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Abstract

Interpretability researchers have attempted to
understand MLP neurons of language models
based on both the contexts in which they acti-
vate and their output weight vectors. They have
paid little attention to a complementary aspect:
the interactions between input and output. For
example, when neurons detect a direction in
the input, they might add much the same direc-
tion to the residual stream (“‘enrichment neu-
rons”) or reduce its presence (“depletion neu-
rons”). We address this aspect by examining
the cosine similarity between input and output
weights of a neuron. We apply our method to
12 models and find that enrichment neurons
dominate in early-middle layers whereas later
layers tend more towards depletion. To explain
this finding, we argue that enrichment neurons
are largely responsible for enriching concept
representations, one of the first steps of fac-
tual recall. Our input-output perspective is a
complement to activation-dependent analyses
and to approaches that treat input and output
separately.

1 Introduction

Despite recent progress in interpretability, there is
still much that is unclear about how transformer-based
(Vaswani et al., 2017) large language models (LLMs)
achieve their impressive performance. Prior work has
addressed the interpretation of MLP sublayers, and we
follow this line of research. Some of this work analyzes
neurons based only on the contexts in which they acti-
vate (Voita et al., 2024) or based only on their output
weights1 (Gurnee et al., 2024). In contrast, we put the
input-output (IO) functionality of neurons in the center
of our analysis, and classify neurons according to the in-
teractions between input and output weights. We focus
on gated activation functions (Shazeer, 2020), which are
used in recent LLMs like OLMo, Llama and Gemma.
Theoretical framework. Following Elhage et al.
(2021), our view of the Transformer architecture is cen-
tered on the residual (a.k.a. skip) connections between
sublayers: they form the residual stream, and the indi-
vidual units (such as MLP neurons) progressively up-
date it, until it is multiplied by the unembedding matrix

'We use “weight” to refer to a weight vector, not a scalar.
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Figure 1: Median of cos(wiy, weu ) by layer (x-axis) for
12 models. For all models, the value is positive in the
beginning and negative in the end, indicating that early-
middle layers “enrich” the residual stream whereas later
layers tend more towards depletion.

Wy to produce next-token logits. The information con-
tained in the residual stream is represented as a high-
dimensional vector (of dimension dpege1). Individual
model units read from the residual stream and then up-
date it by writing (adding) other vectors to it. In the case
of an MLP neuron, it detects certain directions in the
residual stream (i.e., whether the current residual stream
vector at least approximately points in one of these di-
rections in model space), corresponding to its weight
vectors on the input side; and then writes to a certain
direction, corresponding to its output weight vector.

A semantic intepretation is that a neuron detects a
concept in the residual stream (for example, an inter-
mediate guess about the next token), and in turn also
writes a concept. This semantic interpretation is not a
necessary assumption for our neuron classification, but
is helpful for building intuition and interpreting results.

Theoretical contribution. These theoretical reflec-
tions naturally lead to our research question: What is
the relationship between what a neuron reads and
what it writes? We address this question by comput-
ing the cosine similarity of input and output weights,
focusing on gated activation functions.

Specifically, with gated activation functions, each
neuron has three weight vectors: the linear input, gate,
and output weight vectors. When the output weight
is similar enough to (one of) the detected directions,
we speak of input manipulation, as opposed to or-
thogonal output neurons which write to directions not
detected in the input. Intuitively, input manipulator neu-
rons manipulate the concept that they detect. As special
cases of input manipulation, we define enrichment and
depletion neurons — neurons that detect a direction and
then add it to / remove it from the residual stream. We



present a complete taxonomy of neuron IO functionali-
ties in Section 4. See Figure 2 for a visualization.

Empirical study. We apply our method to 12 LLMs.
We find that, for all of these models, a large proportion
of neurons are input manipulators. In particular, we find
that enrichment neurons dominate in early-middle layers
of all models whereas later layers tend more towards
depletion. See Figure 1.

We also present examples for the six major 1O func-
tionalities. We find that many neurons have the property
of double checking: The two reading weight vectors
(Wgaie and wy,) are approximately orthogonal, but still
intuitively represent the same concept.

Explaining the results. Our finding of different IO
functionalities in different layers echoes the “stages of
inference” framework (Lad et al., 2024). We hypoth-
esize a correspondence: enrichment neurons may be
responsible for “feature engineering” and depletion neu-
rons for “residual sharpening”.

We also provide a theoretical account of the dou-
ble checking phenomenon. The usefulness of double
checking explains the fact that many neurons have ap-
proximately orthogonal gate and input weights.

Contributions. (i) We develop a parameter-based
(and therefore efficient) method to investigate neuron 10
functionalities for gated activation functions (Section 4).
(i1) Across 12 models, we find that enrichment neurons
dominate in early-middle layers of all models whereas
later layers tend more towards depletion (Figure 1). (iii)
We define two novel concepts helpful in understanding
neuron functionality: input manipulation and double
checking. (iv) We find that many neurons are input ma-
nipulators (Section 5), which makes our classification
scheme useful for understanding them. (v) We present
examples for the six major IO functionalities, showing
how the IO perspective complements other neuron anal-
ysis methods (Section 6). (vi) We propose theoretical
explanations for some of these results (Section 7).

2 Related Work

There is a large body of work on interpretability of
transformer-based LLMs. Elhage et al. (2021) introduce
the notion of residual stream. nostalgebraist (2020), Bel-
rose et al. (2023) propose to interpret residual stream
states as intermediate guesses about the next token;
Rushing and Nanda (2024) discuss this as the iterative
inference hypothesis. On a similar note, many works
hypothesize that directions in model space can corre-
spond to concepts; Park et al. (2024) discuss this as the
linear representation hypothesis. Lad et al. (2024) de-
fine stages of inference. Geva et al. (2023) explain how
LLMs recall facts; a crucial early step is representation
enrichment, which may be related to our enrichment
neurons (see Section 7.4). Similar to our work, Elhelo
and Geva (2024) investigate input-output functionality
of heads (instead of neurons).

Much research has attempted to understand individual
neurons. Geva et al. (2021) present them as a key-value

memory. Other neuron analysis work includes (Miller
and Neo, 2023; Niu et al., 2024). The focus on individ-
ual neurons has been criticized. Morcos et al. (2018)
find that in good models, neurons are not monoseman-
tic (but for image models, not LLMs). Millidge and
Black (2022) compute a singular value decomposition
(SVD) of layer weights and often find interpretable di-
rections that do not correspond to individual neurons.
Elhage et al. (2022) argue that interpretable features are
non-orthogonal directions in model space and can be
superposed. This corresponds to sparse linear combi-
nations of neurons in MLP space. Taking the middle
ground, Gurnee et al. (2023) argue that interpretable
features correspond to sparse combinations of neurons,
but this includes 1-sparse combinations, i.e., individual
neurons.

