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Abstract

Parameter-efficient finetuning (PEFT) methods effectively adapt large language
models (LLMs) to diverse downstream tasks, reducing storage and GPU memory
demands. Despite these advantages, several applications pose new challenges to
PEFT beyond mere parameter efficiency. One notable challenge involves the effi-
cient deployment of LLMs equipped with multiple task- or user-specific adapters,
particularly when different adapters are needed for distinct requests within the
same batch. Another challenge is the interpretability of LLMs, which is crucial for
understanding how LLMs function. Previous studies introduced various approaches
to address different challenges. In this paper, we introduce a novel method, RoAd,
which employs a straightforward 2D rotation to adapt LLMs and addresses all the
above challenges: (1) RoAd is remarkably parameter-efficient, delivering optimal
performance on GLUE, eight commonsense reasoning tasks and four arithmetic
reasoning tasks with < 0.1% trainable parameters; (2) RoAd facilitates the efficient
serving of requests requiring different adapters within a batch, with an overhead
comparable to element-wise multiplication instead of batch matrix multiplication;
(3) RoAd enhances LLM’s interpretability through integration within a framework
of distributed interchange intervention, demonstrated via composition experiments.
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Figure 1: Performance of various PEFT methods on the GLUE benchmark, eight commonsense
reasoning tasks and four arithmetic reasoning tasks with RoBERTa-large or LLaMA-13B.

1 Introduction

Large language models (LLMs), trained on extensive web-scale datasets to perform tasks such
as predicting masked words [8, 31, 45] or anticipating the next word in a sentence [17, 52, 53],
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demonstrate remarkable effectiveness across a range of NLP applications. For tasks where the data
distribution diverges from that of the pretraining corpus, finetuning emerges as an effective way to
tailor an LLM to specific requirements. Leveraging the capabilities of LLMs, recent studies [13, 14,
22, 23, 25, 27, 42, 60, 62, 65] demonstrate that training only a subset of an LLM’s parameters can yield
performance on par with full finetuning. This approach, termed parameter-efficient finetuning (PEFT),
provides two primary advantages: (1) It reduces the storage requirements for trained parameters, as it
necessitates preserving only a universal LLM alongside a minimal set of task-specific parameters; (2)
It decreases GPU memory consumption during finetuning, owing to the reduction in optimizer state
sizes which correlate directly with the number of trainable parameters.

With the evolution of PEFT, concerns extend beyond mere parameter efficiency. PEFT encounters a
variety of challenges brought forth by diverse applications. A significant challenge is the efficient
deployment of personalized or task-specific LLMs [25, 57]. These applications frequently require
distinct sets of trained parameters for different tasks or users. When multiple users submit requests
simultaneously, it becomes crucial to process these requests collectively in a single batch. Given that
each request may require a unique set of parameters, using batch matrix multiplication can efficiently
handle these requests by leveraging GPU parallelism. However, the batch matrix multiplication still
incurs considerable overhead [1, 57], necessitating the exploration of more efficient methods.

Another challenge is the interpretability of LLMs that contain a billion-scale of parameters, making
it difficult to explore their mechanism. PEFT provides an alternative approach by constraining the
number of trainable parameters, thereby aiding in interpretability. Recent advancements in PEFT
methods, particularly those focusing on representation editing [54, 60, 67], can be incorporated
within an intervention framework [11]. This integration enhances their capability for interpretability,
offering a more manageable means of dissecting the operational intricacies of LLMs.

In this paper, we introduce a novel technique termed 2D rotary adaptation (RoAd) which efficiently
adapts LLMs using a minimal number of trainable parameters. Furthermore, RoAd enhances both
batching efficiency and composability. Our initial investigation reveals that finetuning primarily alters
the angular components of the representations in pretrained LLMs, rather than their magnitudes
(Section §3.1). Based on this observation, we employ a strategy of rotating certain subspaces within
the representations to emulate finetuning effects. Specifically, we implement a 2D rotational approach
on the representations and develop three distinct variants of RoAd (Section §3.2).

To assess the efficacy of RoAd, we perform comprehensive evaluations on the GLUE benchmark
[56], eight commonsense reasoning tasks and four arithmetic reasoning tasks, utilizing RoBERTa
[31] and LLaMA [52, 53] (Section §4.1). The results consistently show that RoAd surpasses other
PEFT methods while maintaining a significantly reduced scale of trainable parameters (< 0.1%), as
depicted in Figure 1. Additionally, RoAd employs element-wise rather than matrix multiplication,
which notably improves throughput when serving heterogeneous requests within the same batch,
achieving twice the throughput of LoRA [14] (Section §4.2). Furthermore, RoAd can be seamlessly
integrated within an intervention framework [11], thereby enhancing model interpretability. We
illustrate this through a composition experiment, demonstrating RoAd’s capacity to merge weights
trained for different tasks and display a new capability (Section §4.3).

2 Background

In this section, we outline the challenges tackled in this work, illustrating the constraints of existing
methods and objectives that drive the development of the proposed method, RoAd.

2.1 Parameter-efficient finetuning (PEFT)

Existing PEFT techniques can be categorized into three groups: adapter-based, prompt-based, and
latency-less methods. Adapter-based methods [12, 13, 42] incorporate adapters either in parallel
with or sequentially to the existing Transformer [55] modules. This incorporation necessitates
modifications to the LLM architecture, consequently adding extra latency during inference. Prompt-
based methods [19, 21, 43] enhance the input by appending new trainable tokens, which lengthens the
sequence and thereby increases the computational overhead during inference. Latency-less methods,
such as LoRA [14] and its variants [22, 27, 65], apply low-rank matrices to adapt the pretrained
weights. These matrices can be seamlessly integrated into the existing weight matrices following
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finetuning, thus preserving the original LLM architecture. Specifically, LoRA adapts an LLM as
W = W 0+∆W , where W 0 ∈ Rd1×d2 is the pretrained weight and ∆W = BA with B ∈ Rd1×r,
A ∈ Rr×d2 , r ≪ d1 and r ≪ d2. Our proposed method, RoAd, aligns with the latency-less category
and integrates effortlessly into the existing linear layer without imposing additional overhead during
inference. Moreover, RoAd demonstrates exceptional parameter efficiency. The quantity of its
trainable parameters is equivalent to that of a LoRA module with a rank r = 0.5.

Orthogonal finetuning. Drawing on the concept of hyperspherical energy and its role in characteriz-
ing generalization [28, 29], OFT [44] introduces orthogonal finetuning, an effective PEFT method
for finetuning text-to-image diffusion models. Specifically, OFT implements an orthogonal matrix
R ∈ Rd1×d1 to the pretrained weight W 0, so the input x ∈ Rd1 to a linear layer after adaptation be-
comes z = (RW 0)⊤x. R is parameter-efficient because it is a block-diagonal matrix with n blocks
as R = diag(R1, ...,Ri, ...,Rn), where each block Ri ∈ Rw×w has a dimension w = d1/n. To
maintain orthogonality, Ri is derived using Cayley parameterization: Ri = (I+Qi)(I−Qi)

−1 with
Qi ∈ Rw×w being a skew-symmetric matrix (Qi = −Q⊤

i ). In sum, {Qi}ni=1 serve as the trainable
parameters and R is constructed from them with Cayley parameterization. Subsequent advancement,
BOFT [30], leverages butterfly factorization to further refine OFT’s parameter efficiency. However,
both OFT and BOFT, due to their reliance on matrix inversions in the Cayley parameterization
and increased storage of intermediate activations, necessitate additional GPU memory and increase
training duration compared to other PEFT approaches. Conversely, RoAd, which may be considered
as a specialized case of OFT with w = 2, offers a faster and more memory-efficient solution by
inherently maintaining orthogonality without requiring further parameterization.

