) rather than purely random. In PPI, Angelopoulos et al.
(2023a) did consider scenarios involving covariate shift;
however, their method assumed that the difference of the
two distributions is completely known. Certainly this is not
feasible in practice.

Secondly, our assumption on how the ACPs are generated
is flexible. The ACP, denoted as Ŷ in the paper, does not
have to be an accurate prediction of the ground truth Y .
Indeed, Ŷ does not have to be in the same magnitude as Y ,
or even the same format as Y . For example, Ŷ could be
a continuous variable even if Y is binary. In addition, we
assume the generating algorithm of Ŷ is somewhat black-
box, which, beyond the available feature X in the labeled
and unlabeled data, might also depend on some additional
unseen feature, say, Z.

Under this general framework, we demonstrate that the
proposed estimator in this paper ensures that incorporating
ACPs never reduces estimation efficiency. The only scenario
with no efficiency gain occurs when the generation of ACPs
depends solely on the available feature X. This aligns with
our intuition, simply because in such an extreme situation
the ACP Ŷ does not bring in any new information. Further-
more, we highlight that the efficiency gain arises specifically
from the ACPs in the unlabeled data. In contrast, ACPs in
the labeled data do not contribute to the efficiency gain. This
is intuitive since the labeled data already contain the ground
truth Y , so a less precise ACP Ŷ provides no additional
value. We rigorously support these efficiency comparison
results by carefully analyzing and comparing the asymptotic
variances of the estimators using closed-form formulas.

Our contributions also include the development of semi-
parametrically efficient and doubly robust estimators for
the target parameter in both the unlabeled data population
and the combined data population. By utilizing the cross-
fitting technique, the proposed estimator achievesdouble
robustness and, more importantly, attains the best possible
estimation efficiency among all regular and asymptotically
linear estimators.

2. Setup
Semi-supervised learning setting under covariate shift.
We adopt the standard semi-supervised learning setting
where we have labeled data L that contains independent
and identically distributed (i.i.d.) (yi,xi), i = 1, . . . , n,
as well as unlabeled data U that contains i.i.d. xj , j =
n + 1, · · · , n + N ≡ M . We use a binary indicator R to
denote whether one particular subject is from L (R = 1) or

Table 1. Data structure considered in this paper: Scenario I (w.o.
ACP) vs Scenario II (w. ACP).

SCENARIO I SCENARIO II

R Y X R Y X Ŷ

1 1
√ √

1
√ √ √

L
...

...
√ √ ...

√ √ √

n 1
√ √

1
√ √ √

n+ 1 0
√

0
√ √

U
...

...
√ ...

√ √

n+N ≡ M 0
√

0
√ √

from U (R = 0). Please refer to Scenario I (w.o. ACP) in
Table 1 for the data structure.

We use p(·) and p(· | ·) to denote the generic marginal and
conditional distributions for the labeled data L, and q(·)
and q(· | ·) for the unlabeled data U . Instead of assuming
both sources of data follow exactly the same distribution, we
only assume the conditional distribution of outcome Y given
feature X remains the same, i.e., p(y | x) = q(y | x), while
allowing the marginal distributions of X to differ between
L and U , i.e.,

p(x) ̸= q(x).

This covariate shift assumption implies the independence
between Y and R conditional on X. That is,

pr(R = 1 | Y,X) = pr(R = 1 | X), (1)

which is less stringent than the assumption that the sam-
pling of the labeled data is purely random; i.e., pr(R = 1 |
Y,X) = pr(R = 1).

Objectives and metrics. Under the covariate shift assump-
tion, the distributions of the labeled data L, of the unlabeled
data U and of the combined data L ∪ U are all different. In
the main paper, we focus on the d-dimensional parameter β
for some characteristic in the unlabeled data population U ,
defined as

β = argmin Eq{ℓ(y,x;β)},

where Eq represents the expectation with respect to the
distribution of U , and ℓ(·) denotes a generic loss function.
Equivalently, with a smooth loss function, we write β as the
solution of the estimating equation

Eq{s(Y,X;β)} = 0. (2)

For example, when the outcome mean Eq(Y ) is of inter-
est, one can define ℓ(y,x;β) as (y − β)2/2 and the cor-
responding s(Y,X;β) is Y − β. As another example,
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if the linear regression coefficient is of interest, one can
define ℓ(y,x;β) as (y − xTβ)2/2 and, correspondingly,
s(Y,X;β) = (Y −XTβ)X.

The overarching goal of this paper is to understand how to
best estimate the parameter β without incorporating ACPs,
with incorporating ACPs (below) and their comparison on
estimation efficiency.

As an alternative, if some characteristic of the combined data
population L∪U is of interest, one can define the parameter
θ, similarly as above. Indeed, all the results presented in
this paper for β can be similarly developed for θ. For the
interest of space, we only present some brief results for θ in
Appendix B.

Incorporating ACPs. We assume that there exists a
black-box prediction model, and we have automated com-
putational phenotypes (ACPs) ŷi for every subject i ∈
{1, · · · ,M}. Here, this black-box model is usually trained
from machine learning, natural language processing, or
large language model (LLM) such as ChatGPT, where the
input feature might contain not only X but also some other
variable Z. For the data structure, please refer to Scenario
II (w. ACP) in Table 1.

To understand the statistical benefits of these ACPs in the
presence of covariate shift, we further assume

p(ŷ | x, y) = q(ŷ | x, y).

Together with the original covariate shift assumption in that
p(y | x) = q(y | x), it implies

pr(R = 1 | Y, Ŷ ,X) = pr(R = 1 | X). (3)

Again, this assumption is still less stringent than the as-
sumption that the sampling of the labeled data is purely
random.
Remark 2.1. The assumption (3) is equivalent to stating
that, (Y, Ŷ ) and R are conditional independent, given X.
It can be tested when Y is available in the unlabeled data
but cannot if otherwise. When it cannot be tested, one
can decompose the assumption as p(ŷ|x) = q(ŷ|x) and
p(y|x, ŷ) = q(y|x, ŷ). It is clear that, the untestable part
p(y|x, ŷ) = q(y|x, ŷ) is something similar to the covari-
ate shift assumption p(y|x) = q(y|x), which is, albeit
untestable, popularly adopted in semi-supervised learning
and distribution shift.

Notation. We denote π ≡ n/M , w(x) ≡ q(x)
p(x) and π(x) ≡

pr(R = 1 | x). Clearly, w(x) = π
1−π

1−π(x)
π(x) and 1−π(x)

1−π =
w(x)

π+(1−π)w(x) . We denote m(x) ≡ E{s(Y,x;β)|x} and
m̃(x, ŷ) ≡ E{s(Y,x;β)|x, ŷ}. We also simply write
ρ = (w(x),m(x), m̃(x, ŷ)). We use subscript 0 to de-
note the ground truth of nuisance functions and superscript

∗ to denote the best approximation of the truth within a
possibly misspecified model, e.g., m0(x) and m∗(x). We
assume the d× d symmetric matrix Eq{∂s(Y,X;β)/∂βT}
evaluated at the true β0 is invertible and denote this inverse
as Ω. Clearly, Ω = ΩT. For random vector ϕ, we write
E(ϕϕT) as E(ϕ⊗2).

3. Efficiency Gain Analysis
In this section, we mainly analyze the statistical benefits,
in the sense of estimation efficiency, of the ACP ŷi’s. Our
first step is to understand the optimal estimation efficiency
with and without incorporating these ŷi’s, for estimating β.
Here, the optimal estimation efficiency is the so-called semi-
parametric efficiency bound, characterized by the efficient
influence function, also referred to as canonical gradient, or,
efficient influence curve (Bickel et al., 1993; Tsiatis, 2006;
Fisher & Kennedy, 2021; Hines et al., 2022; Ichimura &
Newey, 2022).

3.1. Optimal Efficiency Bound with and without ACPs

We first briefly introduce the asymptotic representation of a
regular asymptotically linear (RAL) estimator. In general,
given i.i.d. copies of the random sample {d1, . . . ,dn} with
sample size n, an estimator for the parameter of interest β,
β̂, is a RAL estimator if

√
n(β̂ − β) = n−1/2

n∑
i=1

ϕ(di) + op(1),

where the zero-mean function ϕ(·) is called the influence
function of β̂, and the corresponding asymptotic variance is
E(ϕϕT), provided that it is finite and nonsingular. Among
all RAL estimators for β, the influence function of the one
with the smallest asymptotic variance is called the efficient
influence function (EIF), ϕEIF, and the optimal efficiency
bound is E(ϕEIFϕ

T
EIF).