Several works classify neurons based on the contexts
in which they activate (Voita et al., 2024; Gurnee et al.,
2024). For example, Voita et al. (2024) find roken de-
tectors that suppress repetitions. Gurnee et al. (2024)
also define functional roles of neurons based on their
output weight vector, such as suppression neurons that
suppress a specific set of tokens. They note that suppres-
sion neurons seem to activate “when it is plausible but
not certain that the next token is from the relevant set”.
Stolfo et al. (2024) also investigate some output-based
neuron classes.

Researchers have paid less attention to the input-
output perspective. Gurnee et al. (2024) compute cosine
similarities between input and output weights for GPT-2
(Radford et al., 2019), but do not interpret their results.
Elhage et al. (2022) mention the idea of input-output
analysis (negative cosines between input and output
weights “may also be mechanisms for conditionally
deleting information”, footnote 7), but do not follow up
on this remark. Note also that input-output analysis for
gated activation functions adds complexity because, in
addition to input and output weight vectors, the gating
mechanism is crucial for IO functionality.

3 Gated activation functions

In our neuron classification we assume gated activation
functions like SWiGLU or GeGLU (Shazeer, 2020). In
this section, we describe definition (Section 3.1) and
properties (Section 3.2) of these functions. Gated acti-
vation functions are used widely, e.g., OLMo (Groen-
eveld et al., 2024) and Llama (Touvron et al., 2023) use
SwiGLU, and Gemma (Gemma, 2024) uses GeGLU.

The following description focuses on SwiGLU.
GeGLU replaces Swish with GeLU, but is otherwise
identical. For a visualization of a SwiGLU neuron, see
Figure 6 in Section E.

3.1 Definitions

To keep our description simple, we ignore bias terms and
layer norm parameters. (Some models, like OLMo, lack
these anyway.) We describe single neurons as opposed
to whole MLP layers.
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Figure 2: We define six input-output functionality
classes or IO classes of gated activation neurons based
on collinearity and orthogonality of their linear input,
gate and output weight vectors. For example, depletion
neurons remove the direction of the gate vector from the
residual stream. Examples shown are prototypical.

We denote by x4 the state of the residual stream
before the MLP, and by Znorm := LN(Zmiq) its layer nor-
malization. We say that a direction v € R? is present
(positively) in a vector z € R?if z - v > 0.

Traditional activation functions like ReLU take a sin-
gle scalar as argument: ReLU(xi,). In contrast, a gated
activation function like SwiGLU takes two arguments:

SWIGLU(Zgate, Tin) = SWish(Zgae) - Tin-

To compute the scalars gy and xi,, €ach neuron has
a linear input weight vector w;, and a gate weight
VECtOr Wgqre Of dimension dmoder. We refer to these two
weight vectors as the reading weights. Then xg.e is
defined as Wgate * Tnorm» and Zin aS Win * Tnorm-

Finally, the product of SWiGLU(Z g, Zin) and the
output weight vector, wyy , is added to the residual
stream.

3.2 Properties

There are three properties of gated activation functions
that are key for understanding IO functionality.

Positive vs negative activation. Strong activations
can be either positive or negative. If Wgae - Tnorm > 0
and wiy - Tnorm > 0, the activation is strongly positive.
If Weate * Tnorm > 0 and Wiy - Tporm <K 0, the activation
is strongly negative. So, depending on the context, a
given gated activation neuron can either add the output
weight vector to the residual stream or subtract it.

Negative values of Swish. Swish and GeLU are often
seen as essentially ReL.U. However, we found clearly
different cases (see Section 6). Wgare * Tnorm Can be
weakly negative, i.e., negative but close to zero. In this
case its image under Swish is also weakly negative. This
leads to a negative activation if wj, is present positively
and positive otherwise.

Symmetry. Switching the signs of both wj, and woy
preserves 10 behavior.

4 Method

We now describe how we investigate input-output func-
tionalities of gated neurons, based on their weights only.

4.1 Intuition

As arunning example, we consider what a neuron would
do to a residual stream state representing the next-token
prediction review.

Before we introduce our method, let us consider a
simpler case to develop our intuition: non-gated activa-
tion functions like ReLLU (see also Gurnee et al. (2024)).
Here, a neuron detects just one direction, determined
by its input weight wy, (say review). (Given Zpom, the
activation depends only on X, - Win, and is positive
whenever this is positive.) Roughly, we can distinguish
three cases: the neuron output (determined by wqy¢) can
be similar to the input direction (in our case, review:
we call this enrichment), different (we call this orthog-
onal output), or roughly opposite (in our case, “minus
review”: we call this depletion). In terms of weights,
these cases correspond to cos(wi,, Woy) being close to
1, close to O, or close to -1.

Note that a neuron could also detect “minus review’
(i.e., “review is not the next token”), and enrich or de-
plete that direction.

>

4.2 Extension to gated activation functions

In this paper, we consider gated activation functions.
Here, a neuron detects two directions (Wgae and wyy),
not one; so there are more cases to consider. Luckily,
the symmetry property (see Section 3.2) simplifies the
analysis: a neuron’s behavior does not change if we
switch the signs of both wi, and wyy. This implies that
the sign of cos(Weare, Wour) does not matter.

Accordingly, we define six IO classes, depending
on cos(Win, Wey) (three rows: positive, negative, or
zero) and |cos(Wgate, Wour)| (two columns: positive or
zero). Although there is a third cosine similarity —
€08 (Wgaie; Win) — this similarity is determined by the
two others in prototypical cases. We will consider these
prototypical cases first.

4.3 Prototypical cases

See Table 1 for an overview of all cases and Figure 2
for a visualization. We also encourage the use of the
interactive visualization in supplementary.

