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Abstract

Many applications in computational sciences and statistical inference require the
computation of expectations with respect to complex high-dimensional distributions
with unknown normalization constants, as well as the estimation of these constants.
Here we develop a method to perform these calculations based on generating
samples from a simple base distribution, transporting them by the flow generated
by a velocity field, and performing averages along these flowlines. This non-
equilibrium importance sampling (NEIS) strategy is straightforward to implement
and can be used for calculations with arbitrary target distributions. On the theory
side, we discuss how to tailor the velocity field to the target and establish general
conditions under which the proposed estimator is a perfect estimator with zero-
variance. We also draw connections between NEIS and approaches based on
mapping a base distribution onto a target via a transport map. On the computational
side, we show how to use deep learning to represent the velocity field by a neural
network and train it towards the zero variance optimum. These results are illustrated
numerically on benchmark examples (with dimension up to 10), where after training
the velocity field, the variance of the NEIS estimator is reduced by up to 6 orders
of magnitude than that of a vanilla estimator. We also compare the performances
of NEIS with those of Neal’s annealed importance sampling (AIS).

1 Introduction

Given a potential function U1 : Ω → R on the domain Ω ⊆ Rd, the main goal of this paper is to
evaluate

Z1 :=

∫
Ω

e−U1(x) dx. (1)

The calculations of such integrals arise in many applications from several scientific fields. For instance,
Z1 is known as the partition function in statistical physics [21], where it is used to characterize the
thermodynamic properties of a system with energy U1, and as the evidence in Bayesian statistics,
where it is used for model selection [12].

When the dimension d of the domain Ω is large, standard numerical quadrature methods are inappli-
cable to (1) and the method of choice to estimate Z1 is Monte-Carlo sampling [22, 8]. This requires
expressing Z1 as an expectation, which can be done, e.g., by realizing that

Z1 = E0

[
e−U1/ρ0

]
, (2)
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where E0 denotes the expectation with respect to the probability density function ρ0 > 0. If ρ0 is
both known (i.e., we can evaluate it pointwise in Ω, normalization factor included) and simple to
sample from, we can build an estimator for Z1 by replacing the expectation on the right hand side
of (2) by the empirical average of e−U1/ρ0 over samples drawn from ρ0. Unfortunately, finding a
density ρ0 that has the two properties above is hard: unless ρ0 is well-adapted to e−U1 , the estimator
based on (2) is terrible in general, with a standard deviation that is typically much larger than its mean
or even infinite. A similar issue arises if we want to estimate the expectation E0f of some function
f : Ω → R, and the two problems are in fact connected when f > 0, since the second reduces to (2)
for U1 = − log(fρ0).

These difficulties have prompted the development of importance sampling strategies [14] whose aim
is to produce estimators with a reasonably low variance for Z1 or E0f . These include for example
umbrella sampling [43, 41], replica exchange (aka parallel tempering) [14, 23], nested sampling [37,
38], in which the estimation of Z1 is factorized into the calculation of several expectations of the
type (2), but with better properties, that can then be recombined using thermodynamic integration [17]
or Bennett acceptance ratio method [6].

Complementary to these equilibrium techniques, non-equilibrium sampling strategies have also been
introduced for the calculation of (1). For example, Neal’s annealed importance sampling (AIS) [26]
based on the Jarzynski equality [15, 16, 1] calculates Z1 using properly weighted averages over
sequences of states evolving from samples from ρ0, without requiring that the kernel used to generate
these states be in detailed-balance with respect to either ρ0, or ρ1 := e−U1/Z1, or any density
interpolating between these two. Instead, the weight factors are based on the probability distribution
of the sequence of states in the path space. Other non-equilibrium sampling strategies in this vein
include bridge and path sampling [13], and sequential Monte Carlo (SMC) sampling [24, 2].