2.2 Batching

Batching in this context refers to processing multiple heterogeneous requests, each requiring different
adapters2 for inference. This scenario commonly arises when serving personalized or task-specific
LLMs. Specifically, we consider a setup where distinct adapters instead of a shared adapter are
finetuned for various tasks to achieve optimal performance. During inference, each request in a batch
pertains to a different task and necessitates a unique adapter.

Consider that we have finetuned distinct LoRA modules for b tasks, denoted as {Ai,Bi}bi=1. For a
batch of b requests represented as X ∈ Rb×l×d1 , where l is the maximum sequence length across
the requests, each request requires a different LoRA module. To exploit the parallel processing
capabilities of GPUs, the output Z of a linear layer can be computed as follows: First, the output
from the pretrained layer is computed as Z0 = torch.mm(X,W 0). Subsequently, the intermediate
output from the first low-rank matrix, B̂ ∈ Rb×d1×r (a concatenation of {Bi}bi=1), is obtained
as Z1

0 = torch.bmm(X, B̂). The output from the second low-rank matrix, Â ∈ Rb×r×d2 (a
concatenation of {Ai}bi=1), follows as Z1 = torch.bmm(Z1

0 , Â). Finally, these outputs are summed
to produce Z = Z0 +Z1. It is noteworthy that batch matrix multiplication (BMM), as implemented
in torch.bmm, often introduces substantial overhead [1], reducing throughput and increasing latency,
which adversely impacts user experience in time-sensitive applications.

In contrast, prompt-based methods circumvent the use of BMM by appending trainable tokens to each
request, simplifying the computational process. However, prompt-based methods with long prompt
tokens are difficult to optimize, which degrades performance compared to other PEFTs [14, 15].
(IA)3 [25] proposes adapting LLM by multiplying the output from a linear layer with a trainable
vector, involving only element-wise multiplication for efficient batching. A recent development,
FLoRA [58], builds on (IA)3 by employing two low-rank matrices while maintaining element-wise
operations. Although our proposed method, RoAd, requires BMM, its sparse structure allows a
reformulation of BMM and results in an overhead equivalent to element-wise multiplication.

2.3 Intervention and composability

Numerous studies [10, 11, 37, 38, 40] have provided support for the linear representation hypothesis
[35, 46, 49] that concepts are represented within linear subspaces of neural network representations.
To examine if a concept is captured within a linear subspace of a representation, Geiger et al. [11]

2Adapter here means the trained parameters since LoRA’s architecture is also similar to an adapter.

3



0.00 0.25 0.50 0.75
D

0.025

0.050

0.075

0.100

0.125

0.150

M

Full Finetuning

0.6 0.7 0.8 0.9
D

0.02

0.04

0.06

0.08

0.10

M

LoRA

RTE MRPC STS-B CoLA
Tasks

0

20

40

60

Sc
or

e

z = WTx
z = WTx, random
z=cos(W, x)
z = ||W|| ||x||

Figure 2: Pilot study for the pretrained and finetuned representations. Left & Middle: The change in
magnitude and angle of representations between pretrained and finetuned LLM using full finetuning or
LoRA. Right: The disentanglement experiment of magnitude and angle of pretrained representation.

suggests employing a distributed interchange intervention (DII) defined as:

DII(b, s,R) = b+R⊤(Rs−Rb) (1)

b denotes the hidden representation generated at row i and column k when the model processes an
input, while s represents the corresponding representation when the model processes a different
input. The matrix R ∈ Rr×d1 , consisting of orthogonal rows, serves as a low-rank projection matrix
where d1 is the dimension of the representation and r is the subspace dimension under intervention.
Equation (1) illustrates the application of a DII to b using a counterfactual source representation s.3

Drawing inspiration from this established framework, a recent study, LoReFT [61], introduces a
method for finetuning specific positions of the representations to adapt LLM. This study further
demonstrates that several prior approaches of representation editing [54, 60, 67] can be effectively
integrated within this framework. Interestingly, the application of RoAd to representations can
also be conceptualized as DII, offering interpretability potential. To demonstrate one aspect of
interpretability for RoAd, we primarily conduct a qualitative experiment focused on task composition.
This experiment involves combining the weights of models trained on distinct tasks to showcase the
capability for multitasking learning without the need for additional adaptation [16, 20, 61, 64, 66].

3 Method

In this section, we first perform two pilot studies to ascertain the key factor influencing the adaptation
of LLMs. Following this, we present our proposed method, the 2D rotary adaptation (RoAd), which
serves as an effective PEFT method addressing the various challenges outlined in Section §2.

3.1 Pilot study

Study 1: Variations in magnitude and angular displacement. Assume x0, x ∈ Rd1 are represen-
tations of the same token from a pretrained and finetuned LLM, respectively. We define the relative
change in magnitude as ∆M =

∣∣∥x∥2 − ∥x0∥2
∣∣ /∥x0∥2 and compute the angular displacement as

∆D = cos(x,x0) ∈ [−1, 1]. A larger ∆M and a smaller ∆D indicate more significant changes in
magnitude and angular displacement, respectively. Our study involves: (1) finetuning RoBERTa-base
[31] on the SST-2 task [50] using either full finetuning or LoRA; (2) extracting representations x0

and x from the output of the second-last Transformer block for the [CLS] token across all samples
in the development set, followed by computing ∆M and ∆D.4 As depicted in Figure 2 (Left and
Middle), there is a more pronounced change in ∆D than in ∆M for both full finetuning and LoRA.5

Study 2: Disentanglement of magnitude and angle. To ascertain whether angular or magnitude
adjustments are more critical for finetuning, we implement a disentanglement study. This involves
freezing RoBERTa-base and appending a two-layer classifier on top of it. The first layer of this

3We adopt notation systems from Wu et al. [61].
4Please refer to Figure B.1 for all layers.
5There are two other interesting observations: (1) An increase in magnitude change correlates with a larger

angular displacement; (2) Compared to LoRA, full finetuning has a bigger change in magnitude and angle (for
all layers, see Figure B.1), which is in line with a recent finding that LoRA learns less and forgets less [2].
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classifier incorporates a weight matrix W ∈ Rd1×d1 . Under standard operations, the output from
this layer is computed as z = W⊤x0. To distinctly evaluate the impacts of magnitude and angle, we
modify the output to retain only the magnitude component as zi = ∥W:,i∥2 · ∥x0∥2, or solely the
angular component as zi = cos(W:,i,x

0) (zi is the ith element of z). The modified classifier was
then finetuned on four GLUE tasks with different metrics detailed in Table C.1. Additionally, a weak
baseline employing a randomly initialized RoBERTa-base is included. As shown in Figure 2 (Right),
angular information is paramount in finetuning, whereas reliance solely on magnitude information
even leads to inferior results compared to the random backbone.

Both studies indicate that angular information is more crucial than magnitude information for
adapting a pretrained LLM to a downstream task. However, rotating the entire d1 dimensions of
the representation for finetuning incurs substantial computational costs. These costs are primarily
reflected in a large number of trainable parameters, necessitating a dense matrix R ∈ Rd1×d1 , and in
the requirement to maintain its orthogonality. Could we only rotate a subspace of the representation
and design a R that is always orthogonal without any parameterization as OFT [44]? The first idea
that comes to our mind is 2D rotation which only rotates two dimensions at a time and inherently
maintains orthogonality.

3.2 2D rotary adaptation
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Figure 3: Overview of RoAd1.

Suppose that W 0 ∈ Rd1×d2 is the pretrained weight of a linear layer,
x ∈ Rd1 is the input of a token to this linear layer, R ∈ Rd2×d2 is
the rotation matrix, the adapted output from the linear layer is z =
Rh = R(W 0⊤x). The rotation matrix R is defined as follows:

R = diag(R1,R2, ...,Rd2/2) with Ri =

[
cos θi − sin θi
sin θi cos θi

]
(2)

The trainable parameters are denoted as {θi}d2/2
i=1 . This 2D rotary

adaptation involves rotating pairs of adjacent dimensions of h, specif-
ically dimensions 2i− 1 and 2i, using the rotation matrix Ri.6 The
rotation matrix R is characterized by its parameter efficiency, which
is attributed to its sparse structure and the parameter sharing within each block Ri. Additionally, R
can be integrated directly into the existing pretrained weights, forming W = W 0R⊤, which does
not incur additional computational costs during inference. This design closely mirrors RoPE [51],
with the notable difference that in our RoAd, θi is trainable and Ri does not incorporate positional
information. The overview of RoAd is shown in Figure 3.