For the prototypical cases we assume the cosines are
~ 1, = —1 or = 0. In these cases, knowing two of
the cosine similarities implies knowing the third one: If
Weate and wyy, are collinear, then wy has the same cosine
similarity with both (up to sign). Conversely, if Wgae
and wy, are orthogonal, wy,, cannot be collinear to both,
and in fact, cos(Weate;s Wour) 2 +€08(Win, Wou ) < 1, with
equality when wey is in the space spanned by wgy and
Wip -

We first focus on on textbfenrichment and depletion:
cos(Win, Wout) & £1. The gate vector can be collinear
as well, i.e., cos(Wgate, Wour) = £1 (leftmost “typical”
column). In this case, all three vectors are approximately
in a one-dimensional subspace, so the neuron detects
one direction and writes to the same direction, up to sign.
The sign is relevant: Assume 2, represents the token



| cos(Weate; Wour)| > 0 08 (Weates Wour) ~ 0
COS(U)im wout)
>0 enrichment conditional enrichment
| cos(wgate, win)| > 0 | cos(wgae, win)| = 0 | cos(wgate, win)| &= 0 | cos(weae; win)| > 0
typical atypical typical atypical
<0 depletion conditional depletion
| cos(wgae, win)| > 0 | cos(wgate, win)| = 0 | cos(wgate, win)| = 0 | cos(Wygae, win)| > 0
typical atypical typical atypical
~0 proportional change orthogonal output
| cos(wgate, win)| = 0 | cos(wgae, win)| > 0
typical atypical

Table 1: Our six IO classes, in boldface. Five of them have “atypical” variants. We use a threshold of 0.5 (resp.

-0.5) to distinguish cos() ~ 0 from | cos()| > 0.

review and wg,ee detects that direction, so that the neuron
activates. If cos(win, Wout) = 1 (Win, Woy also lie in the
review subspace, and both have the same orientation),
the neuron will again write review. We call this (typical)
enrichment. On the other hand, if cos(win, Wou) =& —1
(they again lie in the review subspace but have different
orientations), the neuron will write “minus review”. We
call this (typical) depletion.> The same neurons can
also get a weak negative activation if —wgye (“minus
review”) is weakly present in the residual stream. In this
case, Swish has a negative value (Section 3.2) and the
enrichment neuron writes “plus review” to the residual
stream and the depletion neuron “minus review”.

Next we consider conditional enrichment and con-
ditional depletion: w;, and w,, are roughly collinear
and W is orthogonal to them. Consider the exam-
ple that wi,, wey correspond to the review direction and
Weate t0 “verb expected as next token”. The neuron will
only activate conditional on wgu, being present in the
residual stream (here: verb expected). If wj, (“plus”
or “minus” review) is also present in the residual stream,
then +wgy (“plus” or “minus” review) will be added
to the residual stream. For this scenario, we define a
(typical) conditional enrichment neuron as one with
cos(Win, Wou) = 1; this neuron will enrich the residual
stream with wy, if wyy, is present and with —wyy, if —wjy,
is present (“plus” review leads to more of “plus” review,
and “minus” review leads to more of “minus” review).
Conversely, we define a (typical) conditional deple-
tion neuron as one that depletes +wy, (Whichever was
present) from the residual stream: “plus” review leads
to “minus” review and vice versa. As before, if —wgae
is weakly present in the residual stream (there is a weak
expectation that the next token is not a verb), Swish
yields a negative value; so in this situation conditional
enrichment and depletion neurons switch their behav-
iors; e.g., for a conditional enrichment neuron “plus”
review will lead to “minus” review.

Turning to the bottom part of Table 1, we define a
(typical) proportional change neuron as one whose

>We prefer these terms to alternatives like increase / reduc-
tion because in practice output directions will not be exactly
the same as the reading directions. See Section 7.4.

Wout 18 in the same one-dimensional subspace as Wgate,
but is orthogonal to wj,. (This implies that wg,. and
wi, are orthogonal.) Take the case where wgye, Wout)
are represent review and wj, “verb expected”. If wgye
(review) is present in the residual stream, then the neuron
writes a positive or negative multiple of review to the
residual stream. This multiple is proportional to the
presence of wi, (“verb expected”) in the residual stream:
If a verb is expected, the neuron writes review, if not, it
writes “minus review”.

All of the above neuron types are input manipula-
tors: they write to one of the directions they detect. Our
final category is the negation of this: We define an or-
thogonal output neuron as one whose output weight
vector is orthogonal to both reading weight vectors. If
Weare and wj, are also orthogonal to each other, then
such a neuron defines an interaction of three completely
different meaning components.

4.4 General case: Typical vs atypical functions

Many cosines will not be close to 0 or £1. For example,
such a neuron may write a concept different from but
semantically related to the one it detects (say, Ireland ->
Dublin) and thus be be similar to an enrichment neuron
in terms of weight vector geometry.

For this general case, this paper explores three options
to understand neuron IO functionalities at different lev-
els of granularity: (1) Classify neurons according to the
closest prototypical case. (2) Plot the marginal distribu-
tions of the three cosine similarities. (3) Place neurons
in a plot analogous to Figure 2, based on their three
weight cosines.

For (1), we need two refinements. (i) We need a
threshold 7 for counting a cosine similarity as clearly
different from zero. In this paper, we set 7 = 0.5, a
relatively permissive cutoff that we believe gives rise to
a more informative classification of neurons.

(i) cos(win, Weate) May not always “match” the other
two cosine similarities; e.g., the two reading weights
may be orthogonal, but wey = %wgate + %wm; then
both cosine similarities are % > 0.5. We are mainly
interested in IO behavior rather than comparing the
two reading weights, so we classify such cases based
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Figure 3: Distribution of neurons by layer and category.

on cos(Win, Wout) and cos(Wgge, Wour). To signal the
“mismatch” of cos(Win, Weare), We prepend atypical to
the category’s name. In the above example, we will
speak of an atypical enrichment neuron. In Figure 2, the
atypical classes share their position with typical classes,
but differ in color.

Table 1 shows all atypical (and typical) classes.

S 10 functionalities by layers

We conduct our study on 12 models: Gemma-2-2B,
Gemma-2-9B (Gemma, 2024), Llama-2-7B, Llama-
3.1-8B, Llama-3.2-1B, Llama-3.2-3B (Touvron et al.,
2023), OLMo-1B, OLMo-7B-0424 (Groeneveld et al.,
2024), Mistral-7B (Jiang et al., 2023), Qwen2.5-0.5B,
Qwen2.5-7B (Yang et al., 2024), Yi-6B (01.Al et al.,
2025). These models use SwiGLU, except for Gemma,
which uses GeGLU. For each model, we classify the
MLP neurons based on the cosine similarities of the
three weight vectors, as described in Section 4.

Here we describe the results for Llama-3.2-3B. They
are representative of the general trends we observe. Sec-
tion I in the appendix contains the plots for all models.