In this paper, we analyze another non-equilibrium importance sampling (NEIS) method, originally
introduced in [33]. NEIS is based on generating samples from a simple base density ρ0, then
propagating them forward and backward in time along the flowlines of a velocity field, and computing
averages along these trajectories—the basic idea of the method is to use the flow induced by this
velocity field to sweep samples from ρ0 through regions in Ω that contribute most to the expectation.
As shown in [33] and recalled below, this procedure leads to consistent estimators for the calculation
of Z1 or E0f via a generalization of (2). One advantage of the method, which is a rare feature among
importance sampling strategies, is that it leads to estimators that always have lower variance than
the vanilla estimator based on (2) [33]. The question we investigate in this paper is how low their
variance can be made, both in theory and in practice. Our main contributions are:

• Under mild assumptions on U1 and ρ0, we show that if the NEIS velocity field is the gradient of a
potential that satisfies a Poisson equation, the NEIS estimator for Z1 has zero variance.

• Under the same assumptions, we show that this optimal flow can be used to construct a perfect
transport map from ρ0 to ρ1. This allows us to compare NEIS with importance sampling strategies
involving transport maps like normalizing flows (NF) that have recently gained popularity [32, 19,
30], and highlight some potential advantages of the former over the latter.

• On the practical side, we derive variational problems for the optimal velocity field in NEIS, and
show how to solve these problems by approximating the velocity by a neural network and optimizing
its parameters using deep learning training strategies, similar to what is done with neural ODE [9].

• We illustrate the feasibility and usefulness of this approach by testing it on numerical examples.
First we consider Gaussian mixtures in up to 10 dimensions. In this context, we show that training
the velocity used in NEIS allows to reduce the variance of a vanilla estimator using a standard
Gaussian distribution as ρ0 by up to 6 orders of magnitude. Second we study Neal’s 10-dimensional
funnel distribution [27, 2], for which the variance of the vanilla importance sampling method
is infinity; training a linear dynamics with 2 parameters in NEIS can lead to an estimator with
more accurate estimate of Z1. In these examples we also show that after training, NEIS leads to
estimators with lower variance than AIS [26].

Related works. The idea of transporting samples from ρ0 to lower the variance of the vanilla
estimator based on (2) is also at the core of importance sampling strategies using normalizing flows
(NF) [40, 39, 32, 19, 30, 46, 45, 29, 25]. The type of transport used in NF-based method is however
different in nature from the one used in NEIS. With NF, one tries to construct a map that transforms
each sample from ρ0 into a sample from the target ρ1 = e−U1/Z1. In contrast, NEIS uses samples
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from ρ0 as initial conditions to generate trajectories, and uses the data along these entire trajectories
to build an estimator. Intuitively, this means that samples likely on ρ0 must become likely on ρ1
sometime along these trajectories rather than at a given time specified beforehand, which is easier to
enforce.

NEIS bears similarities with Neal’s AIS [26], except that in NEIS the sampling is done once from
ρ0 to generate deterministic trajectories to gather data for the estimator, whereas AIS uses random
trajectories. There are some methods based on AIS that optimize the transition kernel: for instance,
stochastic normalizing flows (SNF) proposed in [46] incorporate NF between annealing steps; and
annealed flow transport (AFT) in [2] combines NF with the sequential Monte Carlo method to
provide optimized flow transport. These approaches require learning several maps along the annealed
transition, whereas the NEIS herein only needs to learn a single flow dynamics.

A time-discrete version of NEIS, termed NEO, was proposed in [42]. The current implementation
of NEO iterates on a map that needs to be prescribed beforehand, but this map could perhaps be
optimized using a strategy similar to the one proposed here.

From a practical standpoint, the idea of optimizing the velocity field in NEIS using a neural network
approximation for this field can be viewed as an application of neural ODEs [9] that uses the variance
of the NEIS estimator as the objective function to minimize. The nature of this objective poses
specific challenges in the training procedure, which we investigate here.

Notations. For symmetry, we denote ρ0(x) = e−U0(x) with U0 = − log ρ0 : Ω → R and
Z0 =

∫
Ω
e−U0(x) dx = 1. We denote a d-dimensional vector filled with zeros as 0d and the d× d

identity matrix as Id. ⟨·, ·⟩ is the Euclidean inner product in Rd. We assume that the domain Ω is
either an open and connected subset of Rd with smooth boundary or a d-dimensional torus (without
boundary). We denote by N (µ,Σ) the multivariate Gaussian density with mean µ and covariance
matrix Σ. For two functions f, g : D → R where D is a domain of interest, the notation f ≲ g means
that there exists a constant C > 0 such that f(x) ≤ Cg(x) for any x ∈ D. Suppose T : Ω → Rd

is a map and ρ is a distribution, then the pushforward distribution of ρ by the map T is denoted as
T#ρ. The notation |·| is the usual ℓ2 norm for vectors and ∥·∥ is the matrix norm or functional norm.