To proceed, we first consider the situation with the ACPs,
Scenario II in Table 1. The result below, Proposition 3.1,
presents the EIF for estimating β under this situation, as
well as the efficiency bound. The proof of this result is
contained in Appendix A. The main idea is to first derive
the semiparametric tangent space T (Bickel et al., 1993;
Tsiatis, 2006) under this situation, that is defined as the
mean squared closure of the tangent spaces of all parametric
submodels spanned by the score vectors, and then derive the
EIF using the orthogonality.
Proposition 3.1. With the ACP ŷi’s, the EIF for estimating
β defined in (2) is Ωϕw with ϕw equals

r

π
w0(x){s(y,x;β0)− m̃0(x, ŷ)}+

1− r

1− π
m0(x)

+
w0(x)

π + (1− π)w0(x)
{m̃0(x, ŷ)−m0(x)}, (4)
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and the efficiency bound equals ΩVwΩ, where Vw is

1

π
Ep

[
w0(X)2{s(Y,X;β0)− m̃0(X, Ŷ )}⊗2

]
+

1

(1− π)2
E
[
{1− π0(X)}2{m̃0(X, Ŷ )−m0(X)}⊗2

]
+

1

1− π
Eq{m0(X)⊗2}.

Next we derive the efficiency bound for Scenario I in Table 1,
without the ACPs. This can be regarded as a special case
of Scenario II in Table 1, with the ACPs, so the proof is
omitted.

Proposition 3.2. Without ŷi’s, the EIF for estimating β
defined in (2) is Ωϕwo where

ϕwo =
r

π
w0(x){s(y,x;β0)−m0(x)}+

1− r

1− π
m0(x),

and the efficiency bound equals ΩVwoΩ, where

Vwo =
1

π
Ep

[
w2

0(X){s(Y,X;β0)−m0(X)}⊗2
]

+
1

1− π
Eq

{
m0(X)⊗2

}
.

3.2. Efficiency Gain and its Source

To further understand the efficiency gain of the ACPs, which
is the contrast between Scenario I and Scenario II in Table 1,
we have

Proposition 3.3. The difference of the two asymptotic vari-
ances, ΩVwoΩ−ΩVwΩ, equals

1

(1− π)2
ΩE

[
{1− π0(X)}3

π0(X)
{m̃0(X, Ŷ )−m0(X)}⊗2

]
Ω,

which is always positive semidefinite.

Remark 3.4. The proof of Proposition 3.3 is contained in
Appendix A. From Proposition 3.3, it is clear that incor-
porating ACPs will not attenuate the estimation efficiency.
The extreme special case is that, the generation of Ŷ only
depends on the available feature X; that is, Ŷ is a function
of X. In this case, one can derive that m̃0(x, ŷ) = m0(x)
and there is no efficiency gain. The intuition is that, in this
case, Ŷ does not bring in any new information beyond X
and thus does not bring in efficiency gain. If the generation
of Ŷ depends on X as well as some other different vari-
able Z predictive of Y , the estimator with ACPs does bring
positive efficiency gain, compared to the estimator without
ACPs.

So, where exactly does the efficiency gain come from? The
ACPs for the labeled data, or the ACPs for the unlabeled
data, or both? To answer this question, we consider an
intermediate scenario as shown in Table 2 below. For this
scenario, we have the following

Table 2. Data structure considered in this paper: Scenario III (in-
termediate scenario between Scenario I and Scenario II).

SCENARIO III

R Y X Ŷ

1 1
√ √ √

L
...

...
√ √ √

n 1
√ √ √

n+ 1 0
√

U
...

...
√

n+N ≡ M 0
√

Proposition 3.5. For the intermediate scenario in Table 2,
the estimation efficiency bound equals to the one in Proposi-
tion 3.2, corresponding to Scenario I in Table 1.

Remark 3.6. The proof of Proposition 3.5 is similar to Propo-
sition 3.1 so omitted. It implies, if the ACPs for the labeled
data only were available, then this set of ACPs does not
bring in any efficiency gain. Therefore, compared to Sce-
nario I in Table 1, the efficiency gain of Scenario II in Table 1
comes from the ACPs for the unlabeled data. This is intu-
itive. For the labeled data, the ground truth Y ’s exist and
thus the ACPs Ŷ ’s do not contribute; while for the unlabeled
data, the ground truth Y ’s do not exist and their ACPs Ŷ ’s
do contribute.

4. Estimation
We mainly present the estimator β̂ that incorporates the
ACPs. From the EIF presented in (4), to construct an effi-
cient estimator, one needs to estimate the relevant nuisance
functions ρ = (w(x), m̃(x, ŷ),m(x)). To accommodate
estimations of nuisance functions using nonparametric or

Algorithm 1 Estimator and Confidence Interval
Input: Labeled dataset Dl = {(xi, yi, ŷi) : i =
1, . . . , n}, unlabeled dataset Du = {(xi, ŷi) : i =
n + 1, . . . , n + N}. To use cross-fitting, define Dl =
Dl

1 ∪ · · · ∪Dl
K and Du = Du

1 ∪ · · · ∪Du
K , with |Dl

1| =
· · · = |Dl

K | = n/K and |Du
1 | = · · · = |Du

K | = N/K.
Define Dk = Dl

k ∪Du
k , k = 1, · · · ,K.

Output: Obtain β̂ and confidence interval of vTβ for
any vector v ∈ Rd.
for k = 1 to K do

Estimate ρk using Dc
k, obtain ρ̂k.

end for
Plug ρ̂ into equation (5) and solve the equation, obtain β̂.
Plug ρ̂ and β̂ into equation (6) and obtain Ω̂V̂wΩ̂.
Obtain the confidence intervals of vTβ by equation (8).
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machine learning methods, we adopt the cross-fitting tech-
nique (Chernozhukov et al., 2018) in our estimation.

Take K-fold random partitions {Dl
k}Kk=1 and {Du

k}Kk=1 of
the labeled and unlabeled data sets Dl and Du, respectively.
Then Dk = Dl

k ∪Du
k constitutes a K-fold random partition

of the whole data set {(xi, riyi, ŷi)
M
i=1}. For each k =

1, . . . ,K, we define Dc
k = {(xi, riyi, ŷi)

M
i=1}/Dk and let

ρ̂k = (ŵk(x), ̂̃mk(x, ŷ), m̂k(x)) denote the estimates of
nuisance functions obtained using the data set Dc

k only. Let
ρ̂ = (ρ̂1, . . . , ρ̂K). Then the estimator β̂(ρ̂), shorthanded
as β̂, is the solution of the following equation:

1

K

K∑
k=1

Êk

[
R

π
ŵk(X){s(Y,X; β̂)− ̂̃mk(X, Ŷ )}

+
ŵk(X)

π + (1− π)ŵk(X)
{ ̂̃mk(X, Ŷ )− m̂k(X)}

+
1−R

1− π
m̂k(X)

]
= 0, (5)

where Êk denotes the sample average over the k-th fold,
and we denote the left-hand side of the above equation as
N(ρ̂, β̂). We briefly summarize the computational algo-
rithm in Algorithm 1.
Remark 4.1. In our implementation, for the estimations of
nuisance functions, we adopted super learner (Van der Laan
et al., 2007), an ensemble learning approach that improves
estimation by combining multiple machine learning models
with data-adaptive weights.

5. Theoretical Investigations
Now we develop the theoretical results for the proposed
estimator β̂, with all the proofs contained in Appendix A.
Firstly, we need some assumptions on the nuisance functions
and their estimates.

Assumption 5.1 (Requirements on Nuisance Estimators).
For k = 1, . . . ,K, we assume positive density ratio
models such that ŵk(x) and w∗(x) are bounded away
from zero. We assume the nuisance estimators ρ̂k =

(ŵk(x), ̂̃mk(x, ŷ), m̂k(x)) converges to the limit ρ∗ =
(w∗(x), m̃∗(x, ŷ),m∗(x)) in MSE at the following rates:

∥ŵk(x)− w∗(x)∥2 = a1M ,

∥m̂k(x)−m∗(x)∥2 = a2M ,

∥ ̂̃mk(x, ŷ)− m̃∗(x, ŷ)∥2 = a3M ,

where max{a1M , a2M , a3M} → 0 as M → +∞.

Remark 5.2. The regularity conditions on nuisance estima-
tors are standard and widely advocated in double/debiased
ML literature, e.g., Van der Laan & Rose (2011), Cher-
nozhukov et al. (2018), Kennedy (2024), Chernozhukov

et al. (2024). The convergence rate is achievable for many
ML methods such as in regression trees and random forests
(Wager & Walther, 2015) and a class of neural nets (Chen &
White, 1999). One can refer to Chernozhukov et al. (2018)
for more examples.
Theorem 5.3 (Double Robustness). Assume Assumption 5.1
holds. If either w∗(x) = w0(x) or (m̃∗(x, ŷ),m∗(x)) =
(m̃0(x, ŷ),m0(x)), then

∥β̂ − β0∥2 = op(1).