We progress from (i) the coarse-grained version of our
method, with discrete classes, to (ii) the marginal dis-
tributions of each cosine similarity, to (iii) fine-grained
scatter plots showing all individual neurons.

5.1 Discrete classes

Figure 3 shows IO class distribution across layers.

We see that a large proportion of neurons are input
manipulators (i.e., they are not orthogonal output neu-
rons): in the Llama model, these are 25% of all neurons,
and as much as 50% in early-middle layers (layers 7-11).
This highlights an advantage of our parameter-based 10
classes: It is an exhaustive analysis of all neurons, and
we can make non-trivial statements about a large subset
of them. Other methods only assign a subset of neurons
to classes; e.g., Gurnee et al. (2024)’s classification only
covers 1-5% of neurons.

The majority of these input manipulators (more than
80% in Llama) belong to just one class: conditional
enrichment. Across all models, conditional enrichment
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Figure 4: Boxplots for the distribution of weight co-
sine similarities in each layer. For cos(wgae, win) and
€08 (Wgate, Wour) We show the absolute value since their
sign does not carry any information on its own.

dominates early-middle layers. In contrast, the (rela-
tively few) input manipulators in late layers are often
proportional change neurons or depletion neurons.

The dominance of conditional enrichment neurons
in early-middle layers echoes Geva et al. (2023)’s and
Lad et al. (2024)’s findings that these layers perform
enrichment (or feature engineering). We discuss this in
Section 7.4.

These patterns hold for all models. Some other mod-
els display additional patterns, for example a large num-
ber of conditional depletion neurons in middle-late lay-
ers. See Section L.

5.2 Marginal distributions

Figure 4 shows the distribution of weight cosine similar-
ities in each layer. In Figure 1 we also show the median
of cos(win, Weut ), across all investigated models.

We already know that conditional enrichment neu-
rons are plentiful in the early-middle layers. Corre-
spondingly, the median value of cos(wi,, Wou) peaks
in these layers. Later on, it moves below zero, in-
dicating that now the majority of neurons have nega-
tive cos(wWin, Woy ). Figure 1 shows that this generalizes
across models.

Regarding | cos(wgae, Wout)|, the median values are
relatively close to zero (corresponding to conditional
classes and orthogonal output). But there is a large
spread in early-middle layers and in the last few layers.
This seems to correspond to the proportional change
neurons appearing in all of these layers, as well as de-
pletion neurons in the last few layers.

| coS(Wgate; Win)| is mostly concentrated around zero.
Thus most neurons operate on two input directions in
the residual stream (not a single one), resulting in higher
expressivity and more complex semantics. This is likely
related to double checking; see Section 7.2.

We also notice that there are many outliers for all
three cosine similarities, in almost all layers. This sug-
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Figure 5: Fine-grained analysis of neuron IO behavior
in three layers based on the configuration of their three
weight vectors in parameter space. Each subplot repre-
sents a layer, each dot a neuron.

gests that a non-negligible number of neurons perform
special tasks different from the “average” neuron.

5.3 Fine-grained analysis of 10 behavior

We now investigate weight vector configurations in de-
tail, as shown in Figure 5 for a few selected layers.
The distribution of neurons in each layer is plotted by
displaying each neuron as a point with cos(wgae, Wour)
indicated on the x-axis, cos(wiy, Woy) on the y-axis and
c0S(Wgate, Win) as its color.

This visualization reinforces three findings from Sec-
tions 5.1 and 5.2. (i) We already know that many neu-
rons are input manipulators. Now we see that, even
though there are many neurons we classified as orthog-
onal output, there is no cluster around the origin as we
might expect. Instead, the orthogonal output neurons
often belong to clusters that are centered above/below
the horizontal line. This suggests that even the orthogo-
nal output neurons perform input manipulation to some
extent. (ii)) We also have already observed a smooth
transition from enrichment-like functionalities in early-
middle layers to more depletion-like functionalities in
the last few layers. We indeed see a large cluster of neu-
rons, centered clearly above the x-axis in most layers,
but moving below it in the last few layers. (iii) We also
observe that the vast majority of neurons is turquoise,
i.e., cos(Wgate, Win) =~ 0, confirming the finding in Sec-
tion 5.2.

We also gain four new insights. (i) The first layer
exhibits quite different patterns from model to model.
>ii) In middle layers, all models have a big cluster re-
lated to conditional enrichment neurons, as described
above. Additionally, many models have outlier “arms”
from this cluster, towards the plot areas corresponding
to proportional change and depletion. Other models,
such as OLMo, additionally have a cluster of neurons
below the x-axis, corresponding to conditional deple-
tion neurons. (iii) Neurons with orthogonal wg,. and
wj, must be within the unit disk. It is striking to see that
they do not fill out this disk evenly. Instead, as already
mentioned, there is a big cluster above the x-axis (close
to conditional enrichment). But this cluster is not right
at the border of the disk, but more inside (in particular
cos(Win, Wou) is still clearly below 1). This echoes and

extends Gurnee et al. (2024)’s findings that in GPT2
the IO cosine similarity is approximately bounded by
+0.8. In other words, we almost never get the prototyp-
ical cases of conditional enrichment / depletion etc., as
defined in Section 4. This helps us refine our notion of
“input manipulators”: these neurons do more than just
outputting a wey that is already present in the residual
stream; instead, they add novel but related information.
(iv) In the last few layers (Llama: layers 25-27), some
new phenomena occur: apart from the big cluster, there
is a new cluster in the bottom corners of the plot (close
to depletion). Additionally, in the last layer of some
models, there is a cluster of turquoise points around the
upper y-axis (close to conditional enrichment).

6 Case studies

We now demonstrate how the 1O perspective can com-
plement other methods to help understand individual
neurons. To this effect, we present 6 case studies for
OLMo-7B, one for each discrete 10 class. We re-
strict the search space to prediction/suppression neu-
rons (two of the output-based functional roles of Gurnee
et al., 2024), i.e., each of the six neurons is a predic-
tion/suppression neuron as well as exemplifying one of
our six classes. For ease of interpretability, we choose
that prediction/suppression neuron of a particular 10
class with the highest cos(wou, Wrr) kurtosis, where
Wy € RmeaaXdwed denotes the unembedding matrix.
(For orthogonal output we chose the clearest of all sup-
pression neurons.) The 6 neurons are in the last layers of
the model because that’s where prediction/suppression
neurons tend to appear.

See Section F for details on prediction/suppression,
Section G for more details on these case studies, and
Section H for more case studies.