2 Flow-based NEIS method

Here we recall the main ingredients of the non-equilibrium importance sampling (NEIS) method
proposed in [33]. Let b : Ω → Rd be a velocity field which we assume belongs to the vector space

B :=
{
b ∈ C∞(Ω,Rd

) ∣∣∣ b · n|∂Ω = 0, sup
x∈Ω

|∇b(x)| <∞
}
, (3)

where n is the normal vector at the boundary ∂Ω. Define the associated flow map Xt : Ω → Ω via

d

dt
Xt(x) = b (Xt(x)) , X0(x) = x, (4)

and let Jt(x) be the Jacobian of this map:

Jt(x) := |det (∇xXt(x))| ≡ exp

(∫ t

0

∇ · b (Xs(x)) ds

)
. (5)

Finally, let us denote

F (k)
t (x) := e−Uk(Xt(x))Jt(x) (6)

for k ∈ {0, 1}, x ∈ Ω and t ∈ R. NEIS is based on the following result, proven in Appendix B.1:
Proposition 2.1. If b ∈ B, then for any −∞ < t− < t+ <∞, we have

Z1 = E0At−,t+ , (7)

where

At−,t+(x) :=

∫ t+

t−

F (1)
t (x)∫ t−t−

t−t+
F (0)

s (x) ds
dt. (8)
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Figure 1: Contour plot of V and flowlines of b = ∇V , where V solves the Poisson’s equation (11)
with D = 1, assuming that ρ0 = 1 and ρ1 is a mixture density with 3 modes; see (54). With this
b = ∇V , we have A(x) = Z1 for almost all x ∈ [0, 1]2.

In addition, if

lim
t−→ −∞
t+→∞

At−,t+(x) = A(x) :=

∫
R F (1)

t (x) dt∫
R F (0)

t (x) dt
(9)

exists for almost all x ∼ ρ0, then
Z1 = E0A. (10)

When b = 0d, or t− ↑ 0 and t+ ↓ 0, (7) reduces to (2). The aim, however, is to choose b so that the
estimator based on (7) has a lower variance than the one based (2): we will show below that this can
indeed be done. For now, note that Jensen’s inequality implies that an estimator based on (10) for
any b has lower variance than the one based (2); see [33] or Proposition H.3 below for details.

Note also that, if one allows the magnitude of the flow b to be arbitrarily large, the finite-time NEIS
(8) will behave like the infinite-time NEIS (9); such a relation will be discussed and elaborated in
Appendix B.4.

Finally, note that the estimator (10) based on (9) is invariant with respect to the parameterization of
the flowlines generated by the dynamics b, as shown by the following result proved in Appendix B.2:
Proposition 2.2 (An invariance property). Suppose b, αb ∈ B, where α ∈ C∞(Ω,R) satisfies
infx∈Ω α(x) > 0. Then the fields b and αb generate the same flowlines, and Ab = Aαb where Ab

and Aαb are the function defined in (9) using b and αb, respectively.

3 Optimal NEIS

The NEIS estimator for (10) is unbiased no matter what b is. However, its performance relies on
the choice of b. Therefore, a natural question is to find the field b that achieves the largest variance
reduction. The next result shows that an optimal b exists that leads to a zero-variance estimator:
Proposition 3.1 (Existence of zero-variance dynamics). Assume that Ω = [0, 1]d is a torus and
U0, U1 ∈ C∞(Ω,R). Let D : Ω → (0,∞) be some smooth positive function with infx∈Ω D(x) > 0,
and suppose that V ∈ C∞(Ω) solves the following Poisson’s equation on Ω

∇ · (D∇V ) = ρ1 − ρ0, with
∫
Ω

V (x) dx = 0. (11)

If the solution V is a Morse function, then b = ∇V is a zero-variance velocity field: that is, if we use
it to define (9), we have∫