Remark 5.4. Theorem 5.3 establishes the classic dou-
ble robustness property, meaning that the proposed es-
timator β̂ remains consistent if w∗(x) = w0(x) or
(m̃∗(x, ŷ),m∗(x)) = (m̃0(x, ŷ),m0(x)).

Consequently, we can develop the asymptotic representation
of the proposed estimator β̂ and further show that it achieves
the optimal efficiency bound derived in Proposition 3.1.
Theorem 5.5 (Asymptotic Normality and Semiparametric
Efficiency). Assume Assumption 5.1 holds. Further, if we
assume a1Ma2M = o(M−1/2), a1Ma3M = o(M−1/2),
and that all nuisance components are correctly specified,
then as M → ∞,

√
M(β̂ − β0)

d→ N(0,ΩVwΩ),

where ΩVwΩ = ΩE(ϕ⊗2
w )Ω is the semiparametric effi-

ciency bound derived in Proposition 3.1.

Remark 5.6. Theorem 5.5 further establishes that if all nui-
sance estimators converge to their true values at a suffi-
ciently fast rate, the proposed estimator β̂ attains a con-
vergence rate of Op(M

−1/2) and is asymptotically normal
with the efficiency lower bound ΩVwΩ as its limiting vari-
ance. Further, it introduces the concept of rate double ro-
bustness. As one can see from Theorem 5.5, what matters
is the products a1Ma2M and a1Ma3M , instead of the in-
dividual convergence rates a1M , a2M and a3M . Notably,
this rate requirement is relatively mild, ensuring consis-
tency and efficiency even when all nuisance estimators con-
verge at op(M−1/4), which is considerably slower than
the parametric rate Op(M

−1/2). In particular, we impose
no restrictions requiring nuisance estimators to belong to
Donsker or bounded entropy classes (van der Vaart, 1998),
thereby permitting the use of flexible machine learning
methods. Furthermore, the product rate condition allows
faster-converging estimators to offset the effects of slower-
converging ones, enhancing practical applicability.
Remark 5.7. An interesting scenario is when we have a lot
more unlabeled data in that N ≫ n so π → 0. Accordingly,
one can derive that ΩVwΩ = O(π−1) instead of O(1).
Thus, the above asymptotic representation shall be more
precisely written as

√
n(β̂ − β0)

d→ N(0, πΩVwΩ).
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This indicates, even if we have sufficiently many unlabeled
data, the real sample size for deriving the efficient estimator
is still n. Intuitively we do not have the ground truth Y
in the unlabeled data, so they (with sample size N ) cannot
contribute to increasing the convergence rate.

Finally we present how to construct the confidence interval
for the linear combination vTβ as well as its validity.

Theorem 5.8 (Construction of Confidence Interval). As-
sume Assumption 5.1 holds. If we assume a1Ma2M =
o(M−1/2), a1Ma3M = o(M−1/2), and that all nuisance
components are correctly specified, then as M → ∞,

Ω̂V̂wΩ̂ = Ω̂
1

K

K∑
k=1

Êk{ϕ⊗2
w (ρ̂; β̂)}Ω̂ p→ ΩVwΩ. (6)

Consequently, for any vector v ∈ Rd, we have
√
MvT(β̂ − β0)

(vTΩ̂V̂wΩ̂v)1/2
d→ N(0, 1). (7)

Thus, we can construct a (1−α)×100% confidence interval
for γ = vTβ0,

CIα = {γ : |γ − vTβ̂| ≤ Φ−1(1− α/2)M−1/2ŝd}, (8)

where ŝd = (vTΩ̂V̂wΩ̂v)1/2 and Φ is the cumulative dis-
tribution function of the standard normal distribution. Fur-
ther, this CI satisfies

lim
M→∞

pr
(
vTβ0 ∈ CIα

)
= 1− α. (9)

Remark 5.9. Theorem 5.8 establishes that, under the same
conditions, the efficiency lower bound can be consis-
tently estimated by constructing the sample estimator of
E{ϕ⊗2

w (ρ0,β0)} using cross-fitted nuisance estimators and
the proposed estimator β̂. Consequently, the confidence
interval in equation (8) asymptotically attains the correct
coverage probability. Moreover, since the proposed esti-
mator vTβ̂ asymptotically achieves the smallest possible
variance, the confidence interval in equation (8) tends to be
shorter than those based on less efficient estimators.

6. Numerical Evaluations
6.1. Synthetic Data

In this section, we demonstrate the efficiency gains achieved
by incorporating ACPs into the estimation process compared
to the estimation without ACPs through simulation studies.

The simulation setup is as follows. Recall that the total sam-
ple size from the labeled and unlabeled data is M = n+N ,
and here we vary n,N ∈ {300, 600, 900, 1200, 1500}. The
covariate vector X has a dimension of p = 5, and we gen-
erate an additional variable Z which is used as the ACP

Figure 1. Variation of ARE for the estimation of Eq(Y ) under
different sample sizes, signal strength, and correlation coefficient.
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Ŷ . The vector (X, Z) follows a multivariate normal distri-
bution N(0p+1,Σ). The covariance matrix Σ is given by
Σ = Ip+1 + Λ, where Λ1(p+1) = Λ(p+1)1 = ζ, and all
other elements are zero. We vary ζ in {0, 0.3, 0.6, 0.9, 1}
to characterize how much information in Ŷ is overlapped
with X. Two regression models are considered: for con-
tinuous outcomes, we set Yi = 1 + ξTXi + αZi + εi,
where εi ∼ N(0, 1), while for binary outcomes, we
set Yi ∼ Bernoulli{logit−1(1 + ξTXi + αZi)} for all
i = 1, . . . , n + N . In both cases, ξ = (1,0.54)

T and
α is varied in {0, 1, . . . , 5} to represent varying accuracy
of the ACP. Additionally, we generate a binary variable
Ri ∼ Bernoulli{logit−1(ηTXi)} and η = 1T

5 . Ri = 1
indicates labeled data with Yi observed, whereas Ri = 0
indicates unlabeled data with Yi unavailable.

For the parameters of interest, we consider the mean of Y on
the unlabeled dataset Eq(Y ) and the regression coefficients
solving the estimating equation Eq[{Y − g(XTβ)}X] = 0
where g(·) is the identify function for continuous outcomes
and the expit function for binary outcomes. To compare
the performance of the estimators with and without Ŷ , we
calculate their MSEs based on 500 simulation replications.

We report the results on Eq(Y ) in linear models in Figure 1,
while deferring all other results to Appendix C. Specifically,
Figure 1 shows the efficiency improvement by incorporat-
ing ACPs, under varying values of labeled sample size (n),
unlabeled sample size (N ), signal strength from the ACP

7
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Figure 2. Difference in distributions of the inpatient visit count for
labeled (left) and unlabeled (right) dataset.
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(α), and the correlation between ACP and the covariates
(ζ). Efficiency gain is quantified by Asymptotic Relative
Efficiency (ARE), defined as the ratio of the MSE of the
estimate without ACP to that with ACP.

First, we note that ARE greater than 1 indicates incorporat-
ing ACPs results in smaller MSE and thus, more efficient
estimation. This is indeed the case across all simulation
settings, except when the ACP is not predictive of the true
outcome (α = 0) or when it provides no additional informa-
tion beyond what is captured in X (ζ = 1).

Second, ARE generally increases as ζ decreases, with the
maximum ARE achieved at ζ = 0. Note that ζ = 0 indi-
cates that Ŷ is independent from the predictors, and thus
the ACP provides the most additional information. We also
observe that ARE increases with increasing α, as the ACP
becomes more predictive of the true outcome. Given fixed
values of α and ζ, when the sample size of the unlabeled
dataset increases, the ARE generally increases, although
the rate is relatively moderate; when the sample size of the
labeled dataset increases, the ARE exhibits a quadratic de-
creasing trend before gradually stabilizing, aligning with
the results in our theoretical investigations.

6.2. Diabetes Data

In this section, we implement our proposed method in our
motivating study, to identify risk factors for diabetes among
children and adolescents.

The study population comprised individuals under 18 years
of age who had at least one encounter recorded between
January 1, 2012, and December 31, 2020. Using the criteria
outlined in Li et al. (2025), we identified 3,000 patients who
are suspected to have diabetes, including both Type I and
Type II diabetes, as our unlabeled dataset. For these patients,
we followed an ACP using a decision-tree-based algorithm
to compute and identify diabetes status. Besides, through
stratified random sampling, 297 patients were selected, and
their documented visit summary and EHRs were sent to and
reviewed by medical experts who provided binary (yes/no)
assessments of diabetes status. We refer to this dataset as

Figure 3. The 95% confidence interval for the coefficient corre-
sponding to each variable. Heavy comorbidity burden is defined
as CCI≥ 2.
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our labeled dataset. Due to the stratified random sampling,
we observed significant covariate shifts between the labeled
and unlabeled datasets. Figure 2 provides strong evidence
that the distribution of inpatient visit counts differs substan-
tially. Patients in chart review are more likely to have more
inpatient visit counts, which may be due to the need to have
sufficient patient information for chart review. Other avail-
able features include socio-demographic variables, e.g., sex
and race/ethnicity, and clinical variables, e.g., family history
of diabetes and Charlson Comorbidity Index (CCI) scores.
A cohort summary associated with socio-demographic vari-
ables is shown in Table 3, which shows that the distributions
of many covariates differ substantially.