6.1 Methods

We combine the IO perspective with two well-
established neuron analysis methods. For each neuron,
we project its weight vectors to vocabulary space with
the unembedding matrix Wy and inspect high-scoring
tokens. (This is analogous to (nostalgebraist, 2020) and
has been done e.g. in (Geva et al., 2022; Gurnee et al.,
2024; Voita et al., 2024).) Additionally, we examine
examples for which the neuron is strongly activated
(positive or negative) among a subset of 20M tokens
from Dolma (Soldaini et al., 2024), OLMo’s training
set. (Activation-based analyses have been done e.g. in
Geva et al., 2021; Voita et al., 2024; Gurnee et al., 2024.
The size of 20M tokens follows Voita et al., 2024.)

6.2 Analysis

For many of these neurons, the largest positive activa-
tion is much larger than the largest negative one (or
vice versa). Often the larger of the two is also more
interpretable. In these cases we just describe the larger
activation and refer to Table 4 in Section H for more
details.



Enrichment neuron 28.4737 predicts review (and
related tokens) if activated positively, which happens
if review is already present in the residual stream. The
maximally positive activations are in standard contexts
that continue with review or similar, such as the newline
after the description of an e-book (the next paragraph
often is the beginning of a review).

Conditional enrichment neuron 28.9766’s 10 func-
tionality concerns well and similar tokens. 28.9766
promotes them if activated positively, which happens
when both wg, and wj, indicate that well is represented
in the residual stream. This is a case of double checking.
The maximally positive activation in our sample occurs
on Oh, in a context in which Oh, well makes sense (and
is the actual continuation).

Depletion neuron 31.9634. —w,, of 31.9634 is clos-
est to forms of again. Judging by the weights, the neu-
ron activates positively when the residual stream con-
tains information both for and against predicting again,
and then depletes the again direction. It activates neg-
atively when the residual stream contains the “minus
again” direction, and then depletes that direction. Sur-
prisingly, despite its strong negative cosine similarity
(cos(Wgate, Win) = —0.7164), the neuron often activates
positively. On the positive side, strong activations are
often on punctuation, and the actual next token is often
meanwhile or instead. The neuron may ensure only
these tokens are predicted, and not the relatively similar
again. On the negative side, the activations do not have
any obvious semantic relationship to again. We hypoth-
esize that sometimes the residual stream ends up near
“minus again” for semantically unrelated reasons (there
are many more possible concepts than dimensions, so
the corresponding directions cannot be fully orthogonal;
see Elhage et al., 2022); in these cases the neuron would
reduce the unjustified presence of this “minus again”
direction. There are also weaker negative activations
when again is a plausible continuation, e.g., on the token
once. In these cases, again is already weakly present
in the residual stream before the last MLP. Accordingly,
Swish(Wgate - Tnorm) 18 Weakly negative (but distinct
from 0), and wi, - Thorm > 0, which leads to a negative
activation and thus reinforces again.

Conditional depletion neuron 29.10900. Gate and
linear input weight vectors act as two independent ways
of checking that these is not present in the residual
stream (i.e., a case of double checking). At the same
time, they check for predictions like foday, nowadays.
When such predictions are present, the neuron promotes
these. This is a plausible choice in these cases because
of the expression these days. An example is social
media tools change and come and go at the drop of
a hat. (This sentence talks about a characteristic of
current times, so these days would indeed be a plausible
continuation.)

Proportional change neuron 30.10972 predicts the
token when if activated negatively. This happens if when
is absent from the residual stream (gate condition) and
is proportional to the presence of time-related tokens

(-wiy). An example for a large negative activation is
puts you on multiple webpages at.> Conversely, if when
is absent, and time-related tokens are absent too, the
neuron activates positively and suppresses when further.

Orthogonal output neuron 29.4180 predicts there
(positive activation) if the residual stream contains a
component that we interpret as “complement of place
expected” (e.g., here, therein). Both wgye and wy, check
for (different aspects of) this component being present,
another case of double checking. The largest positive
activation is on here or.

Overall, these neurons all promote a specific set of to-
kens (we chose them that way), but under very different
circumstances. The (conditional) enrichment neurons
are the most straightforward to interpret, because their
input and output clearly correspond to the same con-
cept. In contrast, depletion neurons inherently involve
(an apparent) conflict between the intermediate model
prediction and what the neuron promotes.

7 Discussion

7.1 Variation across models

Our work on gated activation functions questions the
generality of previous findings (Voita et al., 2024;
Gurnee et al., 2024) on non-gated activation functions.
Specifically, we saw in Section 5 that (conditional) de-
pletion neurons appear mostly in later layers. On the
other hand, Gurnee et al. (2024) find (for GPT-2 (Rad-
ford et al., 2019), with activation GeLU) that what we
call depletion neurons mostly appear in earlier layers.
Similarly, Voita et al. (2024) find (for OPT (Zhang et al.,
2022), with activation ReL.U) that some neurons in early
layers detect specific tokens and then suppress them.
(Their analysis is not weight-based, so these may or may
not be depletion neurons in our weight-based sense.)

This confirms the importance of our work for models
with gated activation functions: their internal structure is
quite different from older models with GeLU or ReLU.

Despite minor differences (especially in the first
layer), our results across gated activation models are
remarkably consistent. Most importantly, all of them
are dominated by conditional enrichment neurons in
early-middle layers and all of them tend towards deple-
tion in the very last layers.

7.2 Double checking

Our case studies suggest that conditional enrichment
or conditional depletion neurons often behave in a way

*The actual sentence ends with as soon as and comes
from a now-dead webpage. We also found one occurrence
of at when in what seems to be a paraphrase of the same
text, on https://www.docdroid.net/RgxdG5s/fantastic-tips-for-
bloggers-of-all-amountsoystcpdf-pdf . We suspect that both
texts are machine-generated paraphrases of an original text
containing at once (when and as soon as can be synonyms of
once in other contexts), and that the model has (also) seen a
paraphrased version with ar when. In fact many of the largest
negative activations are on at in contexts calling for at once.



analogous to their unconditional counterparts. One rea-
son is that our threshold for distinguishing conditional
and unconditional classes is somewhat arbitrary.

These and other neurons (for example, proportional
change neurons like 25.8607, Section H) display a phe-
nomenon we called double checking: They use two
quite different reading weight vectors to check for a
single concept.