Relaxation to orthogonality. Referring to Figure 2 (Right), while reliance predominantly on angular
information substantially outperforms reliance on magnitude information, it remains less effective
than using both angular and magnitude information for the tasks of MRPC, STS-B, and CoLA.
Furthermore, both fully- and LoRA-finetuned LLMs exhibit slight adaptations in magnitude, as
depicted in Figure 2 (Left and Middle). Consequently, we modify Ri by incorporating αi to regulate
the magnitude. We define a general Ri as follows:

Ri =

[
αi,11 cos θi,11 −αi,12 sin θi,12
αi,21 sin θi,21 αi,22 cos θi,22

]
(3)

We develop three variants of RoAd by altering the configuration of shared parameters as outlined in
Table 1. RoAd1 introduces a minimal change to Equation (2) by incorporating a scaling factor αi.
RoAd1 already shows impressive results for most tasks in Section §4.1. For some knowledge-intensive
tasks, we observe that RoAd2 and RoAd4 obtain better results with more trainable parameters. To
preserve the starting point of LLMs [23], we always initialize αi = 1 and θi = 0.

Batching. In practice, we don’t need to save R as a sparse matrix and do matrix multiplication.
Taking RoAd1 as an example in Equation (4), we only save two vectors: R1 and R2. Then
z = Rh = R1 ⊗ h+R2 ⊗ ĥ, where ĥ is a rearranged version of h and ⊗ denotes element-wise
multiplication. This reformulation not only simplifies the representation of R but also enhances the
efficiency of batching in RoAd, relying solely on element-wise multiplications rather than BMM.

6The index in this work starts from 1 instead of 0.
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Table 1: A summarization of three RoAd variants.
RoAd? αi θi #Trainable

1 αi,11 = αi,12 = αi,21 = αi,22 = αi θi,11 = θi,12 = θi,21 = θi,22 = θi d2
2 αi,11 = αi,12 αi,21 = αi,22 θi,11 = θi,12 θi,21 = θi,22 2d2
4 αi,11 ̸= αi,12 ̸= αi,21 ̸= αi,22 θi,11 ̸= θi,12 ̸= θi,21 ̸= θi,22 4d2

z = Rh = R
1 ⊗ h + R

2 ⊗ ĥ

=



α1 cos θ1
α1 cos θ1
α2 cos θ2
α2 cos θ2

...
αd2/2 cos θd2/2

αd2/2 cos θd2/2


⊗



h1

h2

h3

h4

...
hd2−1

hd2


+



α1 sin θ1
α1 sin θ1
α2 sin θ2
α2 sin θ2

...
αd2/2 sin θd2/2

αd2/2 sin θd2/2


⊗



−h2

h1

−h4

h3

...
−hd2
hd2−1


(4)

Composability. RoAd can be incorporated into the DII framework as Φ(h) = Rh = h+R(h−
R⊤h), with Rs in Equation (1) being set to h. Although a degree of relaxation is introduced to the
orthogonality of R, it is important to note that the rows of R remain orthogonal to each other within
non-adjacent segments of the same block, Ri. This offers a possibility for composability. We can
finetune some rows on one task and other orthogonal rows on another task. Since they are orthogonal
to each other, these two tasks should minimally affect each other, and the combination of these rows
after finetuning could bring new multitasking learning ability.

RoAd can be considered as a special case of OFT [44] with w = 2. However, it is much more
parameter- and memory-efficient and faster. Please refer to Section §D.1 for a detailed discussion.

4 Experiments

In this section, we begin by implementing RoAd to finetune various LLMs across three benchmarks.
Subsequently, we illustrate its efficiency in batching processes and demonstrate its composability.
Unless otherwise noted, RoAd is applied to all linear layers within the LLMs. All of our experiments
are conducted on A100 80GB GPU with the frameworks, Transformers [59] and PEFT [34].

4.1 Results on downstream tasks

Natural language understanding (NLU). We evaluate the effectiveness of RoAd on the GLUE
benchmark [56] for its ability of NLU with RoBERTa [31] as the backbone. Unlike many previous
works [14, 22, 23, 31, 65] that employ the GLUE development sets for both validation and testing,
here we partition the development set into distinct validation and test subsets to mitigate the risk of
overfitting. For comprehensive information regarding the split of the development set, the search
space of hyperparameters, the optimal hyperparameter configurations, and other details crucial for
reproducibility, please see Section §C.1.

As shown in Table 2, RoAd1 outperforms all other PEFT methods with < 0.1% trainable parameters
for both sizes of RoBERTa on average, being the only PEFT method that matches or outperforms full
finetuning. These results show that 2D rotation (with a few scaling) can efficiently adapt LLM.

Commonsense reasoning. In assessing the capacity of LLaMA [52] for commonsense reasoning, we
focus on eight representative tasks: BoolQ [4], PIQA [3], SIQA [48], HellaSwag [63], WinoGrande
[47], ARC-e, ARC-c [5], and OBQA [36]. The setting here contrasts with the NLU experiments
where each task involves finetuning a separate LLM. Instead, we adopt a unified strategy by finetuning
a single LLM across all tasks as delineated in Hu et al. [15]. Such a setting is designed to mitigate
overfitting and aligns more closely with real-world applications. Specifically, the training and test
sets from these eight tasks are reformulated according to a predefined template, so all tasks can be
trained or evaluated in a generative way. For all finetuning experiments on LLaMA, we follow a
recipe in Table C.5 without extensive searching. Please see Section §C.2 for more training details.
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Table 2: Results on the held-out GLUE development set with RoBERTa as the backbone. We report
matched accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B and
accuracy for other tasks. The best and second-best results are in bold and underlined, respectively,
being the same for other tables. The percentage of trainable parameters is calculated without
considering the classifier head. RoAd1(fc1) means that we only insert the RoAd1 module to the first
feed-forward layer, to match the #Params. of RED and LoReFT. Results of methods denoted by ∗

and ⋄ are from Wu et al. [60] and Wu et al. [61], respectively. Otherwise, average results from three
random runs are reported. Refer to Table C.4 for the standard deviation.

Model Method #Params. RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg.

Full FT∗ 100.00% 78.3 87.9 90.6 62.4 94.4 92.5 91.7 87.3 85.6

Adapter∗ 0.32% 76.5 88.4 90.5 60.9 93.3 92.5 90.5 87.0 85.0
LoRA∗ 0.24% 75.3 88.7 90.3 59.7 93.9 92.6 90.4 86.6 84.7
AdapterFNN∗ 0.24% 77.7 88.8 90.4 58.5 93.0 92.0 90.2 87.1 84.7
BOFT 0.16% 71.4 87.5 89.6 55.3 92.5 91.4 89.4 85.3 82.8

base OFTw=2 0.10% 74.4 87.6 89.4 50.4 92.8 90.9 89.2 83.9 82.3
BitFit∗ 0.08% 69.8 88.0 89.5 54.0 94.0 91.0 87.3 84.7 82.3
(IA)3 0.04% 75.3 87.1 90.0 60.4 94.0 91.8 89.2 85.8 84.2
RED∗ 0.02% 78.0 89.2 90.4 61.0 93.9 90.7 87.2 83.9 84.3
LoReFT⋄ 0.02% 79.0 89.2 90.0 60.4 93.4 91.2 87.4 83.1 84.2