Table 3. Comparison of the distributions of each X variable be-
tween labeled and unlabeled data: t-test is used to assess whether
the means of the two groups differ significantly for continuous
variables, and chi-square test is used to evaluate whether the dis-
tributions between the two groups are the same for categorical
variables. A p-value less than 0.05 indicates the statistical signifi-
cance.

Variable Labeled (n = 297) Unlabeled (N = 3, 000) p-value

Age 7.59 ± 6.46 7.42 ± 5.35 0.653
Inpatient Visit Count 0.6 ± 0.89 0.25 ± 0.71 < 0.001
Outpatient Visit Count 3.43 ± 6.67 2.7 ± 5.18 0.070
Insurance Type: Self-Paid 24 (8.1%) 59 (2%) < 0.001
BMI≥ 30 (Yes) 59 (19.9%) 192 (6.4%) < 0.001
Congestive Heart Failure (Yes) 28 (9.4%) 85 (2.8%) < 0.001
Heavy Comorbidity Burden 20 (6.7%) 85 (2.8%) < 0.001

To identify driving factors for diabetes diagnosis, we first
conducted marginal screening of all categorical variables
using Fisher’s exact test. Variables with a p-value < 0.05, ad-
justed by the Benjamini-Hochberg procedure to control the
false discovery rate, were selected. We adopted a logistic re-
gression to predict diabetes status with all selected variables,
and use the regression coefficients as association measures.
We then implemented the proposed methods with and with-
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out ACPs to estimate these coefficients. For nuisance param-
eter estimation, we employed super learner implemented
via the R package SuperLearner with the following li-
braries: generalized linear models, random forests, kernel
support vector machines, and XGBoost. These algorithms
were individually tuned using 10-fold cross-validation. To
accommodate the flexible estimations for nuisance param-
eters, we also applied a cross-fitting algorithm. To obtain
confidence intervals associated with the target parameters,
a perturbed bootstrap procedure with 500 repetitions was
implemented. In each repetition, individual sample weights
were generated from an independent Exp(1) distribution.
Finally, the confidence interval was constructed using the
0.025 and 0.975 quantiles of the 500 bootstrap repetitions.

Figure 3 summarizes the estimates of the coefficients and
their 95% confidence intervals. Overall, compared with the
method without ACPs, the proposed method with ACPs
yields shorter intervals, which reflects the efficiency gain
by incorporating ACPs in our proposed method. By incor-
porating ACPs, we identified insurance type (self-paid) as
an important factor associated with diabetes. The self-paid
patients often have limited access to preventative care and
experience higher stress levels, which are known factors as-
sociated with Type 2 diabetes among adults (Kelly & Ismail,
2015; Stark Casagrande & Cowie, 2012).

6.3. Other Real-World Datasets

In this section we implement the proposed approach on
three other data sets, and also compare with some existing
methods: PPI (Angelopoulos et al., 2023a), PPI++ (An-
gelopoulos et al., 2023b), and RePPI (Ji et al., 2025).

Income data: Following Angelopoulos et al. (2023a) and
Angelopoulos et al. (2023b), we analyze the relationship
between wage (measured as log-income) and age, with sex
as a confounding variable, using U.S. Census data under a
covariate shift setting. The ACP prediction Ŷ is obtained
by fitting an XGBoost model to log-income using 14 covari-
ates, including education, marital status, citizenship, race,
and others (Ji et al., 2025). To induce covariate shift, we
partition the labeled and unlabeled datasets based on the
selection probability exp(αTX)/{1 + exp(αTX)}, where
α = (0, 1, 0)T and X = (1, X1, X2)

T, with X1 denoting
age and X2 denoting sex. This yields a final labeled-to-
unlabeled data ratio of approximately 2 : 8.

Politeness data: Using the data from Danescu-Niculescu-
Mizil et al. (2013) that comprises texts from 5,512 online
requests posted on Stack Exchange and Wikipedia, we try to
understand the association between politeness score (range
from 1 to 25) and a binary indicator for hedging within
the request (Gligorić et al., 2024). The ACP Ŷ is gen-
erated using OpenAI’s GPT-4o mini-model that has the
same range as the politeness score. To demonstrate the co-

variate shift, we split the labeled and unlabeled data in a
1 : 9 ratio, following the same procedure as in the income
data, where X = (1, X1)

T with X1 representing hedge and
α = (0, 1)T.

Wine data: Using the Wine Enthusiast review dataset, we
investigate the association between wine rating (range from
80 to 100) and wine price, adjusted by wine region (Ji et al.,
2025). Similar to the politeness data, the ACP Ŷ is also
generated by employing OpenAI’s GPT-4o mini-model that
produces predicted ratings with the same scale. To assess
covariate shift, we follow the same procedure as in the
previous experiments, splitting the labeled and unlabeled
data in a 3 : 7 ratio. Here, X = (1, X1, X2, X3, X4, X5)

T,
where X1 represents price, X2 to X5 represents California,
Washington, Oregon and New York, respectively, with α =
(0, 1, 0, 0, 0, 0)T.

For each of these three data sets, we repeat the data splitting
50 times, and then compute the length of 95% confidence
intervals of the regression coefficients. We compare the
proposed method with PPI, PPI++ and RePPI, with results
contained in Table 4. While there are some cases that the
proposed method is tiny slightly less efficient than PPI++ or
RePPI, it is generally a lot more efficient than PPI, PPI++,
and RePPI, with the largest reduction in confidence interval
length reaching approximately 60%.

Table 4. Comparison of the length of 95% confidence intervals
between proposed method and three alternatives: PPI, PPI++,
RePPI, on three datasets: income, politeness, wine. Bolded values
(less than 1) indicate that the proposed method has efficiency gain.

Dataset Variable PPI PPI++ RePPI proposed proposed/PPI proposed/PPI++ proposed/RePPI

Income Age 0.0014 0.0012 0.0012 0.0008 57.14% 66.67% 66.67%
Sex 0.0622 0.0541 0.0545 0.0538 86.51% 99.54% 98.73%

Politeness Hedge 1.9696 1.7858 1.7399 1.2818 65.17% 71.70% 73.77%

Wine

Price 0.4007 0.2912 0.2791 0.1664 41.55% 57.11% 59.60%
California 1.6946 0.7935 0.7693 0.7845 46.39% 98.87% 101.95%

Washington 1.7439 0.8436 0.8105 0.8105 46.49% 96.01% 100.00%
Oregon 1.8305 0.9057 0.8616 0.8663 47.35% 95.74% 100.55%

New York 1.8989 0.8964 0.8955 0.9174 48.32% 102.45% 102.55%

7. Discussion
In this paper, we explore the benefits of incorporating ACPs
in a semi-supervised learning framework under covariate
shift, particularly in terms of improving estimation effi-
ciency. We propose an estimator that is both doubly robust
and semiparametrically efficient. Additionally, our method
allows for a rigorous quantification of the efficiency gain
through closed-form expressions. In general, ACPs are
typically generated by various machine learning models, in-
cluding but not limited to NLP and LLM. These predictions
often come with measures of uncertainty quantification. An
intriguing direction for future research is investigating how
to effectively integrate these uncertainty quantification mea-
sures associated with ACPs into the learning process.
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A. Technical Proofs.
Proof of Proposition 3.1. In the situation with incorporating ACPs, the i.i.d. data are {ri = 1, yi,xi, ŷi} ∪ {ri = 0,xi, ŷi},
i = 1, . . . ,M , and the likelihood function of one generic observation is

{p(y | x, ŷ)p(ŷ | x)p(x)π}r{p(ŷ | x)q(x)(1− π)}1−r

= p(y | x, ŷ)rp(ŷ | x)p(x)rq(x)1−rπr(1− π)1−r.

We then consider the Hilbert space H of all d-dimensional zero-mean measurable functions with finite variance, equipped
with the inner product ⟨h1,h2⟩ = E{h1(·)Th2(·)} where h1(·), h2(·) ∈ H. We first give an orthogonal decomposition of
the semiparametric tangent space T (Bickel et al., 1993; Tsiatis, 2006) that is defined as the mean squared closure of the
tangent spaces of parametric submodels spanned by the score vectors. That is,

T = Λπ ⊕ Λp ⊕ Λq ⊕ Λŷ ⊕ Λy,

where

Λπ =

{(
r

π
− 1− r

1− π

)
a : ∀a

}
,

Λp = [rb(x) : Ep{b(X)} = 0] ,

Λq = [(1− r)c(x) : Eq{c(X)} = 0] ,

Λŷ =
[
d(ŷ,x) : E{d(Ŷ ,x) | x} = 0

]
,

Λy = [re(y,x, ŷ) : E{e(Y,x, ŷ) | x, ŷ} = 0] ,

are the tangent spaces with respect to π, p(x), q(x), p(ŷ | x) and p(y | x, ŷ), respectively. The notation ⊕ represents the
direct sum of two spaces that are orthogonal to each other.