Double checking is rooted in the following geometric
fact: Two vectors wy, w2 (Weae and wy, in our case)
can be orthogonal to each other but still have a high
similarity to a third vector u (e.g., a token unembedding).
Example: w; = (1,0), w2 = (0,1),u = (1,1). Here,
w1, we are orthogonal, but v has a cosine of @ ~ 0.7
to both.

Double checking is useful because it shrinks the re-
gion in model space that activates the neuron positively.
If (say) win = wgue = (1,0), the neuron activates
whenever the (normalized) residual input x satisfies
2 - (1,0) > 0; this happens on the whole half-space
1 > 0. If however wgye = (1,0) and win, = (0,1),
the neuron activates positively only in the first quadrant
(x1,22 > 0).

This behavior thus enables more precise concept de-
tection. This may explain why conditional neurons are
more frequent than their unconditional counterparts.

7.3 Stages of inference

We saw in Section 5 that different layers are dominated
by different IO functionalities. This leads to a follow-
up question: Why does the model use these specific
10 functionalities in these specific layers? In partic-
ular: Why are there so many conditional enrichment
neurons in early-middle layers? And what is the role of
(conditional) depletion neurons in later layers? We hy-
pothesize that different IO classes might be responsible
for different stages of inference (Lad et al., 2024), as de-
scribed in the following subsections. In future work, we
plan to test this hypothesis using ablation experiments.

7.4 Enrichment

We saw in Section 5 that there often is positive simi-
larity between reading and writing weights of neurons,
especially with conditional enrichment neurons in early-
middle layers.

These neurons seem a good fit for the feature engi-
neering stage (Lad et al., 2024), corresponding to en-
richment as defined by Geva et al. (2023). Indeed, they
output a direction similar to the one they detect, which
could correspond to related concepts. Geva et al.’s
(2023) description of enrichment precisely involves writ-
ing related concepts to the residual stream.

In later layers, the (conditional) enrichment neurons
we investigated in our case studies (Section 6) have an
output that is semantically identical to the input. Thus
they seem to reinforce existing predictions.

In general, we use the term enrichment because the
output weight is never mathematically identical to one

of the reading weights. But depending on the analysis
of a particular neuron (e.g., by way of a case study),
magnification (no change) or enrichment (e.g., change
Ireland in the input to Dublin in the output) may be the
more intuitive human interpretation.

7.5 Depletion

We saw in Section 5 that depletion neurons appear
mostly in the last few layers, and conditional depletion
neurons appear in later-middle layers (if at all).

These neurons reduce the presence of the directions
they detect. Therefore they seem a good fit for the
residual sharpening stage — getting rid of attributes that
are not directly needed for next token prediction.

We found depletion neurons more difficult to inter-
pret than enrichment neurons. Most notably, neuron
31.9634 was a complex case in that we found contexts
in which a weak positive presence of again led to an
enrichment-like functionality (see Section 6.2). This
mechanism involves a negative value of Swish. Previ-
ous authors (Gurnee et al., 2023) often assumed that
GELU (or equivalently, Swish) is “essentially the same
activation as a ReLU”, and said they “would be partic-
ularly excited to see future work exhibiting [...] case
studies” of mechanisms involving negative values of
such an activation function. To our knowledge, we show
for the first time that negative values of Swish can play
a crucial role in how transformers function.

Still, all neurons we investigated do deplete input
directions from the output even if they do not do so in
all contexts. We plan to further elucidate the intuitive
role depletion plays in follow-up work.

8 Conclusion

We explored the IO perspective for investigating gated
neurons in LLMs. Our method complements prior inter-
pretability approaches and provides new insights into
the inner workings of LLMs.

We observed that a large share of neurons exhibit non-
trivial 1O interactions. The concrete IO functionalities
differ from layer to layer, which is probably related
to different stages of inference. In particular, early-
middle layers are dominated by conditional enrichment
neurons, which may be responsible for representation
enrichment.

We plan to further develop this new perspective in
future work. In particular, we will do ablation experi-
ments to conclusively show if, as we hypothesized, the
conditional enrichment neurons in early-middle layers
are responsible for representation enrichment and the
depletion neurons in the last few layers contribute to
residual sharpening. We also plan to investigate the
evolution of IO functionalities during model training.
Finally, we would like to go beyond the analysis of sin-
gle neurons and address the question of how neurons
work together within and across IO classes.



Limitations

This paper focuses on a parameter-based interpretation
of single neurons. This has the advantage of being sim-
ple and efficient, but is also inherently limited in scope.
Accordingly, our method is not designed to replace other
neuron analysis methods, but to complement them.

The mathematical similarities of weights are insight-
ful, but they should not be taken as one-to-one represen-
tations of semantic similarity: We find cases in which
close-to-orthogonal vectors represent very similar con-
cepts (Section 7.2), and cases in which mathematically
similar vectors represent related but non-identical con-
cepts (Section 7.3).

Our case studies of individual neurons can be accused
of cherry-picking: we picked neurons that we expected
to be interpretable, all of which occur on the last few
layers. Therefore our interpretations may not carry over
to less interpretable (e.g. polysemantic) neurons, or to
neurons in earlier layers.

Finally, we provide only possible interpretations of
the phenomena we observe, and do not claim them to
be definitive explanations.
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B Software and data

This review version is accompanied by zip archives con-
taining software and data, respectively. See the readme
file for detailed documentation.

We plan to release the software under a permissive
license such as Apache 2.0.

The data archive currently contains only the visualiza-
tions of max/min activations for the neuron case studies
in Section 6. Everything else can be quickly reproduced,
and the plots are included in this paper. We plan to re-
lease these visualizations under the Apache 2.0 license
(they contain text from Dolma, which is under the same
license).

C Impact statement

This paper presents work whose goal is to advance the
field of machine learning interpretability. The underly-
ing assumption of the field is that models have under-
lying structure (are not just an inscrutable mess) and
that discovering this structure will have several benefits.
First, ideally, any scientific field should have a deep
understanding of the models it uses; results that are ob-
tained using blackbox models are hard to understand,
replicate and generalize. Second, once we understand
our models better, we will be better able to address
failure modes. For example, once we understand how
unaligned behavior like bias and hallucinations comes
about, it will be easier to address them, e.g., by chang-
ing the model architecture. Third, interpretability can
support explainability. If we understand how a recom-
mendation or answer came about, we can better assess
its validity.

D
D.1 Models and data

Gemma. To download the model one needs to explicitly
accept the terms of use. NLP research is explicitly
listed as an intended usage. Primarily English and code
(Gemma, 2024).