R
ρ0(Xs(x))Js(x) ds =

∫
R
ρ1(Xs(x))Js(x) ds, for almost all x ∼ ρ0, (12)
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and as a result
A(x) = Z1 for almost all x ∼ ρ0. (13)

This proposition is proven in Appendix E, where we also make a connection between (11) and
Beckmann’s transportation problem. We stress that the optimal b specified in Proposition 3.1 is
not unique (see Proposition E.9): however, we show below in Proposition 4.1 that, under certain
conditions, all local minima of the variance (viewed as a functional of b) are global minima. We also
note that the assumption that the solution is a Morse function is mostly a technicality, as discussed in
Appendix E.3. Similarly, we consider the torus in Proposition 3.1 for simplicity mainly; we expect
that the proposition will hold in general when Ω has compact closure or even when Ω = Rd, see
Appendix E for examples including that of Gaussian mixture distributions.

For illustration, the contour plot of V and the flowlines of b = ∇V are shown in Figure 1 in a simple
example in a two-dimensional torus where ρ0 = 1 and ρ1 is a mixture density with 3 modes; their
explicit expressions are given in (54); in this example, we solved (11) numerically with D = 1, see
Appendix E.5 for more details. Some other examples where the zero-variance dynamics is explicit
are discussed in Appendix F.

Connection to transport maps and normalizing flows. The zero-variance dynamics provides a
transport map T from ρ0 to ρ1, as shown in:
Proposition 3.2 (Existence of a perfect generator). Suppose D = 1 for simplicity. Under the
same assumption as in Proposition 3.1, let V be the Morse function solving (11) and b = ∇V
the associated zero-variance dynamics. Then there exists a continuously differentiable function κ
(defined almost everywhere on Ω) such that∫ 0

−∞
ρ0(Xs(x))Js(x) ds =

∫ κ(x)

−∞
ρ1(Xs(x))Js(x) ds. (14)

Furthermore, the map T (x) := Xκ(x)(x) is a transport map from ρ0 to ρ1, i.e., T#ρ0 = ρ1.

The proof is given in Appendix G.1. Note that we consider again b = ∇V on the torus for technical
simplicity: the statement of the proposition should hold in general for a zero-variance dynamics
b. The solution of (14) is particularly simple in one-dimension, where we can take b(x) = 1, and
straightforwardly verify that κ(x) = T (x)− x with

T (x) = F−1
1 (F0(x)) where Fi(x) =

∫ x

−∞
ρi(y) dy, i = 0, 1. (15)

We also illustrate the statement of Proposition 3.2 via numerical examples in Appendix G.2.

To avoid confusion, we stress that we will not use the transport map T of Proposition 3.2 in the
examples below. Indeed, using this map would require identifying κ, which introduces an unnecessary
additional calculation which we can avoid using the NEIS estimator directly. In addition, the NEIS
estimator will likely have better properties than those based on transport maps, as we can think of
NEIS as using a time-parameterized family of transport maps rather than a single one. In particular,
the variance of the NEIS estimator will be small if samples likely on ρ0 become likely on ρ1 sometime
along the NEIS trajectories, rather than at the same fixed time for all samples. The former seems easier
to fulfill than the latter. For example, in one-dimension, the NEIS estimator has zero variance for any
b bounded away from zero, whereas building a transport map from ρ0 to ρ1 is already nontrivial in
that simple case since it requires solving (15).

4 Variational formulations

The Poisson equation (11) admits a variational formulation:

min
V

∫
Ω

1
2 |∇V |2D + V (ρ1 − ρ0). (16)

If D is chosen to be a probability density function (for example D = ρ0 or D = 1
2 (ρ1 + ρ0)), the

two terms in the objective in (16) are expectations which can be estimated via sampling (using, e.g.,
direct sampling for the expectation with respect to ρ0 and NEIS for the one with respect to ρ1). This
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means that we can in principle use an MCMC estimator of (16) as empirical loss, and minimize it
over all V in some parametric class. Here however, we will follow a different strategy that allows us
to directly parametrize b instead of V (i.e., relax the requirement that b = ∇V ) and simply use the
variance of the estimator as objective function.