RoAd1 0.07% 78.9 89.2 90.5 64.4 93.9 91.9 89.6 86.3 85.6
RoAd1(fc1) 0.03% 79.1 90.2 90.2 60.9 94.6 91.6 88.7 85.4 85.1

Full FT∗ 100.00% 85.8 91.7 92.6 68.2 96.0 93.8 91.5 88.8 88.6

Adapter∗ 0.25% 85.3 90.5 91.5 65.4 95.2 94.6 91.4 90.1 88.0
LoRA∗ 0.23% 86.3 89.8 91.7 65.5 96.0 94.7 90.7 90.1 88.1

large AdapterFNN∗ 0.23% 84.8 90.5 90.2 64.4 96.1 94.3 91.3 90.3 87.7
RED∗ 0.01% 86.2 90.3 91.3 68.1 96.0 93.5 88.8 89.5 88.0
LoReFT⋄ 0.01% 87.5 90.1 91.6 68.0 96.2 94.1 88.5 89.2 88.2

RoAd1 0.06% 89.2 91.0 91.7 66.1 96.3 94.4 91.0 89.7 88.7
RoAd1(fc1) 0.03% 88.7 91.5 91.9 68.1 96.1 94.5 90.2 89.6 88.8

As shown in Table 3, RoAds still perform the best across various PEFT methods for both LLaMA-7B
and LLaMA-13B on average. The strong baseline to RoAd is a recent representation finetuning
method, LoReFT [61], 80.2 vs. 79.2 and 83.3 vs. 83.0 for RoAd1 for LLaMA-7B and LLaMA-13B,
respectively. With a slightly increasing number of trainable parameters from RoAd1 to RoAd2 or
RoAd4, RoAd matches or outperforms LoReFT. The same story is also told for another two versions
of LLaMA, i.e. LLaMA2 [53] and LLaMA3, in Table D.2.

Arithmetic reasoning. To assess the arithmetic reasoning ability of LLMs, we evaluate the finetuned
LLMs on the test sets of four tasks: AQuA [24], GSM8K [6], MAWPS [18] and SVAMP [41]. Similar
to the commonsense reasoning tasks, we finetune a single LLM for all four arithmetic reasoning
tasks. The training dataset is Math10K [15] which is constructed from the training sets of GSM8K,
MAWPS, MAWPS-single and AQuA. The training recipe is similar to the one used for commonsense
reasoning as shown in Table C.5. Please see Section §C.3 for more training details.

Different from the results of NLU and commonsense reasoning tasks, RoAd doesn’t always perform
the best on the arithmetic reasoning tasks, as shown in Figure 4. For the smaller-size LLM, LLaMA-
7B, RoAd is significantly better than other PEFT methods with < 0.1% trainable parameters, but
worse than LoRA and AdapterP with more than 10× trainable parameters. However, for the larger-
size LLM, LLaMA-13B, all RoAd variants are better than other PEFT methods, which shows its
scalability and potentially implies even better results for larger LLMs.

Table 5: Score on AlpacaEval2.0 with LLaMA2-7B.

Method #Params. Finetuning Data Win Rate (%)

LoRA 0.83% 10K cleaned Alpaca 61.55
LoReFT 0.03% 10K cleaned Alpaca 60.21
RoAd1 0.02% 10K cleaned Alpaca 62.64

LoReFT 0.03% UltraFeedback [7] 61.68
RoAd1 0.02% UltraFeedback 62.60

Observed from the above-mentioned results,
for enhanced performance on downstream
tasks and if a marginal increase in the stor-
age capacity for trained parameters is accept-
able, RoAd4 is the preferable option. Con-
versely, if the objective is to investigate how
the model adjusts in terms of angle and mag-
nitude, RoAd1 is recommended. Notably, all
variants of RoAd incur the same computational overhead for batching.
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Table 3: Accuracy of LLaMA on eight commonsense reasoning tasks. Results of methods denoted by
∗, ⋄ and ◦ are from [15], [61] and [27], respectively. Otherwise, average results from three random
runs are reported. Refer to Table C.6 for the standard deviation. Refer to Table D.2 for LLaMA2&3.

Model Method #Paras. BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

GPT3.5∗ - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

AdapterP∗ 3.54% 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3
AdapterS∗ 0.99% 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
DoRA◦ 0.84% 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1
LoRA∗ 0.83% 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
OFT 0.14% 69.0 82.0 78.5 90.9 78.9 83.0 68.2 76.4 78.4

7B Prefix∗ 0.04% 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
LoReFT⋄ 0.03% 69.3 84.4 80.3 93.1 84.2 83.2 68.2 78.9 80.2
(IA)3 0.02% 67.8 81.7 78.1 89.9 81.1 80.5 65.4 77.8 77.8

RoAd4 0.08% 70.6 83.2 79.0 92.3 81.8 84.2 70.6 80.0 80.2
RoAd2 0.04% 70.3 82.6 79.2 92.0 81.8 84.8 68.8 82.2 80.2
RoAd1 0.02% 70.4 81.9 79.0 91.4 80.3 84.0 68.7 77.8 79.2

AdapterP∗ 2.89% 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.5
AdapterS∗ 0.80% 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
DoRA◦ 0.68% 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
LoRA∗ 0.67% 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5

13B Prefix∗ 0.03% 65.3 75.4 72.1 55.2 68.6 79.5 62.9 68.0 68.4
LoReFT⋄ 0.03% 72.1 86.3 81.8 95.1 87.2 86.2 73.7 84.2 83.3

RoAd4 0.07% 73.2 85.5 82.4 94.5 86.3 86.8 74.6 86.0 83.7
RoAd2 0.03% 73.3 86.4 82.0 94.4 86.1 87.4 74.1 87.0 83.8
RoAd1 0.02% 72.2 85.1 81.2 94.1 84.4 86.6 73.7 86.6 83.0

Table 4: Accuracy of LLaMA on four arithmetic reasoning tasks. Results of methods denoted by ∗

and ⋄ are from [15] and [61], respectively. Refer to Table C.7 for the standard deviation.
Model Method #Params. AQuA GSM8K MAWPS SVAMP Avg.

AdapterP∗ 3.54% 18.1 35.3 82.4 49.6 46.4
AdapterS∗ 0.99% 15.0 33.3 77.7 52.3 44.6
LoRA∗ 0.83% 18.9 37.5 79.0 52.1 46.9
Prefix∗ 0.04% 14.2 24.4 63.4 38.1 35.0

7B LoReFT⋄ 0.03% 21.4 26.0 76.2 46.8 42.6
(IA)3 0.02% 19.7 28.8 76.9 48.5 43.5

RoAd4 0.08% 24.8 27.4 81.5 49.4 45.8
RoAd2 0.04% 26.8 29.9 78.6 49.3 46.2
RoAd1 0.02% 26.4 26.2 76.5 46.7 44.0

AdapterP∗ 2.89% 20.5 43.3 81.1 55.7 50.2
AdapterS∗ 0.80% 22.0 44.0 78.6 50.8 48.9
LoRA∗ 0.67% 18.5 47.5 83.6 54.6 51.1
Prefix∗ 0.03% 15.7 31.1 66.8 41.4 38.8

13B LoReFT⋄ 0.03% 23.6 38.1 82.4 54.2 49.6

RoAd4 0.07% 25.2 39.8 84.5 59.5 52.3
RoAd2 0.03% 26.0 40.6 84.0 58.3 52.2
RoAd1 0.02% 24.8 40.7 84.9 57.3 51.9

Instruction-following ability. We further benchmark RoAd using AlpacaEval2.0 [9]. We finetune
LLaMA2-7B with two instruction-tuning datasets and evaluate the model using AlpacaEval2.0. This
evaluation employs GPT-4 [39] to assess the responses generated by the finetuned model against
those produced by Text-davinci-003. We don’t choose GPT-4 as the reference model, because GPT-4
is too powerful than LLaMA2-7B. The proof-of-concept experiment with LoRA shows the win-rate
< 5%. As shown in Table 5, RoAd1 demonstrates superior performance compared to all baselines,
while utilizing the least number of trainable parameters.