Llama. Inference code and weights under an ad hoc
license. There is also an “Acceptable Use Policy”. Our
work is well within those terms. Languages mostly
include English and programming languages, but also
Wikipedia dumps from “bg, ca, cs, da, de, en, es, ft, hr,
hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk” (Touvron et al.,
2023).

OLMo and Dolma. Training and inference code,
weights (OLMo), and data (Dolma) under Apache 2.0
license. “The Science of Language Models” is explicitly
mentioned as an intended use case. Dolma is quality-
filtered and designed to contain only English and pro-
gramming languages (though we came across some
French sentences as well, see Table 4) (Groeneveld et al.,
2024; Soldaini et al., 2024).

Mistral. Inference code and weights are released
under the Apache 2.0 license, but accessing them re-
quires accepting the terms. Languages are not explicitly

“Responsible NLP”’ statements
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mentioned in the paper, but clearly include English and
code (Jiang et al., 2023).

Qwen. Inference code and weights under Apache
2.0 license. Supports “over 29 languages, including
Chinese, English, French, Spanish, Portuguese, German,
Italian, Russian, Japanese, Korean, Vietnamese, Thai,
Arabic, and more” (Yang et al., 2024).

Yi. Inference code and weights under Apache 2.0
license. Trained on English and Chinese (01.Al et al.,
2025).

D.2 Computational experiments

All our experiments can be run on a single NVIDIA
RTX A6000 (48GB). The main analysis, computing the
weight cosines, needs less than a minute per model. The
most expensive part was the activation-based analysis
in Section 6: We needed a single run of ~ 25 h to store
the max/min activating examples for all neurons, and
then =~ 45 s per neuron (= 5 min) to recompute its
activations on the relevant texts and visualize them.

We use TransformerLens (Nanda and Bloom, 2022).
A colleague kindly provided us with a version that also
supports OLMo.

E More on SwiGLU

Figure 6 visualizes a SwiGLU neuron (described in
Section 3).

F 10 classes vs. functional roles

We compare our results with those of another classifica-
tion scheme we mentioned in Section 2: the functional
roles defined by Gurnee et al. (2024). See Section F.3
for the results.

F.1 Definition of functional roles

The definition of functional roles is based exclusively
on the neuron’s output weight wyy,. Most of the
roles are defined by their output token distribution,
i.e., properties of the distribution cos(wey, Wy) =
(resdn - sy ) € L,
the cosine of the product of output weight vector and
unembedding matrix.

Functional roles are defined as follows. Prediction
and suppression neurons have a cos(woy, Wyy) with
high kurtosis (meaning there are many outliers) and a
high skew in absolute value (meaning the outliers tend to
be only on one side). Positive skew corresponds to pre-
dicting a subset of tokens, negative skew to suppressing
it. Partition neurons have a distribution cos(weu, Wrr)
with high variance. This often corresponds to two sets
of output tokens, one that is promoted and one that is
suppressed. In entropy neurons (examined in more de-
tail by Stolfo et al. (2024), woy, lies in a direction that
does not correspond to any output tokens. Mathemati-
cally, a high proportion of the norm of wg,, is in Wy;’s
effective null space, i.e., it corresponds to singular vec-
tors of Wiy whose corresponding singular values are
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Figure 6: Visualization of the SwiGLU activation function for a single neuron. Boxes represent vectors, ellipses

represent scalars.

close to zero. Entropy neurons increase or decrease the
presence of such directions. This changes the norm of
the residual stream, but leaves the token ranking more or
less untouched. Because a final LayerNorm is applied
before W7, this indirectly affects the logits of all tokens:
the output token probabilities become more evenly dis-
tributed (higher entropy), or less so (lower entropy). At-
tention (de)activation neurons (de)activate an attention
head by having it put less (or more) of its attention on the
BOS token. (The effect of a head attending only to BOS
is negligible.) Consider an attention head with query
matrix W € RémowrXdneas = R4096x128 3nq BOS key
vector kgos € R¥reed  Attention (de)activation neu-
rons for this head are those with a high positive or nega-
tive score wouWokpos.

All of these definitions require a threshold and/or
some adaptation to gated activation functions. We de-
scribe our approach in Section F.2.

F.2 Adapting the definitions

The functional role definitions require a threshold and/or
some adaptation to gated activation functions. We pro-
ceed as follows:

¢ We set the number of partition neurons to be 1000,
which gives a variance of 0.0007 as a threshold.

Preliminary experiments show that (absolute) skew
and kurtosis are highly correlated in practice, so
we decide to focus on kurtosis to find prediction
/ suppression neurons. We then choose a kurtosis
threshold for prediction/suppression, such that the
prediction/suppression class is disjoint from par-
tition. This gives a (very high) excess kurtosis of
230.9736.

Entropy: Following Stolfo et al. (2024), we focus
on the last layer, and we define the null space of
Wy as the subspace of model space spanned by its
last 40 singular vectors. We find that two neurons
have a particularly high proportion of their norm in
this null space, and define these as entropy neurons.

* Attention (de)activation: To ensure comparability
across heads, we normalize wo, and Wgkpos.
Thus the scores can be intuitively understood as
cosine similarities between these two vectors. We
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choose :I:? as a cutoff. We keep only those neu-
rons that we did not already classify as partition or
prediction/suppression.

* In our case the neuron can be activated positively
or negatively, so we cannot distinguish predic-
tion from suppression a priori. Instead, we au-
tomatically distinguish prediction and suppression
from each other by the sign of cos(win, Weae) -
skew (cos(wou, Wrr)) (as opposed to just the sign
of the skew). The quantity cos(win, Wgq) indicates
the typical sign of the activation a priori. Even
though this is not very trustworthy it gives some
interesting results.

e The same problem occurs for the distinction of
attention activation and deactivation. As before,
we multiply the original quantity wouWokpos
by cos(Win, Weae) and only then look at the sign.
Note that here a positive sign means high attention
on BOS, hence attention deactivation. It turns out
that all relevant neurons are attention deactivation
according to this metric.

F.3 Results

The contingency matrix in Table 2 is a systematic com-
parison of our IO classes with Gurnee et al. (2024)’s
functional roles.

We first see again that Gurnee et al. (2024) assign
a functional role to only a small proportion of all neu-
rons. 349,521 of 352,256 neurons remain unclassified.
In contrast, our IO classes are exhaustive and robustly
identify functionalities like conditional depletion and
enrichment that are explanatory for how transformers
process language.

We find that prediction neurons, suppression neurons
and (less consistently) partition neurons mostly occur
in the final layers, replicating Gurnee et al. (2024)’s
findings.