Specifically, since we quantify the performance of the estimators based on (7) and (10) by their
variance, we can view these quantities as functionals of b that we wish to minimize. Since the
estimators are unbiased, these objectives are

Vart−,t+(b) = Mt−,t+(b)−Z2
1 , (finite-time);

Var(b) = M(b)−Z2
1 , (infinite-time),

(17)

where we defined the second moments Mt−,t+(b) := E0

[
|At−,t+ |2

]
and M(b) := E0

[
|A|2

]
. With

the finite-time objective, we know that with b = 0d, (7) reduces to (2). Therefore, minimizing
Mt−,t+(b) over b by gradient descent starting from b near 0d will necessarily produce a better
estimator: while we cannot guarantee that the variance of this optimized estimator will be zero, the
experiments conducted below indicate that it can be a several order of magnitude below that of the
vanilla estimator.

For the infinite-time objective, we know that for any b, (9) leads to an estimator with a lower variance
than the one based on (2) [33]. Minimizing Var(b) over b using gradient descent leads to a local
minimum; the next result shows that all such local minima are global:
Proposition 4.1 (Global minimum). Under some technical assumptions listed in Proposition H.1,
if b∗ ∈ B is a local minimum of Var(·) where the functional derivative of Var(b) with respect to b
vanishes, i.e., δVar(b∗)/δb = 0d on Ω, then b∗ is a global minimum and Var(b∗) = 0.

The expression of the functional derivative δVar(b∗)/δb is given in Proposition D.1. The technical
assumptions under which Proposition 4.1 holds are explained in Appendix A and the proof is given
in Appendix H.

5 Training towards the optimal b

Here we discuss how to use deep learning techniques to find the optimal b; these techniques will be
illustrated on numerical examples in Section 6. Some technical details are deferred to Appendix I.

Objective. We use the finite-time objective Mt−,t+(b) in (7) with t− ∈ [−1, 0], t+ = t− +1. Two
natural choices are t− = 0 and t− = −1/2, which will be used below in the numerical experiments.
This leads to no loss of generality a priori since in the training scheme we put no restriction on the
magnitude that b can reach, and with large b the flow line can travel a large distance even during
t ∈ [−1, 1] (the range of integration in s, t in (8)); see the discussion in Appendix B.4 for more
details. In practice, we use a time-discretized version of (8) with 2Nt discretization points, and
use the standard Runge-Kutta scheme of order 4 (RK4) to integrate the ODE (4) over t ∈ [−1, 1]
using uniform time step (∆t = 1/Nt). We note that this numerical discretization introduces a bias.
However, this bias can be systematically controlled by changing the time step or using higher order
integrators. In our experiments, we observed that the RK4 integrator led to negligible errors, see
Table 5.

Neural architecture. In our experiments, we either parameterize b by a neural network directly, or
we assume that b is a gradient field,

b = ∇V (gradient form),

and parameterize the potential V by a neural network. We always use an ℓ-layer neural network with
width m for all inner layers; therefore, from now on, we simply refer the neural network structure
by a pair (ℓ,m); see Appendix I.2 for more details. When we parametrize the potential function V
instead of b, the only difference is that the output dimension of the neural network becomes 1 instead
of d. The activation function is chosen as the softplus function (a smooth version of ReLU) that gave
better empirical results compared to the sigmoid function. At initialization the neural parameters were
randomly generated. Theoretical results about the gradient of Mt−,t+(b) with respect to parameters
are given in Appendix C and corresponding numerical implementations are explained in Appendix I.
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Direct training method. We minimize Mt−,t+(b) with respect to the parameters in the neural
network using stochastic gradient descent (SGD) in which we evaluate the loss and its gradient
empirically using mini-batches of data drawn from ρ0 at every iteration step. For simplicity, we
choose ρ0 as the standard Gaussian in Section 6 below.

Assisted training method. When local minima of U1 are far away from the local minimum of
U0, the direct training method by sampling data from ρ0 and minimizing Mt−,t+(b) fails, because
the flowlines may not reach the importance region of ρ1 due to poor initializations of b. More
specifically, if along almost all trajectories, e−U1(Xs(x)) ≈ 0 for s ∈ [−1, 1], then with large
probability At−,t+(x) ≈ 0 where x ∼ ρ0; as a result, the empirical variance of the estimator can be
extremely small if the number of samples is small, while the true variance could be extremely large.
Such a mode collapse phenomenon is common in rare event simulations.