Multimodal ability. Lastly, we apply RoAd to the LLM backbone of LLaVA [26]. Liu et al. [26]
requires 4.61% trainable parameters for LoRA on this task, while most tasks with LoRA in our
paper need < 1%, showing that this task is knowledge-intensive. Therefore, we need to scale RoAd’s
trainable parameters. For this purpose, we combine it with LoRA due to the limited number of θi and
αi in R. The combination is represented as z = (RW 0⊤ + (BA)⊤)x, where A and B are from
LoRA. We adjust the LoRA rank to vary the number of trainable parameters. We combine RoAd1
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Figure 4: Comparison of throughput between LoRA and RoAd. Left: The influence of weight
merging for LoRA. Middle: The influence of the number of generated tokens. Right: The influence
of the number of heterogeneous requests in a batch.

with LoRA, but not RoAd2 or RoAd4, as their primary design purpose is to increase the number of
trainable parameters.

Table 6: Visual instruction tuning results on LLaVA1.5-7B.

Method #Params. GQA SQA VQAT POPE Avg.

LoRA 4.61% 62.4 68.5 56.9 86.0 68.5
RoAd4 0.08% 60.0 66.9 53.3 85.5 66.4
RoAd1 + LoRA 1.19% 62.5 68.2 57.4 85.8 68.5

As shown in Table 6, with only
0.08% trainable parameters, RoAd4

already achieves 96.9% of the accu-
racy of LoRA with 4.61% trainable
parameters. By combining RoAd1

with LoRA, we achieve the same per-
formance as LoRA with only 1/4 of
its trainable parameters. This demonstrates RoAd’s excellent scalability when combined with LoRA.

4.2 Efficiency results for batching

We commence by highlighting the significance of weight merging for PEFT. Among the approaches
discussed in Section §4.1, only LoRA [14], DoRA [27], BOFT [30], OFT [44], BitFit [62], (IA)3 [25],
and our proposed RoAd enable the integration of trainable parameters with pretrained parameters
without incurring additional inference overhead. As an illustration, we consider LoRA both with
and without weight merging to underscore this process’s importance. Notably, the implementation
of LoRA with merged weights effectively reverts to the original LLM. To assess throughput, we
configure the system with a batch size of 1, generate 2048 tokens, and apply the LoRA modules across
all linear layers. Figure 4 (Left) clearly illustrates that the unmerged LoRA exhibits a significantly
smaller throughput compared to the merged LoRA. Additionally, it is evident that the throughput of
the unmerged LoRA demonstrates only a weak correlation with the rank size, primarily due to the
fact that the additional overhead is largely attributed to communication instead of computation.

Furthermore, to evaluate the throughput of batching, we establish a default batch size of 8, generate
2048 tokens, and set the LoRA rank to 8. Each request within the batch is heterogeneous, necessitating
eight distinct sets of trainable parameters by default. We only compare to LoRA here, because other
baselines have either a weaker performance on downstream tasks (BOFT, OFT, BitFit and (IA)3) or
a smaller throughput than LoRA for batching (DoRA). As shown in Figure 4 (Middle and Right),
RoAd significantly outperforms LoRA with variations in either the number of generated tokens or the
number of heterogeneous requests. With an increasing number of distinct requests, the gap between
LoRA and RoAd becomes even larger, which shows RoAd’s unique advantage in efficient serving

4.3 Qualitative results for composability

In our investigation of RoAd’s ability to handle compositional tasks, we primarily engage in multilin-
gual experiments similar to those conducted by Wu et al. [61]. We use two training datasets: a new
version of HellaSwag [63]7, which comprises 1K samples with prompts in English and completions
in German, and a 1K-sample subset of the Ultrafeedback [7] dataset, which focuses on instruction
following tasks in English. Contrary to the above experiments that adapt the outputs of the linear
layer, here we instead adapt the representations from the 16th block of LLaMA-7B, treating RoAd
as a DII method. Specifically, we only adapt/intervene the representation of the final token in the

7https://huggingface.co/datasets/LeoLM/HellaSwag_de
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LoReFT response for prompt: Do you know the conference NeurIPS?

German subspace: geht auf dem Bildschirm vorbei und zeigt die Konferenz. (Translation: passes by
on the screen and shows the conference.) ×
Instruction following subspace: NeurIPS (Neural Information Processing Systems) is an annual
conference on machine learning and computational neuroscience ... ✓
Combined subspaces: Es gibt eine Konferenz namens NeurIPS, die in der Vergangenheit stattgefunden
hat. (Translation: There is a conference called NeurIPS that took place in the past.) ×

RoAd response for prompt: Do you know the conference NeurIPS?

German subspace: Ich weiß nicht, ob ich es kenne. (Translation: I don’t know if I know it.) ×
Instruction following subspace: Yes, I do! It’s a great conference for machine learning researchers
and practitioners to share their work with each other. ✓
Combined subspaces: NeurIPS ist ein internationales Forschungskongress, der sich mit dem Thema
künstliche Intelligenz beschäftigt. (Translation: NeurIPS is an international research congress that deals
with the topic of artificial intelligence.) ✓

Figure 5: Qualitative comparison between RoAd and LoReFT for their composability. The prompt is
always in English for different subspaces. Refer to Figure D.1, D.2 and D.3 for more examples.

prompt using RoAd1. We train the upper half of R, i.e. {Ri}d2/4
i=1 , to handle the German completions

in HellaSwag, and another half to complete the English sentences in Ultrafeedback. Both tasks are
simultaneously trained but utilize distinct subspaces of R. We train the model over five epochs with
a learning rate of 5e− 3 and a batch size of 8.8

As in Figure 5, both LoReFT and RoAd are unable to perform completions with the German subspace.
This limitation is anticipated due to two primary reasons: (1) LLaMA-7B predominantly relies
on pretraining from English datasets, and doesn’t have a cross-lingual answering ability without
explicitly prompting. (2) The HellaSwag dataset is relatively small, containing only 1K samples with
limited comprehensive coverage. Despite these constraints, the German subspace effectively prompts
the model to produce sentences in German. Additionally, both methods achieve accurate completions
in the other half of the subspaces, attributed to LLaMA-7B’s extensive knowledge base in English.
When these two subspaces are combined, RoAd successfully leverages their strengths, facilitating
accurate sentence completions in German, while LoReFT doesn’t catch the purpose of the prompt.
We offer more examples, including negative examples, in Figure D.1, D.2 and D.3.

5 Conclusion

Initially, our research examines how finetuning modifies the representation of pretrained LLMs,
finding that angular adjustments are more significant than changes in magnitude scale. Leveraging
this insight, we propose a PEFT method, RoAd, which primarily utilizes a 2D rotational adjustment
to the representation. Despite its simplicity, RoAd exhibits several distinct advantages: (1) It is
exceptionally efficient in terms of parameters, consistently delivering superior performance on
downstream tasks with the fewest trainable parameters compared to other PEFT methods; (2) RoAd
efficiently supports batch processing, achieving twice the throughput of LoRA; (3) When incorporated
within an intervention framework, RoAd demonstrates remarkable composability.

Due to page limit, we discuss the limitations and broader impacts in Section §A and §B, respectively.

Acknowledgements

We thank eBay Inc. for the computation support. This research was funded in part by the Netherlands
Organization for Scientific Research (NWO) under project number VI.C.192.080.