Recognizing that the EIF for estimating β is a special element in T , we can assume it has the form

re1(y,x, ŷ)︸ ︷︷ ︸
∈Λy

+d1(ŷ,x)︸ ︷︷ ︸
∈Λŷ

+(1− r)c1(x)︸ ︷︷ ︸
∈Λq

.

Define the score vectors as

s1(y,x, ŷ;α1) =
∂log p(y | x, ŷ;α1)

∂α1
,

s2(ŷ,x;α2) =
∂log p(ŷ | x;α2)

∂α2
,

s3(x;α3) =
∂log q(x;α3)

∂α3
.

Then, based on the orthogonality satisfied by the EIF (Theorem 4.2 and Theorem 4.3 in Tsiatis (2006)), we have

• From E(ssT1 | R = 0) = E(Re1s
T
1 ), one can derive that e1 = Ω

[
1
πw0(x){s(y,x;β0)− m̃0(x, ŷ)}

]
;

• From E(ssT2 | R = 0) = E(d1s
T
2 ) = E

{
1−π

1−π(x)d1s
T
2 | R = 0

}
, one can derive that

d1 = Ω

[
1− π0(x)

1− π
{m̃0(x, ŷ)−m0(x)}

]
;

• From E(ssT3 | R = 0) = E{(1−R)c1s
T
3 }, one can derive c1 = Ω

{
1

1−πm0(x)
}

,

and this completes the proof.
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Proof of Proposition 3.3. The asymptotic variance without ACP is

ΩE(ϕ⊗2
wo)Ω =

1

π
Eq

[
w0(X)Ω{s(Y,X;β0)−m0(X)}⊗2Ω

]
+

1

1− π
Eq

{
Ωm0(X)⊗2Ω

}
=

1

π
Eq

[
w0(X)Ω{s(Y,X;β0)− m̃0(X, Ŷ )}⊗2Ω

]
+

1

π
Eq

[
w0(X)Ω{m̃0(X, Ŷ )−m0(X)}⊗2Ω

]
+

1

1− π
Eq

{
Ωm0(X)⊗2Ω

}
=

1

π
Eq

[
w0(X)Ω{s(Y,X;β0)− m̃0(X, Ŷ )}⊗2Ω

]
+

1

1− π
Eq

{
Ωm0(X)⊗2Ω

}
+E

[
1

π0(X)

{1− π0(X)}2

(1− π)2
Ω{m̃0(X, Ŷ )−m0(X)}⊗2Ω

]

The third equation uses w0(x) =
π

1−π
1−π0(x)
π0(x)

.

The asymptotic variance with ACP is

ΩE(ϕ⊗2
w )Ω =

1

π
Eq

[
w0(X)Ω{s(Y,X;β0)− m̃0(X, Ŷ )}⊗2Ω

]
+

1

1− π
Eq

{
Ωm0(X)⊗2Ω

}
+E

[{
w0(X)

π + (1− π)w0(X)

}2

Ω{m̃0(X, Ŷ )−m0(X)}⊗2Ω

]

=
1

π
Eq

[
w0(X)Ω{s(Y,X;β0)− m̃0(X, Ŷ )}⊗2Ω

]
+

1

1− π
Eq

{
Ωm0(X)⊗2Ω

}
+E

[{
1− π0(X)

(1− π)

}2

Ω{m̃0(X, Ŷ )−m0(X)}⊗2Ω

]

The second equation uses 1−π0(x)
1−π = w0(x)

π+(1−π)w0(x)
.

Therefore, we have

Ω{E(ϕ⊗2
wo)− E(ϕ⊗2

w )}Ω =
1

(1− π)2
ΩE

[
{1− π0(X)}3

π0(X)
{m̃0(X, Ŷ )−m0(X)}⊗2

]
Ω.

Proof of Theorem 5.3. When w∗(x) is misspecified, and m̃∗(x, ŷ) and m∗(x) are correctly specified. We have

E
[
R

π
w∗(X){s(Y,X;β0)− m̃∗(X, Ŷ )}+ w∗(X)

(1− π)w∗(X) + π
{m̃∗(X, Ŷ )−m∗(X)}+ 1−R

1− π
m∗(X)

]
= E

[
R

π
w∗(X){s(Y,X;β0)− m̃0(X, Ŷ )}+ w∗(X)

(1− π)w∗(X) + π
{m̃0(X, Ŷ )−m0(X)}+ 1−R

1− π
m0(X)

]
= 0

When w∗(x) is correctly specified, and m̃∗(x, ŷ) and m∗(x) are misspecified. We have

E
[
R

π
w∗(X){s(Y,X;β0)− m̃∗(X, Ŷ )}+ w∗(X)

(1− π)w∗(X) + π
{m̃∗(X, Ŷ )−m∗(X)}+ 1−R

1− π
m∗(X)

]
= E

[
R

π
w0(X){s(Y,X;β0)− m̃∗(X, Ŷ )}

]
+ E

[
w0(X)

(1− π)w0(X) + π
{m̃∗(X, Ŷ )−m∗(X)}

]
+ E

[
1−R

1− π
m∗(X)

]
= E

[
R

π
w0(X){s(Y,X;β0)− m̃∗(X, Ŷ )}

]
+ E

[
1−R

1− π
{m̃∗(X, Ŷ )−m∗(X)}

]
+ E

[
1−R

1− π
m∗(X)

]
= E

[
R

π
w0(X){s(Y,X;β0)− m̃∗(X, Ŷ )}

]
+ E

[
1−R

1− π
m̃∗(X, Ŷ )

]
= 0.

The proof is completed.
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Proof of Theorem 5.5. The efficient influence function is

ϕw(ρ0,β0) =
r

π
w0(x){s(y,x;β0)− m̃0(x, ŷ)}+

w0(x)

(1− π)w0(x) + π
{m̃0(x, ŷ)−m0(x)}+

1− r

1− π
m0(x).

Then we have

ϕw(ρ̂k,β0) =
r

π
ŵk(x){s(y,x;β0)− ̂̃mk(x, ŷ)}+

ŵk(x)

(1− π)ŵk(x) + π
{ ̂̃mk(x, ŷ)− m̂k(x)}+

1− r

1− π
m̂k(x).

Therefore,

1

K

K∑
k=1

Êkϕw(ρ̂k,β0)− Eϕw(ρ0,β0) =
1

K

K∑
k=1

{Êkϕ1(ρ̂k,β0)− Eϕ1(ρ0,β0)}.

We only consider the following term,

Êkϕw(ρ̂k,β0)− Eϕw(ρ0,β0)

= (Êk − E){ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}︸ ︷︷ ︸
sample splitting

+E{ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}︸ ︷︷ ︸
bias

+(Êk − E)ϕw(ρ0,β0)︸ ︷︷ ︸
CLT

.

(i) (Êk − E){ϕw(ρ̂,β0)− ϕw(ρ0,β0)} = op(M
−1/2).

Proof. Let ϕw(ρ̂k,β0) be a function estimated from the sample Dc
k, and let Êk denote the empirical measure over Dk. First

note that, conditional on Dc
k, the term in question has mean zero since

E[Êk{ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}|Dc
k] = E{ϕw(ρ̂k,β0)− ϕw(ρ0,β0)|Dc

k}.

The conditional variance is

var
[
(Êk − E){ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}|Dc

k

]
= var

[
Êk{ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}|Dc

k

]
=

2

M
var{ϕw(ρ̂k,β0)− ϕw(ρ0,β0)|Dc

k} ≤ 2∥ϕw(ρ̂k,β0)− ϕw(ρ0,β0)∥22/M

Therefore using Chebyshev’s inequality we have

pr

{
∥(Êk − E){ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}∥2√

2∥ϕw(ρ̂k,β0)− ϕw(ρ0,β0)∥2/
√
M

≥ t

}

= E

[
pr

{
∥(Êk − E){ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}∥2√

2∥ϕw(ρ̂k,β0)− ϕw(ρ0,β0)∥2/
√
M

≥ t|Dc
k

}]
≤ 1

t2
.

Thus for any ε > 0 we can pick t = 1/
√
ε so that the probability above is no more than ε, which yields the result.

(ii) E{ϕw(ρ̂k,β0) − ϕw(ρ0,β0)|Dc
k} = Op(∥ŵk(x) − w0(x)∥2∥ ̂̃mk(x, ŷ) − m̃0(x, ŷ)∥2) + Op(∥ŵk(x) −

w0(x)∥2∥m̂k(x)−m0(x)∥2) = op(M
−1/2) by rate conditions.