To get around this difficulty, recall that ideally we would like to find a dynamics b such that A is
approximately a constant function in the infinite-time case. That is, if b is a zero-variance dynamics,
then A is a constant function and Ep

[
(A − (EpA)2)

]
= 0 for any distribution p, and we are not

constrained to use the base distribution ρ0 and minimize the functional b 7→ Var(b) in (17). Motivated
by this idea, we use an assisted training scheme in which, at iteration i of SGD, the loss function is

Epi

[(
At−,t+ − Epi

At−,t+

)2]
. (18)

Here Epi
denotes expectation with respect to the probability density pi defined as

pi = (1− ci)ρ0 + ciZ#ρ0, ci = max
{
c− i

c

υL
, 0
}
, (19)

where υ ∈ (0, 1) controls the number of steps during which the training is assisted, c ∈ (0, 1),
L is the total number of training steps, and Z := Zt=1 is the time-1 map of the ODE Żt(x) =
−ς∇U1

(
Zt(x)

)
with Zt=0(x) = x and ς > 0 is a parameter. In essence, using (18) means that, for

the first υL training steps, there is a probability ci that the data x ∼ ρ0 are replaced by Z(x), so that
the training method can better explore important regions near local minima of U1. Subsequently,
the assistance is turned off so that some subtle adjustment can be made. If some samples from
ρ1 = e−U1/Z1 were available beforehand, we could equivalently replace Z#ρ0 in (19) by the
empirical distribution over these samples. We emphasize that the assisted training method is only
used to guide the training initially and the NEIS estimator for Z1 is unbiased.

6 Numerical experiments

We consider three benchmark examples to illustrate the effectiveness of NEIS assisted with training.
The first two examples involve Gaussian mixtures, for which we use NEIS with t− = 0; the third
example is Neal’s funnel distribution, for which we use NEIS with t− = −1/2. In all examples,
we compare the performance of NEIS with those of annealed importance sampling (AIS) [26]; the
number of transition steps in AIS is denoted as K and we refer to this method as AIS-K below;
for more details see Appendix I.1. For the comparison, we choose to record the query costs to U1

and ∇U1 as the measurement of computational complexity, which connects to the framework in the
theory of information complexity (see e.g., [28]). The runtime could depend on coding, machine
condition, etc., whereas query complexity more or less only depends on the computational problem
(U0, U1 and b) itself; for most examples of interest, U0 is simple whereas U1 and its derivatives will
be expensive to compute; as a remark, ∇U1 is almost always more expensive to compute than U1.

For simplicity, we always use as base density ρ0(x) = (2π)−d/2e−
1
2 |x|

2

. We remark that a better
choice of ρ0 (i.e., more adapted to ρ1) can significantly improve the sampling performance; our ρ0
is precisely used to validate the performance of NEIS in situations where ρ0 is not well chosen. It
would be interesting to study how to adapt the choice of ρ0 for easier training in NEIS, but this is left
for future investigations.

When presenting results, we rescale the estimates so that the exact value is Z1 = 1 for all examples.
More implementation details about training are deferred to Appendix I.2. All trainings and estimates
of Z1 are conducted on a laptop with CPU i7-12700H; we use 15 threads at maximum. The runtime of
training ranges approximately between 45 ∼ 76 seconds for Gaussian mixture (2D), 9.5∼12 minutes
for Gaussian mixture (10D); for the Funnel distribution (10D), the runtime is around 25 minutes
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for a generic linear ansatz and around 2 minutes for a two-parametric ansatz. Appendix J includes
additional figures about training. When computing the gradient of the variance with respect to
parameters, we use an integration-based method when t− = −1/2 (for the convenience of numerical
implementation) and use an ODE-based method when t− = 0 (for higher accuracy); details about
these two approximation methods are given in Appendix I.3 and Appendix I.4 respectively. The
codes are accessible on https://github.com/yucaoyc/NEIS.