8The experiment is based on this notebook https://github.com/stanfordnlp/pyreft/blob/main/
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Justification: Our work is not about theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include all implementation details either in the main pages or in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our work is based on public frameworks and data, which are shown correctly
in the paper and easy for access.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All such details are either in the main pages, Section 4, or in the appendix,
Section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show the standard deviation of the main results in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We show the GPU type and the memory in Section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly follow NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include the broader impact in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mainly used some publicly open framework, which is able to use for
research purpose. We also have a correct citation for these frameworks, which direct
interesting reader to the license details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t offer new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t use crowdsourcing or human evaluation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t include human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Limitations

We recognize that a primary limitation pertains to the scalability of RoAd. Currently, it is not
feasible to indefinitely increase the number of trainable parameters with RoAd. Nevertheless, our
experiments demonstrate that RoAd4 already exhibits commendable performance. To scale the
trainable parameters, we can combine RoAd with other PEFT methods, such as LoRA, which
enhances the scaling behavior of these PEFTs, i.e. achieving similar results with less trainable
parameters.

B Broader impacts

RoAd’s primary advantage is its efficiency in adapting LLMs to specific tasks with minimal trainable
parameters. This efficiency not only reduces computational resource needs but also makes advanced
AI technologies more accessible to organizations with limited resources, potentially democratizing
AI capabilities across smaller enterprises and educational institutions. By reducing the number of
trainable parameters and the computational load, RoAd likely decreases the energy consumption
associated with training and deploying LLMs. This could contribute to lowering the carbon footprint
of AI research and deployment, aligning with greater environmental sustainability efforts. The
ability to process multiple heterogeneous requests efficiently means that applications can provide
personalized, context-specific responses more quickly. This enhances the user experience in real-time
applications, such as digital assistants, automated service, and interactive educational platforms.

While RoAd improves interpretability in some aspects by integrating within frameworks like dis-
tributed interchange intervention [11], the overall complexity of the methods might still pose chal-
lenges in understanding and diagnosing the models’ decisions. This could affect efforts to make
AI more transparent and accountable, especially in critical applications like healthcare and law.
Increasing the accessibility of powerful AI models through PEFT also raises concerns about misuse.
More entities can harness these capabilities, potentially including those with malicious intents, such
as creating sophisticated disinformation campaigns or automating cyber attacks.

C Experimental details

C.1 Natural language understanding (NLU)

Table C.1: The data statistics and evaluation metrics of the GLUE benchmark. The valid and test sets
are randomly split from the original development set. Following Wu et al. [60], only the matched
development set of MNLI is used. For runs with different seeds, the samples in the valid and test sets
are also different.

Task RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI

#Train 2.6K 3.7K 5.7K 8.5K 67K 105K 364K 393K
#Valid 139 204 750 522 436 1K 1K 1K
#Test 138 204 750 521 436 4.5K 39K 8K

Metric Acc. Acc. Pearson Matthew Acc. Acc. Acc. Acc.

Test set split. Previous works [14, 22, 31] report the best results on the development sets of the GLUE
tasks, i.e. using the same set for both validation and test, which might cause overfitting. Instead, we
follow the setting of Mahabadi et al. [33] and Wu et al. [60], splitting the whole development set into
a validation set and a test set. The model with the best performance on the validation set is selected
to perform on the test set. Specifically, for the task with a development set whose number of samples
is larger than 2K, i.e. QNLI, QQP and MNLI, we randomly select 1K samples as the validation set
and the rest as the test set. For the other tasks, we select half of the samples in the development set as
the validation set and another half as the test set. Please refer to Table C.1 for more details.

Hyperparameter tuning. We mainly follow the hyperparameter search space of Liao et al. [22] and
list them in Table C.2. Notably, we almost upscale the learning rate by 10 for RoAd, because RoAd
prefers a larger learning rate than other PEFT methods, which is also observed from Liu et al. [25]
and Wen and Chaudhuri [57] where their adapters also apply multiplication instead of addition. The
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Table C.2: Hyperparameter search space for GLUE. For tasks with a large number of training samples,
we set the number of epochs as 10. Please refer to Table C.3 for the best task-specific settings.

Hyperparameters RTE, MRPC, STS-B, CoLA SST-2, QNLI, QQP, MNLI

Optimizer AdamW AdamW
Weight decay 0 0
LR {1e-3, 3e-3, 5e-3, 7e-3} {1e-3, 3e-3, 5e-3, 7e-3}
LR scheduler Linear Linear
Warmup ratio 0.1 0.1
Epochs {10, 20} 10
Batch size {16, 32} {16, 32}

Table C.3: Best hyperparameter settings for different GLUE tasks on RoBERTa. Notably, RoAd has
a very consistent recipe for different tasks. The low-resource tasks (RTE, MRPC, STS-B, CoLA) and
high-resource tasks (SST-2, QNLI, QQP, MNLI) show two obvious patterns for the hyperparameters.
If you have enough computation resources, we suggest alternating the batch size of low-resource
tasks (RTE, MRPC, STS-B, CoLA) in {16, 32} and the number of epochs in {10, 20}, since these
tasks have a relatively larger variance.

Model Hyperparameter RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI

LR 3e-3 3e-3 3e-3 3e-3 1e-3 1e-3 1e-3 1e-3
base Epochs 20 20 20 20 10 10 10 10

Batch size 32 32 32 32 16 16 16 16

LR 3e-3 3e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
large Epochs 20 20 20 20 10 10 10 10

Batch size 32 32 32 32 32 32 32 32

best hyperparameter settings for each task are listed in Table C.3. The training is conducted either
in Float16 or BFloat16. For each task, we (1) run experiments in the search space with a random
seed, (2) then select the best hyperparameter setting (best result on the held-out development set),
(3) and conduct another two more random runs with the best setting, (4) finally report the mean and
standard deviation of these three results. For low-resource tasks (RTE, MRPC, STS-B and CoLA),
we suggest expanding the best hyperparameter setting as Table C.3 for better reproduction. We report
the standard deviation of RoAd in Table C.4.

Baseline reproduction. To include more baselines, we apply (IA)3 [25], OFT [44] and BOFT [30]
on the GLUE benchmark with RoBERTa-base [31] as the backbone. We use the same search space
as RoAd in Table C.2 for (IA)3 since both RoAd and (IA)3 prefer a large learning rate. For OFTw=2

[44] and BOFTm=2
w=2 [30], we use the best hyperparameter settings from Liu et al. [30]. In addition,

we expand the search space of the learning rate with an interval of 2 at the same scale while keeping
the other best hyperparameters the same, since GLUE tasks have large variances. For example, if the
best learning rate from Liu et al. [30] is 5e-4, the learning rate search space is {3e-4, 5e-4, 7e-4}. If
the best learning rate is 2e-4, the search space is {9e-5, 2e-4, 4e-4}. For OFT, we don’t share any
parameters and use BOFTm=1

w=2 (= OFTw=2), because such a setting offers better results.

C.2 Commonsense reasoning

Datasets. Please refer to Hu et al. [15] for more details about the data statistics and task templates.

Hyperparameters. From Table C.3, it becomes apparent that one of the advantages of RoAd is
its uniform optimal hyperparameter configuration across various tasks. Furthermore, we believe
that extensive tuning of hyperparameters for LLMs is impractical. Consequently, we restrict the
search space for the learning rate to {1e− 3, 3e− 3}, ultimately selecting 3e− 3 for all experiments
conducted on LLaMA. Consistent with Table C.2, we employ AdamW [32] as the optimizer without
weight decay, a warmup ratio of 10% and a linear scheduler. Following Wu et al. [61], we fix the
number of epochs at six and the batch size at 32. These hyperparameters are detailed in Table C.5.
The maximum sequence length is set to 512. And the training is conducted either in BFloat16. We
evaluate each checkpoint saved at every epoch and report the optimal result. The standard deviation
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Table C.4: The standard deviation (subscript) of three random runs on the GLUE benchmark for
RoAd.