Proof.

E{ϕw(ρ̂k,β0)− ϕw(ρ0,β0)|Dc
k}

= E
(
R

π

[
ŵk(X){s(Y,X;β0)− ̂̃mk(X, Ŷ )} − w0(X){s(Y,X;β0)− m̃0(X, Ŷ )}

]
|Dc

k

)
+E

[
ŵk(X)

(1− π)ŵk(X) + π
{ ̂̃mk(X, Ŷ )− m̂k(X)} − w0(X)

(1− π)w0(X) + π
{m̃0(X, Ŷ )−m0(X)}|Dc

k

]
+E

{
1−R

1− π
m̂k(X)− 1−R

1− π
m0(X)|Dc

k

}
= : (I) + (II) + (III)
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For the first term (I), we have

(I) = E
[
R

π
{ŵk(X)− w0(X)}{s(Y,X;β0)− m̃0(X, Ŷ )}|Dc

k

]
+ E

[
R

π
w0(X){m̃0(X, Ŷ )− ̂̃mk(X, Ŷ )}|Dc

k

]
+E

[
R

π
{ŵk(X)− w0(X)}{m̃0(X, Ŷ )− ̂̃mk(X, Ŷ )}|Dc

k

]
= E

[
R

π
w0(X){m̃0(X, Ŷ )− ̂̃mk(X, Ŷ )}|Dc

k

]
+ E

[
R

π
{ŵk(X)− w0(X)}{m̃0(X, Ŷ )− ̂̃mk(X, Ŷ )}|Dc

k

]
.

For the second term (II), we have

(II) = E
({

ŵk(X)

(1− π)ŵk(X) + π
− w0(X)

(1− π)w0(X) + π

}
[{ ̂̃mk(X, Ŷ )− m̃0(X, Ŷ )} − {m̂k(X)−m0(X)}]|Dc

k

)
+E

[{
ŵk(X)

(1− π)ŵk(X) + π
− w0(X)

(1− π)w0(X) + π

}
{m̃0(X, Ŷ )−m0(X)}|Dc

k

]
+E

(
w0(X)

(1− π)w0(X) + π
[{ ̂̃mk(X, Ŷ )− m̃0(X, Ŷ )} − {m̂k(X)−m0(X)}]|Dc

k

)
= E

({
ŵk(X)

(1− π)ŵk(X) + π
− w0(X)

(1− π)w0(X) + π

}
[{ ̂̃mk(X, Ŷ )− m̃0(X, Ŷ )} − {m̂k(X)−m0(X)}]|Dc

k

)
+E

(
w0(X)

(1− π)w0(X) + π
[{ ̂̃mk(X, Ŷ )− m̃0(X, Ŷ )} − {m̂k(X)−m0(X)}]|Dc

k

)
.

For the third term (III), we have

(III) = E
[
1−R

1− π
{m̂k(X)−m0(X)}|Dc

k

]
Combine (I), (II) and (III), we obtain

(I) + (II) + (III) = Op(∥ŵk(x)− w0(x)∥2∥ ̂̃mk(x, ŷ)− m̃0(x, ŷ)∥2) +Op(∥ŵk(x)− w0(x)∥2∥m̂k(x)−m0(x)∥2)
= op(M

−1/2).

The second equation by the rate conditions.

Therefore, we have

β̂(ρ̂)− β0(ρ0) = Ω̂
1

K

K∑
k=1

Êkϕw(ρ̂k,β0)−ΩEϕw(ρ0,β0) = Ω̂
1

K

K∑
k=1

Êkϕw(ρ̂k,β0)− Ω̂Eϕw(ρ0,β0)

= Ω̂
1

K

K∑
k=1

(Êk − E){ϕw(ρ̂k,β0)− ϕw(ρ0,β0)}︸ ︷︷ ︸
sample splitting

+Ω̂
1

K

K∑
k=1

E{ϕw(ρ̂k,β)− ϕw(ρ0,β0)}︸ ︷︷ ︸
bias

+Ω̂
1

K

K∑
k=1

(Êk − E)ϕw(ρ0,β0)︸ ︷︷ ︸
CLT

= Ω
1

K

K∑
k=1

(Êk − E)ϕw(ρ0,β0)︸ ︷︷ ︸
CLT

+op(M
−1/2)

Based on central limit theorem, We have

√
M{β̂(ρ̂)− β0(ρ0)} =

√
MΩ

1

K

K∑
k=1

(Êk − E)ϕw(ρ0,β0) + op(1)

d→ N(0,ΩVwΩ).

The proof is completed.
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Proof of Theorem 5.8. In this section, we divide it into two parts. First, we prove the consistency of the covariance matrix,
and then prove the confidence interval.

First, we need to show the Ω̂V̂wΩ̂ is consistent. Here, we only show V̂w = 1
K

∑K
k=1 Êk{ϕ⊗2

w (ρ̂k; β̂)} is consistent. Note
that

∥V̂w −Vw∥2 = ∥V̂w − E{ϕ⊗2
w (ρ0;β0)}∥2

≤ 1

K

K∑
k=1

∥Êk{ϕ⊗2
w (ρ̂k; β̂)} − E{ϕ⊗2

w (ρ0;β0)}∥2.

We only need to prove that ∥Êk{ϕ⊗2
w (ρ̂k; β̂)} − E{ϕ⊗2

w (ρ0;β0)}∥2 = op(1). Consider the following decomposition:

∥Êk{ϕ⊗2
1 (ρ̂k; β̂)} − E{ϕ⊗2

w (ρ0;β0)}∥2
≤ ∥Êk{ϕ⊗2

w (ρ̂k; β̂)} − Êk{ϕ⊗2
w (ρ0;β0)}∥2 + ∥Êk{ϕ⊗2

w (ρ0;β0)} − E{ϕ⊗2
w (ρ0;β0)}∥2

= R1 +R2.

Thus we only need to prove that both R1 and R2 are op(1).

By the law of large numbers, we can easily obtain R2 = op(1). Next we analyze the term R1.

∥Êk{ϕ⊗2
w (ρ̂k; β̂)} − Êk{ϕ⊗2

w (ρ0;β0)}∥2
≤ ∥Êk{ϕw(ρ̂k; β̂)− ϕw(ρ0;β0)}⊗2∥2 + 2∥Êk{ϕw(ρ̂k; β̂)− ϕw(ρ0;β0)}{ϕw(ρ0;β0)}T∥2
≤ R

1/2
3 × {R1/2

3 + 2∥Êkϕ
⊗2
w (ρ0;β0)∥

1/2
2 }

where R3 = ∥Êk{ϕw(ρ̂k; β̂)− ϕw(ρ0;β0)}⊗2∥2.

Since Eϕ⊗2
w (ρ0;β0) = O(1), Markov inequality implies that Êkϕ

⊗2
w (ρ0;β0) = Op(1). Moreover,

R3 ≤ 2C1∥β̂ − β0∥22 + 2∥Êk{ϕw(ρ̂k;β0)− ϕw(ρ0;β0)}⊗2∥2

Since ∥β̂ − β0∥2 = op(1) by Theorem 5.3, thus we only to prove ∥Êk{ϕw(ρ̂k;β0)− ϕw(ρ0;β0)}⊗2∥2 = op(1) as well.
We can further decompose this term:

Êk{ϕ1(ρ̂k;β0)− ϕ1(ρ0;β0)}⊗2

= Êk{ϕ1(ρ̂k;β0)− ϕ1(ρ0;β0)}⊗2 − E{ϕ1(ρ̂k;β0)− ϕ1(ρ0;β0)}2

+E{ϕ1(ρ̂k;β0)− ϕ1(ρ0;β0)}⊗2 = (1) + (2).

Note that E{(1)} = 0, so by Markov inequality, we have (1) = op(1). Moreover, it is easy to verify that (2) = op(1) as
Op(∥ŵk(x)− w0(x)∥2∥ ̂̃mk(x, ŷ)− m̃0(x, ŷ)∥2) +Op(∥ŵk(x)− w0(x)∥2∥m̂k(x)−m0(x)∥2 = op(1).

Putting all above together, we have

∥R1∥2 = op(1).

Thus, we have V̂1 = V1 + op(1). Further, we have V̂w = Vw + op(1) by Ω̂ = Ω+ op(1).