An asymmetric 2-mode Gaussian mixture in 2D. As a first illustration, we consider an asymmetric
2-mode Gaussian mixture

e−U1 ∝ 1

5
N (λe1, σ

2
1Id) +

4

5
N (−λe2, σ2

1Id), (20)

where e1 = [ 10 ], e2 = [ 01 ], σ1 =
√
0.1, λ = 5. With this choice of parameters, the variance of the

vanilla estimator based on (2) is approximately 1.85× 106. We use NEIS with t− = 0 and set the
time step to ∆t = 1/50 for ODE discretization during both training and estimation of Z1. We train
over L = 50 SGD steps using the loss (18) by imposing bias in the first 60% of the training period
only (i.e., with υ = 0.6). The evolution of the variance during the training is shown in Figure 7
in Appendix; the best optimized flow has a variance of about 1, as opposed to 106 for the vanilla
estimator. Since pi in (19) is quite different from ρ0 during the assisted learning period, it may happen
that the empirical variance significantly exceeds the variance of the vanilla importance sampling;
this does not contradict with Proposition H.3 below. As seen in Figure 7, at the end of the assisted
period, the variance is already quite small and in most cases, the variance continues to reduce as b
gets further optimized.

After training, we estimate Z1 using NEIS with the optimized flow and compare its performance with
AIS-10 and AIS-100. We first record the query cost for training and then set a total number of queries
to U1,∇U1 as budgets. Given the query budget, we estimate Z1 using each method 10 times, leading
to the results given in Table 5 below. When we determine the estimation cost of NEIS, we deduct the
query cost of training from the total query budget for fairer comparison. Note that NEIS uses less
queries to produce more accurate estimate of Z1: in particular, the standard deviation of estimating
Z1 by NEIS method is around 1 magnitude smaller than AIS-100. Moreover, the bias from ODE
discretization appears to be negligible. Figure 2 shows an optimized flow and also provides a visual
comparison of NEIS with AIS under fixed query budget; more comparisons using various ansatzes or
architectures can be found in Figures 11 and 12.

A symmetric 4-mode Gaussian mixture in 10D. Next we consider a symmetric 4-mode Gaussian
mixture in d = 10 dimension with

e−U1(x) ∝
4∑

i=1

N (µi,Σ), (21)

where the vector µi = [ λ cos( iπ
2 ) λ sin( iπ

2 ) 0 0 ··· 0 ] and Σ = Diag[ σ2
1 σ2

1 σ2
2 σ2

2 ··· σ2
2 ] is a diagonal

matrix. The parameters are d = 10, σ1 =
√
0.1, σ2 =

√
0.5 and λ = 5. With this choice of

parameters, the variance of the vanilla estimator based on (2) is approximately 2.15× 106. We use
NEIS with t− = 0 and the time step ∆t = 1/60 is used for ODE discretization during both training
and estimation of Z1. We show the training result in Figure 8. The variance reduces to about 10
after 60 SGD steps for the gradient ansatz (here we only considered this ansatz as it produces more
promising empirical results).

Similar to the last example, we compare NEIS using the optimized b with AIS, under fixed query
budgets; see Table 5. The best result from NEIS has an estimator with the standard deviation less than
1/3 of the one from AIS-100. This comparison suggests that AIS-100 needs more than 9 times more
resources than NEIS with optimized flow in order to achieve similar precision and the cost spent on
training indeed pays off if we require an accurate estimate of Z1 (meaning less fluctuation for Monte
Carlo estimates). Moreover, this table also shows that the bias from ODE discretization is negligible.

Figure 2 shows a particular optimized flow: as can be seen, the mass near the origin flows towards
four local minima of U1, as we would intuitively expect. More optimized flows and comparisons can
be found in Figure 13 in Appendix.