Model Method #Params. RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg.

base RoAd1 0.07% 78.91.2 89.20.4 90.50.4 64.40.8 93.90.6 91.90.1 89.60.1 86.30.2 85.6
RoAd1(fc1) 0.03% 79.12.1 90.21.1 90.20.2 60.91.2 94.60.7 91.60.2 88.70.0 85.40.1 85.1

large RoAd1 0.06% 89.20.6 91.01.2 91.70.1 66.10.5 96.30.4 94.40.0 91.00.0 89.70.2 88.7
RoAd1(fc1) 0.03% 88.71.2 91.51.2 91.90.2 68.11.1 96.10.6 94.50.1 90.20.1 89.60.1 88.8

from three random runs is presented in Table C.6. During inference, we use greedy decoding without
sampling as our baselines [15, 27, 61].

Table C.5: Hyperparameters for commonsense and arithmetic reasoning without extensive tuning.
Hyperparameters Commonsense reasoning Arithmetic reasoning

Optimizer AdamW AdamW
Weight decay 0 0
LR 3e-3 3e-3
LR scheduler Linear Linear
Warmup ratio 0.1 0.1
Epochs 6 12
Batch size 32 32

Table C.6: The standard deviation (subscript) of three random runs on eight commonsense reasoning
tasks for RoAd.

Model Method #Params. BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

RoAd4 0.08% 70.60.2 83.20.3 79.00.1 92.30.2 81.80.6 84.20.3 70.60.8 80.00.4 80.20.1
LLaMA-7B RoAd2 0.04% 70.30.4 82.60.4 79.20.4 92.00.1 81.80.7 84.80.3 68.80.3 82.21.0 80.20.0

RoAd1 0.02% 70.40.9 81.90.3 79.00.2 91.40.1 80.30.3 84.00.1 68.70.6 77.80.8 79.20.1

RoAd4 0.07% 73.20.5 85.50.5 82.40.2 94.50.1 86.30.3 86.80.3 74.60.3 86.00.2 83.70.0
LLaMA-13B RoAd2 0.03% 73.30.3 86.40.5 82.00.5 94.40.1 86.10.3 87.40.4 74.10.2 87.00.5 83.80.2

RoAd1 0.02% 72.20.3 85.10.0 81.20.2 94.10.0 84.40.5 86.60.4 73.70.2 86.61.0 83.00.2

Baseline reproduction. In Table 3, we replicate the results of two baselines, OFT [44] and (IA)3 [25].
For OFTw=16 (=BOFTm=1

w=16), we adopt the identical training configuration used for the mathematical
question-answering task as described in Liu et al. [30]. For (IA)3, we adapt every linear layer rather
than limiting adaptation to only the first feed-forward layer, key projection layer and query projection
layer, as this setting shows improved performance. Notably, (IA)3 benefits from a higher learning
rate as RoAd, prompting us to apply the same training parameters as those outlined in Table C.5.

C.3 Arithmetic reasoning

Datasets. Please refer to Hu et al. [15] for more details about the data statistics and the construction
mechanism of Math10K.

Hyperparameters. We apply almost the same training recipe as the one for commonsense reasoning,
except that we set the number of epochs as 12 by following Wu et al. [61]. The detailed parameters
are summarized in Table C.5. The maximum sequence length is set to 512. And the training is
conducted either in BFloat16. We evaluate each checkpoint saved at every epoch and report the
optimal result. The standard deviation from three random runs is presented in Table C.7. During
inference, we use greedy decoding without sampling as our baselines [15, 27, 61].

Baseline reproduction. In Table 4, we replicate the results of (IA)3 [25]. Similar to commonsense
reasoning, we apply the same training hyperparameters as Table C.5 for (IA)3.

25



Table C.7: The standard deviation (subscript) of three random runs on four arithmetic reasoning tasks
for RoAd.

Model Method #Params. AQuA GSM8K MAWPS SVAMP Avg.

RoAd4 0.08% 24.81.0 27.40.9 81.50.9 49.40.3 45.80.5
LLaMA-7B RoAd2 0.04% 26.82.8 29.90.6 78.61.2 49.30.6 46.20.6

RoAd1 0.02% 26.41.7 26.20.2 76.51.6 46.71.0 44.00.2

RoAd4 0.07% 25.23.1 39.80.5 84.51.5 59.50.7 52.30.3
LLaMA-13B RoAd2 0.03% 26.00.9 40.60.5 84.01.2 58.30.8 52.20.4

RoAd1 0.02% 24.81.0 40.70.9 84.90.9 57.30.2 51.90.2

Table D.1: Finetuning details of RoAds, OFT and BOFT on LLaMA-7B. The training setting here is:
batch size = 1, maximum sequence length = 512, number of iterations = 100, 1 A100 80GB GPU.

Method #Params. Peak GPU memory (GB) Training time (s)

OFTn=2048 0.09% 40 1249
OFTn=256 0.6% 37 191
BOFTm=2

w=8 0.3% OOM -
RoAd1 0.02% 23 25
RoAd2 0.04% 23 23
RoAd4 0.08% 23 24

D More results

D.1 Compare to OFT.

Table D.1 presents the finetuning specifics for RoAds, OFT [44], and BOFT [30]. In OFT, a critical
hyperparameter is defined as n = d1

w , meaning the number of blocks in R. Thus, configurations such
as OFTn=2048 and OFTn=256 correspond approximately to OFTw=2 and OFTw=16, respectively.
Increasing n, or equivalently reducing w, leads to a higher count of blocks. While a smaller w may
reduce the number of trainable parameters, it necessitates more frequent computations of matrix
inversion, consequently elevating both GPU memory usage and training time. Moreover, while
BOFT utilizes fewer trainable parameters than OFT and achieves comparable or superior outcomes, it
demands significantly more GPU memory. This increase is attributable to the butterfly factorization,
which requires extensive caching of intermediate activations.

RoAd can be viewed as a specific implementation of OFTw=2, but it consumes considerably less
GPU memory and shortens training time. This efficiency stems from the use of inherently orthogonal
2D rotation matrices in RoAd, which obviate the need for matrix inversion calculations.

D.2 Commonsense reasoning on LLaMA2 and LLaMA3

We also conduct experiments on LLaMA2-7B [53] and LLaMA3-8B in Table D.2. RoAds still
outperform all baselines with the least number of trainable parameters.

D.3 More examples for composability

In Figure D.1, D.2 and D.3, we show more examples of composability. Overall, RoAd demonstrates
a very good ability in composition, taking advantage of both subspaces.
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Table D.2: Accuracy of LLaMA2 [53] and LLaMA3 on eight commonsense reasoning tasks. Results
of methods denoted by ∗ are from Liu et al. [27].

Model Method #Params. BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

DoRA∗ 0.84% 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
LoRA∗ 0.83% 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6

LLaMA2-7B DoRA∗ 0.43% 72.0 83.1 79.9 89.1 83.0 84.5 71.0 81.2 80.5

RoAd4 0.08% 72.6 83.8 80.0 93.3 83.0 87.1 73.7 84.8 82.3
RoAd2 0.04% 73.0 83.9 80.2 93.2 83.0 86.5 74.4 83.0 82.2
RoAd1 0.02% 71.7 83.0 80.1 93.0 81.2 86.0 72.3 82.2 81.2

DoRA∗ 0.71% 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
LoRA∗ 0.70% 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8

LLaMA3-8B DoRA∗ 0.35% 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0

RoAd4 0.07% 74.4 89.8 81.1 96.2 87.8 92.9 83.0 86.8 86.5
RoAd2 0.03% 74.6 89.8 81.6 96.0 86.9 92.8 82.1 86.8 86.3
RoAd1 0.02% 73.5 89.0 81.4 96.0 87.6 92.9 82.4 87.2 86.3
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Figure B.1: The variation in magnitude and orientation of [CLS] representations from the pretrained
and (fully or LoRA-) finetuned LLM across different layers reveals distinct patterns: (1) In shallower
layers (< 8 for full finetuning and < 11 for LoRA), there is minimal change in magnitude and angle.
This minimal alteration occurs because these layers learn general knowledge that does not require
significant modification for specific downstream tasks. (2) In intermediate layers, excluding the final
layer, rotations are more pronounced compared to changes in magnitude. (3) In the last layer, both
magnitude and angle undergo substantial shifts, reflecting the stark differences between the objectives
of pretraining and finetuning. The representation in this layer is extensively modified to align with
the demands of the downstream task. Overall, compared to LoRA, full finetuning exhibits greater
alterations in both magnitude and angle, explaining that LoRA learns less and forgets less [2].
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LoReFT response for prompt: How to kill a linux process?