Second, we will show that vTβ0 ∈ CIα with probability 1− α in the limit; that is,

lim
M→∞

pr
(
vTβ0 ∈ CIα

)
= 1− α.
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It can be easy to obtain, since we have

lim
M→∞

pr
(
vTβ0 ∈ CIα

)
= lim

M→∞
pr
{
vTβ̂ − Φ−1(1− α/2)

√
vTΩ̂V̂wΩ̂v/M ≤ vTβ0 ≤ vTβ̂ +Φ−1(1− α/2)

√
vTΩ̂V̂wΩ̂v/M

}

= lim
M→∞

pr

−Φ−1(1− α/2) ≤
√
M(vTβ0 − vTβ̂)√

vTΩ̂V̂wΩ̂v

≤ Φ−1(1− α/2)


= lim

M→∞
pr


√
M(vTβ0 − vTβ̂)√

vTΩ̂V̂wΩ̂v

≤ Φ−1(1− α/2)

− lim
M→∞

pr


√
M(vTβ0 − vTβ̂)√

vTΩ̂V̂wΩ̂v

< −Φ−1(1− α/2)


= Φ{Φ−1(1− α/2)} − Φ{−Φ−1(1− α/2)}
= 1− α/2− α/2 = 1− α

The fourth equation holds because
√
M(vTβ0 − vTβ̂)/

√
vTΩ̂V̂wΩ̂v

d→ N(0, 1). The fifth equation holds because the
standard normal distribution is symmetric. The proof is completed.

B. Parallel Results for Parameter θ in the Combined Population
To avoid repetition, we only present the results for the parameter β, some characteristic in the unlabeled data population U ,
in the main paper. But, all the results can be generalized to the characteristic of the combind data population L ∪ U if it is of
interest.

Similarly, we define the d-dimensional parameter θ as

θ = argmin E{ℓ(y,x;θ)},

and it is equivalent to write θ as the solution of the estimating equation

E{u(Y,X;θ)} = 0.

To proceed, we assume the d× d matrix E{∂u(Y,X;θ)/∂θT} evaluated at the true value θ0 is invertible and denote the
inverse as Γ. We also denote E{u(Y,x;θ) | x} as h(x) and denote E{u(Y,x;θ) | x, ŷ} as h̃(x, ŷ).

For estimating θ, in the situation with ACPs, the EIF equals Γφw with

φw =
r

π0(x)
{u(y,x;θ0)− h̃0(x, ŷ)}+ h̃0(x, ŷ),

and the efficiency bound is ΓVwΓ with

Vw = E
[

R

π0(X)2
{u(Y,X;θ0)− h̃0(X, Ŷ )}⊗2

]
+ E

[
{h̃0(X, Ŷ )− h0(X)}⊗2

]
+ E

{
h0(X)⊗2

}
.

In the situation without ACPs, the EIF is Γφwo with

φwo =
r

π0(x)
{u(y,x;θ0)− h0(x)}+ h0(x),

and the efficiency bound is ΓVwoΓ with

Vwo = E
[

R

π0(X)2
{u(Y,X;θ0)− h̃0(X, Ŷ )}⊗2

]
+ E

[
R

π0(X)2
{h̃0(X, Ŷ )− h0(X)}⊗2

]
+ E

{
h0(X)⊗2

}
.

Therefore, one can compute that the efficiency gain of using ACP Ŷ is

Γ(Vwo −Vw)Γ = ΓE
[{

R

π0(X)2
− 1

}
{h̃0(X, Ŷ )− h0(X)}⊗2

]
Γ

= ΓE
[
1− π0(X)

π0(X)
{h̃0(X, Ŷ )− h0(X)}⊗2

]
Γ,
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which is positive definite, as long as π0(x) is bounded away from zero and one and that the ACP Ŷ does depend on some
other variable Z, beyond the available feature X in both labeled and unlabeled data. Clearly, this whole rationale is the same
as that for the parameter β, as well as the following theoretical results including double robustness and semiparametric
efficiency.

C. Additional Numerical Results
In this section, we provide more numerical results for various parameters of interest across different models. For each
parameter, we demonstrate the efficiency improvement by incorporating ACPs under varying conditions, including varying
labeled sample size (n), varying unlabeled sample size (N ), varying signal strength from ACP (α), and varying correlation
between ACP and the covariates (ζ).

Figures 4-5 present the results for various parameters under the linear model, while Figures 6-8 illustrate the results for the
logistic model. Similarly, Tables 5-8 and Tables 9-12 summarize the results for various parameters under the linear and
logistic models, respectively.

In addition, we also present additional numerical results and comparisons with benchmark methods–PPI, PPI++, and
RePPI–across various parameters of interest under different modeling scenarios. For each parameter, we evaluate the
efficiency gains achieved by incorporating ACP under a range of conditions, including varying the labeled sample size (n),
the unlabeled sample size (N ), the signal strength of the ACP (α), and the correlation between the ACP and covariates (ζ).
Table 13 reports the comparison results for estimating the outcome mean under linear models, while Table 14 presents the
corresponding results for coefficient estimation under linear models.

n Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

300 w.o. ACP 0.84 0.82 0.86 1.00 0.93 0.93

300 w. ACP 0.08 0.10 0.08 0.10 0.09 0.10

600 w.o. ACP 0.83 0.80 0.80 0.97 0.92 0.90

600 w. ACP 0.06 0.06 0.06 0.07 0.06 0.06

900 w.o. ACP 0.82 0.80 0.79 0.95 0.93 0.90

900 w. ACP 0.05 0.05 0.05 0.06 0.05 0.06

1200 w.o. ACP 0.81 0.79 0.79 0.94 0.94 0.90

1200 w. ACP 0.05 0.05 0.04 0.05 0.05 0.05

1500 w.o. ACP 0.81 0.79 0.78 0.93 0.92 0.91

1500 w. ACP 0.05 0.04 0.04 0.05 0.04 0.04

Table 5. Simulation results under different n when α = 5, ζ = 0, N = 300 under the linear model setting.

20



Efficient Inference by Incorporating ACPs

α = 0

α = 1

α = 2

α = 3

α = 4

α = 5

α = 0

α = 1

α = 2

α = 3

α = 4

α = 5

n = 300, N changes N = 300, n changes

300 600 900 1200 1500 300 600 900 1200 1500

5

10

15

1

Sample size

A
R

E

α
α = 0

α = 1

α = 2

α = 3

α = 4

α = 5

ζ = 0

ζ = 0.3

ζ = 0.6

ζ = 0.9

ζ = 1

ζ = 0

ζ = 0.3

ζ = 0.6

ζ = 0.9

ζ = 1

n = 300, N changes N = 300, n changes

300 600 900 1200 1500 300 600 900 1200 1500

5

10

15

1

Sample size

A
R

E

ζ

ζ = 0

ζ = 0.3

ζ = 0.6

ζ = 0.9

ζ = 1

Figure 4. Variation of ARE for the estimation of ξ1 under linear model setting with different sample sizes, signal strength, and correlation
coefficient.
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Figure 5. Variation of ARE for the estimation of ξ2 under linear model setting with different sample sizes, signal strength, and correlation
coefficient.
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Figure 6. Variation of ARE for the estimation of Eq(Y ) under logistic model setting with different sample sizes, signal strength, and
correlation coefficient.
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Figure 7. Variation of ARE for the estimation of ξ1 under logistic model setting with different sample sizes, signal strength, and correlation
coefficient.
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Figure 8. Variation of ARE for the estimation of ξ2 under logistic model setting with different sample sizes, signal strength, and correlation
coefficient.
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N Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

300 w.o. ACP 0.84 0.82 0.86 1.00 0.93 0.93

300 w. ACP 0.08 0.10 0.08 0.10 0.09 0.10

600 w.o. ACP 0.42 0.55 0.45 0.57 0.52 0.54

600 w. ACP 0.07 0.07 0.07 0.07 0.07 0.08

900 w.o. ACP 0.29 0.38 0.36 0.43 0.39 0.33

900 w. ACP 0.05 0.06 0.06 0.06 0.06 0.06

1200 w.o. ACP 0.24 0.30 0.29 0.32 0.31 0.25

1200 w. ACP 0.05 0.06 0.05 0.05 0.06 0.06

1500 w.o. ACP 0.21 0.26 0.27 0.29 0.27 0.25

1500 w. ACP 0.04 0.05 0.05 0.05 0.05 0.05

Table 6. Simulation results under different N when α = 5, ζ = 0, n = 300 under the linear model setting.

α Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

0 w.o. ACP 0.03 0.03 0.03 0.04 0.03 0.03

0 w. ACP 0.03 0.03 0.03 0.04 0.03 0.03

1 w.o. ACP 0.06 0.07 0.06 0.07 0.07 0.07

1 w. ACP 0.03 0.03 0.03 0.04 0.04 0.03

2 w.o. ACP 0.16 0.16 0.15 0.18 0.17 0.17

2 w. ACP 0.04 0.04 0.04 0.05 0.04 0.04

3 w.o. ACP 0.32 0.32 0.32 0.37 0.35 0.34

3 w. ACP 0.05 0.06 0.05 0.06 0.05 0.06

4 w.o. ACP 0.54 0.54 0.56 0.65 0.60 0.59

4 w. ACP 0.06 0.07 0.06 0.08 0.07 0.08

5 w.o. ACP 0.84 0.82 0.86 1.00 0.93 0.93

5 w. ACP 0.08 0.10 0.08 0.10 0.09 0.10

Table 7. Simulation results under different α when ζ = 0 and n = N = 300 under the linear model setting.
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ζ Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

0 w.o. ACP 0.84 0.82 0.86 1.00 0.93 0.93

0 w. ACP 0.08 0.10 0.08 0.10 0.09 0.10

0.3 w.o. ACP 0.72 0.70 0.79 0.64 0.70 0.63

0.3 w. ACP 0.09 0.09 0.09 0.08 0.09 0.09

0.6 w.o. ACP 0.51 0.52 0.61 0.40 0.50 0.49

0.6 w. ACP 0.10 0.07 0.07 0.06 0.07 0.07

0.9 w.o. ACP 0.25 0.15 0.17 0.16 0.16 0.14

0.9 w. ACP 0.11 0.04 0.05 0.05 0.04 0.04

1 w.o. ACP 0.12 0.03 0.04 0.02 0.03 0.03

1 w. ACP 0.12 0.03 0.04 0.02 0.03 0.03

Table 8. Simulation results under different ζ when α = 5 and n = N = 300 under the linear model setting.

n Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

300 w.o. ACP 0.01 0.24 0.24 0.17 0.23 0.21

300 w. ACP 0.00 0.12 0.11 0.09 0.10 0.10

600 w.o. ACP 0.01 0.35 0.34 0.25 0.25 0.30

600 w. ACP 0.00 0.13 0.14 0.10 0.10 0.12

900 w.o. ACP 0.01 0.32 0.31 0.25 0.25 0.30

900 w. ACP 0.00 0.13 0.14 0.11 0.10 0.12

1200 w.o. ACP 0.01 0.39 0.44 0.28 0.28 0.37

1200 w. ACP 0.00 0.14 0.15 0.11 0.11 0.13

1500 w.o. ACP 0.01 0.41 0.48 0.30 0.28 0.35

1500 w. ACP 0.00 0.14 0.14 0.11 0.11 0.13

Table 9. Simulation results under different n when α = 5, ζ = 0, N = 300 under the logistic model setting.

N Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

300 w.o. ACP 0.01 0.24 0.24 0.17 0.23 0.21

300 w. ACP 0.00 0.12 0.11 0.09 0.10 0.10

600 w.o. ACP 0.00 0.10 0.11 0.08 0.10 0.09

600 w. ACP 0.00 0.06 0.06 0.05 0.06 0.06

900 w.o. ACP 0.00 0.07 0.07 0.06 0.07 0.06

900 w. ACP 0.00 0.04 0.04 0.03 0.04 0.04

1200 w.o. ACP 0.00 0.05 0.05 0.05 0.05 0.04

1200 w. ACP 0.00 0.03 0.03 0.03 0.03 0.03

1500 w.o. ACP 0.00 0.04 0.04 0.04 0.04 0.03

1500 w. ACP 0.00 0.02 0.02 0.02 0.02 0.02

Table 10. Simulation results under different N when α = 5, ζ = 0, n = 300 under the logistic model setting.
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α Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

0 w.o. ACP 0.00 0.12 0.10 0.12 0.09 0.11

0 w. ACP 0.00 0.12 0.10 0.12 0.09 0.11

1 w.o. ACP 0.00 0.12 0.11 0.14 0.12 0.10

1 w. ACP 0.00 0.12 0.11 0.13 0.11 0.10

2 w.o. ACP 0.00 0.18 0.17 0.16 0.17 0.17

2 w. ACP 0.00 0.13 0.14 0.13 0.12 0.12

3 w.o. ACP 0.00 0.21 0.19 0.17 0.20 0.20

3 w. ACP 0.00 0.14 0.13 0.12 0.12 0.11

4 w.o. ACP 0.01 0.23 0.22 0.16 0.22 0.20

4 w. ACP 0.00 0.12 0.12 0.10 0.11 0.11

5 w.o. ACP 0.01 0.24 0.24 0.17 0.23 0.21

5 w. ACP 0.00 0.12 0.11 0.09 0.10 0.10

Table 11. Simulation results under different α when ζ = 0 and n = N = 300 under the logistic model setting.

ζ Method MSE(Y ) MSE(ξ̂1) MSE(ξ̂2) MSE(ξ̂3) MSE(ξ̂4) MSE(ξ̂5)

0 w.o. ACP 0.01 0.24 0.24 0.17 0.23 0.21

0 w. ACP 0.00 0.12 0.11 0.09 0.10 0.10

0.3 w.o. ACP 0.00 0.25 0.23 0.19 0.19 0.22

0.3 w. ACP 0.00 0.11 0.11 0.09 0.09 0.10

0.6 w.o. ACP 0.00 0.25 0.21 0.19 0.22 0.20

0.6 w. ACP 0.00 0.13 0.10 0.10 0.10 0.09

0.9 w.o. ACP 0.00 0.70 0.15 0.13 0.14 0.12

0.9 w. ACP 0.00 0.65 0.11 0.12 0.13 0.11

1 w.o. ACP 0.00 7.38 0.15 0.17 0.17 0.16

1 w. ACP 0.00 7.11 0.15 0.16 0.17 0.16

Table 12. Simulation results under different ζ when α = 5 and n = N = 300 under the logistic model setting.
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Table 13. Comparison of mean squared error (MSE) for estimating outcome mean between proposed method and three alternatives: PPI,
PPI++, RePPI, under the linear model setting. Bolded values (smallest across all four methods) indicate that the proposed method
performs the best.

Setting Method N = 300 600 900 1200 1500

α = 5
ζ = 0

n = 300

PPI 2.8976 2.7768 2.6824 2.8998 2.9021
PPI++ 2.8689 2.7499 2.6573 2.8496 2.8497
RePPI 2.8639 2.7452 2.6528 3.8688 3.9909

proposed 0.0803 0.0756 0.0712 0.0481 0.0451

Method n = 300 600 900 1200 1500

α = 5
ζ = 0

N = 300

PPI 2.8976 2.8811 2.8876 2.8897 2.9017
PPI++ 2.8689 2.8711 2.8829 2.8899 2.9048
RePPI 2.8639 0.9078 0.4444 0.2822 0.1898

proposed 0.0803 0.0651 0.0545 0.0484 0.0441

Method α = 0 1 2 3 4

ζ = 0
n = 300
N = 300

PPI 2.8273 2.8364 2.8475 2.8588 2.8757
PPI++ 2.8465 2.8470 2.8492 2.8524 2.8593
RePPI 0.0583 0.1344 0.4725 1.0425 1.8403

proposed 0.0327 0.0338 0.0393 0.0492 0.0630

Method ζ = 0 0.3 0.6 0.9 1

α = 5
n = 300
N = 300

PPI 2.8976 5.7063 9.3864 13.8583 15.6780
PPI++ 2.8689 4.4729 6.2252 8.2971 9.0483
RePPI 2.8639 2.2030 1.6693 0.5678 0.1476

proposed 0.0803 0.0881 0.0990 0.1107 0.1231
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Table 14. Comparison of mean squared error (MSE) for estimating regression coefficients between proposed method and three alternatives:
PPI, PPI++, RePPI, under the linear model setting. Bolded values (smallest across all four methods) indicate that the proposed method
performs the best.

N Method X1 X2 X3 X4 X5

300

PPI 0.1290 0.1136 0.1233 0.1158 0.1140
PPI++ 0.1086 0.1086 0.1178 0.0987 0.1033
RePPI 0.2463 0.2741 0.2713 0.2676 0.2642

propoesd 0.0975 0.0844 0.0977 0.0889 0.0989

600

PPI 0.1208 0.1072 0.1156 0.1102 0.1091
PPI++ 0.1035 0.1029 0.1113 0.0962 0.0994
RePPI 0.2381 0.2613 0.2587 0.2542 0.2506

proposed 0.0913 0.0792 0.0934 0.0851 0.0948

900

PPI 0.1137 0.1015 0.1092 0.1045 0.1033
PPI++ 0.0992 0.0985 0.1067 0.0923 0.0951
RePPI 0.2297 0.2498 0.2471 0.2436 0.2401

proposed 0.0867 0.0751 0.0889 0.0813 0.0912

1200

PPI 0.1219 0.1044 0.1166 0.1090 0.1084
PPI++ 0.1219 0.1044 0.1166 0.1090 0.1084
RePPI 0.3001 0.3396 0.3337 0.3255 0.3133

proposed 0.0493 0.0434 0.0548 0.0481 0.0483

1500

PPI 0.1204 0.1038 0.1158 0.1080 0.1069
PPI++ 0.1204 0.1038 0.1158 0.1080 0.1069
RePPI 0.3088 0.3465 0.3444 0.3370 0.3170

proposed 0.0431 0.0408 0.0486 0.0426 0.0417
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