8

https://github.com/yucaoyc/NEIS


tr
ia

l =
 1

(a) Asymmetric Gaussian mixture (2D): gradient ansatz, ℓ = 2, m = 20
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(b) Symmetric Gaussian mixture (10D): gradient ansatz, ℓ = 2, m = 30
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(c) Funnel distribution (10D): generic linear ansatz
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(d) Funnel distribution (10D): two-parametric ansatz

Figure 2: Selective comparison results for various models. Left panels: estimates of Z1 by AIS and
NEIS with optimized flow under the fixed query budget shown above the panels; we repeat these
calculations 10 times and show boxplots of these 10 estimates for each method. The trial number
refers to the index for randomly chosen initialization. The query numbers refer to the queries used
for each estimate of Z1 for each method; 1MB = 106. The dashed red lines show the exact value
Z1 = 1. Right panels: streamlines of optimized flows atop the contours of U1, both projected into the
x1-x2 plane for the two 10D examples. Full comparison and figures can be found in Figures 11,12,13,
and 14 in Appendix.
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A funnel distribution in 10D. We consider the following 10D funnel distribution studied in [2, 27]:
for the state x = [x1, x2, . . . , x10] ∈ R10,

x1 ∼ N (0, 9), xi ∼ N (0, ex1), 2 ≤ i ≤ d.

For numerical stability, we consider the above funnel distribution restricted to a unit ball centered at
the origin with radius 25. Instead of heuristically parameterizing the dynamics via neural-networks,
we consider a generic linear ansatz and a two-parametric linear ansatz:

b(x) =W1x+ b1, W1 ∈ R10×10, b1 ∈ R10, (22a)
b(x) = −[β, αx2, αx3, . . . , αx10], α, β ∈ R. (22b)

The generic linear ansatz can be regarded as a neural network without inner layers. With (22a), we
drawn the entries in the matrix W1 randomly and we set b1 = 010 initially, and we use the assisted
training method; with (22b), we set α = β = 2 initially, and we use the direct training method. In
both cases, we choose the finite-NEIS scheme with t− = −1/2. We notice that the asymmetric
choice t− = 0 can also leads into more optimal dynamics, but its performance is not as competitive
as the symmetric case t− = −1/2. It is very likely that such a difference is due to the structure of
funnel distribution: each coordinate xi (1 ≤ i ≤ 10) has mean 0 and therefore, a symmetric version
can probably better weight the contribution from both forward and backward flowlines.

The training results are shown in Figures 9 and 10 in Appendix. In Figure 10, we can observe that both
error and variance are overall decreasing during the training and the parameters α, β tend to increase
with a similar speed. We use the same protocol as in the two previous examples to compare NEIS
with AIS. As can be observed in Table 5, the two-parametric ansatz (22b) gives the best estimate;
the generic linear ansatz (22a) is not as competitive as the two-parametric ansatz (probably due to
over-parameterization), but it still outperforms the AIS-100, under fixed query budget. Figure 2
shows these optimized flows; more results can be found in Figure 14 in Appendix. The apparent gap
between estimates and the ground truth in Figure 2 (or see Table 5) comes from insufficient sample
size.

7 Conclusion and outlook

In this work, we revisited the NEIS strategy proposed in [33] and analyzed its capabilities, both
from theoretical and computational standpoints. Regarding the former, we showed that NEIS leads
to a zero-variance estimator for a velocity field b = ∇V with a potential V that satisfies a certain
Poisson equation with the difference between the target and the base density as source. Moreover,
a zero-variance dynamics can be used to construct a transport map from ρ0 to ρ1. In turn, we
highlighted the connection and difference between NEIS and importance sampling strategies based
on the normalizing flows (NF).

On the computational side, we showed that the variance of the NEIS estimator can be used as
objective function to train the velocity field b. This training procedure can be performed in practice by
approximating the velocity field by a neural network, and optimizing the parameters in this network
using SGD, similar to what is done in the context of neural ODE but with a different objective. Our
numerical experiments showed that this strategy is effective and can lower the variance of a vanilla
estimator for Z1 by several orders of magnitude.

While the numerical examples we used in the present paper are somewhat academic, the results
suggest that NEIS has potential in more realistic settings. In order to explore other applications, it
would be interesting to investigate how to best parametrize b (e.g., less parameters and non-stiff
energy landscape with respect to these parameters) and how to best initiate the training procedure. It
would also be interesting to ask whether we can improve the performance of NEIS by optimizing
certain parameters in the base density ρ0 in concert with b. The answers to these questions are
probably model specific and are left for future work.
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