German subspace: Es gibt mehrere Möglichkeiten, ein Prozess zu beenden. ×
Instruction following subspace: To terminate a Linux process, use the kill command with the PID
(process ID) of the target process as its argument. The kill command can be ... ✓
Combined subspaces: Es gibt mehrere Möglichkeiten, ein Prozess zu beenden. ×

RoAd1 response for prompt: How to kill a linux process?

German subspace: Kill a Linux process with the command ‘kill -9 <pid>‘ where ‘<pid>‘ is the process
ID of the process you want to kill. (Explanation: This is not desired because of the response in English.)
×
Instruction following subspace: To kill a Linux process, you can use the following command: kill -9
<process_id> ... ✓
Combined subspaces: Mit der Kommandozeile ps -ef | grep | cut -d ’ ’ -f 1 | xargs kill -9 will ich den
Prozess mit dem PID töten. ✓

LoReFT response for prompt: How to learn English?

German subspace: Es gibt viele Möglichkeiten, Englisch zu lernen. ×
Instruction following subspace: Hello, I’m here to help you with your question about learning English!
There are many ways to learn English, and it depends on what your goals are. If you want to improve
your speaking skills ... ✓
Combined subspaces: Es gibt viele Möglichkeiten, Englisch zu lernen. ×

RoAd1 response for prompt: How to learn English?

German subspace: Lernen Sie Englisch! ×
Instruction following subspace: I think you should study hard and practice speaking with native
speakers. ✓
Combined subspaces: Jetzt lesen Sie einfach mal eine Geschichte in englischer Sprache und üben Sie
die Sprache mit Freunden oder Familie. ✓

LoReFT response for prompt: How can I pass an exam?

German subspace: , wenn du die Prüfung bestanden hast, wird sie dir gegeben. ×
Instruction following subspace: Hello, thank you for your question! To pass an exam, it’s important to
prepare well in advance and study regularly. Here are some tips on how to do this effectively: ... ✓
Combined subspaces: Das ist ein sehr guter Ratgeber für die Prüfung. ×

RoAd1 response for prompt: How can I pass an exam?

German subspace: Lernen Sie Deutsch! ×
Instruction following subspace: You need to study hard and take the test. ✓
Combined subspaces: Mit einem Blick ins Buch oder auf die Webseite des Lehrers ist es möglich, den
richtigen Weg zu finden. ✓

Figure D.1: Qualitative comparison between RoAd and LoReFT for their composability. The prompt
is always in English for different subspaces.
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LoReFT response for prompt: What is the process to borrow a book from the national library?

German subspace: Es gibt eine Reihe von Büchern, die man ausleihen kann. ×
Instruction following subspace: The process of borrowing a book from the National Library involves
several steps, including: ... ✓
Combined subspaces: Es gibt eine Reihe von Schritten, die man durchläuft, um ein Buch aus dem
Nationalbibliothek zu mieten. ×

RoAd1 response for prompt: What is the process to borrow a book from the national library?

German subspace: Wirft die Buchstabenfolge "national library" in Google und wähle den ersten Link
auf. Klicke auf "Borrowing books". Klicke auf die Schaltfläche "How do I borrow a book?" und folge
den Anweisungen. ✓
Instruction following subspace: The process to borrow a physical book from the National Library of
Australia (NLA) involves three steps: 1) visiting the NLA, 2) searching for the book ... ✓
Combined subspaces: Nachdem Sie sich im Nationalbibliothek-Bibliothekssystem eingeloggt haben,
können sie die Bücher ausleihen. ✓

LoReFT response for prompt: Should I learn Python or C++?

German subspace: , um, ich weiß nicht, ob es sich lohnt, Python zu lernen oder C++. ×
Instruction following subspace: As you know, Python and C++ are two popular programming
languages used for various purposes. Both have their own advantages and disadvantages ... ✓
Combined subspaces: , um, ich weiß nicht, ob es sich lohnt, Python zu lernen oder nicht.) ×

RoAd1 response for prompt: Should I learn Python or C++?

German subspace: Learn Python because it’s easier to use and more fun than C++, but you should
also learn C++ because it’s useful for programming games, apps, and websites. (Explanation: This is
not desired because of the response in English.) ×
Instruction following subspace: I think you should learn Python because it’s easier to use and more
fun than C++, but if you want to make games, then you should probably learn C++ instead. ✓
Combined subspaces: Mitglied, wie Sie wissen, dass es viele Programmiersprachen gibt, die sich
unterscheiden in der Art und Weise, wie sie Code geschrieben werden. Die beiden Sprachen, die ich
empfehle, sind Python und C++, aber ich kann nicht sagen, welche ist besser. not sure

LoReFT response for prompt: How to write a good paper?

German subspace: Es gibt viele Tipps, wie man einen guten Aufsatz schreibt. ×
Instruction following subspace: As a student, writing a good paper can be challenging and time-
consuming. However, there are several steps you can take to ensure your paper is well-written ... ✓
Combined subspaces: Es gibt viele Tipps, wie man einen guten Aufsatz schreibt. ×

RoAd1 response for prompt: How to write a good paper?

German subspace: schreibe einen guten Aufsatz ×
Instruction following subspace: A good paper should be well-written, with clear and concise language.
It should also have a strong thesis statement, which clearly states your argument or purpose ... ✓
Combined subspaces: Mitbringt, dass das Papier einen guten Titel hat und die Autoren sind auf dem
neuesten Stand der Dinge. ✓

Figure D.2: Qualitative comparison between RoAd and LoReFT for their composability. The prompt
is always in English for different subspaces.
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LoReFT response for prompt: Which app do you recommend for taxi?

German subspace: , um Taxi-App gibt es viele und sie sind alle gut. ×
Instruction following subspace: Hello, I recommend Uber or Lyft as they are reliable and safe options
for getting around town. ✓
Combined subspaces: Es gibt viele Apps, die Taxifahrer bieten. Ich würde empfehlen, dass Sie den
Taxi-App von Uber verwenden. ✓

RoAd1 response for prompt: Which app do you recommend for taxi?

German subspace: Would like to use Uber, because it’s convenient and fast. (Explanation: This is not
desired because of the response in English.) ×
Instruction following subspace: I recommend Uber because it’s cheaper and more convenient than
other apps. ✓
Combined subspaces: Nachdem Sie sicher sind, dass die Uber-App ist nicht verfügbar in Ihrer Stadt,
können Sie auch den Taxify-Dienst nutzen. ✓

LoReFT response for prompt: How can I find a part-time job? I’m a college student and poor.

German subspace: Sie können sich mit dem Jobsuchdienst von Facebook verbinden, um eine Anzeige
zu posten. ✓
Instruction following subspace: Hello, I’m happy to help you with your question! There are several
ways to find part-time jobs as a college student. Here are some options: ... ✓
Combined subspaces: Du kannst auf Jobbörsen nachstellen, die sich auf Teilzeitjobs spezialisiert
haben. ✓

RoAd1 response for prompt: How can I find a part-time job? I’m a college student and poor.

German subspace: Suche ich nach einem Teilzeitjob. Ich bin Student und arbeitslos. ×
Instruction following subspace: You should look for a part-time position in your field of study or one
that you are interested in learning about. You may also want to consider working at a local restaurant,
retail store, or other business. ✓
Combined subspaces: Siehe dir nach, ob es in der Nähe einen Jobcenter gibt. ✓

Figure D.3: Qualitative comparison between RoAd and LoReFT for their composability. The prompt
is always in English for different subspaces.
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