Most of these neurons are orthogonal output or pro-
portional change. This is not unexpected, as these are
some of the largest classes. Conversely, however, a
majority of the (relatively few) depletion neurons have
prediction or partition as functional role.

The only two entropy neurons in OLMo-7B-0424
occur in the last layer and are conditional depletion
neurons.



attention

prediction  suppression  partition entropy deactivation other total
depletion 73 0 51 0o 2 14 117 243
at. depletion 114 0 61 0 0 3 429 604
c. depletion 68 1 24 2 0 12,344 12,439
at. c. depletion 19 0 13 0 0 12 44
orthogonal output 826 203 516 0 0 190,832 | 192,377
proportional change 111 206 139 0 0 1 23,358 23,814
at. proportional change 25 0 16 0 2 85 128
c. enrichment 48 0 179 0 0 1 121,446 | 121,673
at. ¢. enrichment 14 0 0 0 0 660 674
enrichment 6 0 0 0 0 18 24
at. enrichment 15 0 1 0 0 220 236
total 1,319 410 1,000 2 4 21 349,521 | 352,256

Table 2: Contingency table of 10 classes (rows) vs Gurnee et al. (2024)’s functional roles (columns) for OLMo-7B-
0424. ¢ = conditional. at = atypical. Cutoffs for prediction/suppression and partition were chosen as described in
Section F.2. Many neurons with high attention deactivation score are also partition neurons; the left column unter
“attention deactivation” counts only those that are not. OLMo-7B-0424 has no attention activation neurons with high

enough score.

Neuron IO category

28.4737 | enrichment

28.9766 | conditional enrichment
31.9634 | depletion

29.10900 | conditional depletion
30.10972 | proportional change
29.4180 orthogonal output

Cos(wgate ) win)

08 (Wgate, Wour) ~ COS(Win, Wour)

0.5290 0.5048 0.7060
0.4764 0.4119 0.5982
-0.7164 0.7218 -0.8542
0.4988 -0.4992 -0.5775
-0.4543 0.5814 -0.4182
-0.0272 -0.4057 0.0669

Table 3: Overview of prediction/suppression neurons chosen for case studies in Section 6

G Details on case studies

See Tables 3 and 4 for more details on the case studies
of Section 6.

H More case studies

These are various neurons that popped out to us as pos-
sibly interesting, for not very systematic reasons, for
example because they strongly activated on a specific
named entity. All of them are in OLMo-7B. We present
them by IO class. For most of these case studies we did
only a quick and dirty weight-based analysis. In some
cases we also tried W (input embeddings) instead of
Wy (unembeddings) for the logit-lens style analysis.

H.1 Conditional enrichment neurons

0.1480: wgate, —Win, —Wou: all have tokens similar to
box (when using Wg). Activates on Xbox.

4.1940: country appears in w;, among many other
things. When using Wg, Philippines and Manila appear
in wey. Activates on Philippines.

4.3720: gate seems country/government related.
When using Wg, we find woyt, Weare cONtain some coun-
try names. Activates on Denmark.

4.4801: Muhammad appears in the gate vector. Acti-
vates on Muhammad.

4.5772: predicts ian as in Egyptian. When using Wg,
all three weight vectors contain Egypt. Activates on

Egypt.
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4.6517 has a very Ireland (or Celtic nations) related
gate vector. The interpretations of the other two weights
are less obvious, but Irish and Dublin appear in wi,
among many other things, and UK and London appear
in —woy (Ireland is emphatically not in the UK!) When
using Wg, Ireland appears among the top tokens of all
three weight vectors. Activates on Ireland.

4.6799: When using Wg, Vietnam is among the to-
kens corresponding to —wyy. Activates on Vietnam

4.7667: all three weights related to consoles in differ-
ent ways. Activates on Xbox

4.9983: w,,, is related to electronic devices, wj, either
electronic devices or sports (surfing may belong to both),
Weare 18 also mostly related to electronic devices. When
using W g, we find woy: contains iPhone as a top token.
Activates on iPhone.

4.10859: When using Wg, we find wgye, Wour include
Thailand as a top token, woy additionally Buddha, Bud-
dhist. Activates on Thailand.

4.10882: When using Wg, we find —w,,, contains
Italy, —wiy, Weae additionally contain Rome. Activates
on Italy.

4.10995: Boston appears in gate and Massachusetts
in —wj,. When using Wg, we find —woy, Weae CON-
tain Massachusetts and Boston, —w;, contains Boston.
Activates on Massachusetts.

22.2589: wgye and —wj, recognize tokens like Islam,
Muhammad and others related to the Arabo-Islamic
world. The same goes for —woy (as it is similar to wjy).



Neuron,
10 class
28.4737
enrichment

28.9766
conditional
enrichment

31.9634
depletion

29.10900
conditional
depletion

30.10972
proportional
change

29.4180
orthogonal
output

Wgate

~ Wout

pos:
well
well

~ Wout

pos:
today
nowa-

days

= Wout

pos:
here
therein

neg:

far
high

neg:
these
these

neg:
there
we

~ Wout

~ Wout

pos:
when
when

pos:
here
in

neg:
timing
dates

neg: ?

Wout

pos:
review
Review

pos:
well
well

neg:
again
Again

pos:
these
These

neg:
when
when

pos:
there
there

Top activations

pos (13.75): Download EBOOK |[...]
Description of the book [...] \n -> Re-
views

neg (-2.25): The answer’s at the bot-
tom of this -> post

pos (18.63): Could have saved myself
some time. Oh -> , well

neg (-3.66): Seek to understand them
more -> fully

pos (5.12): jumping off the roof of his
Los Angeles apartment building. ->
Meanwhile

neg (-3.48): the areas of the doorjamb
where the door -> often

pos (12.79): social media tools change
and come and go at the drop of a hat
-> .

neg (-2.18): la couleur de sa robe et
-> le

pos (2.67): Take pleasure in the rest of
the new year. -> You

neg (-6.14): puts you on multiple web-
pages at -> as soon as

pos (14.41): here or -> there

neg (-2.31): without any consideration
being issued or paid there -> for

Table 4: Description of the weight vectors of the selected neurons, by top tokens or similarity to woy. The question
mark, ?, signals unknown unicode characters. The last column presents the (shortened) text samples on which the

respective neuron activates most strongly (positively or negatively).
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Activates on Muhammad.

24.4880: For all three weight vectors the first four to-
kens (but not more) are Philippine-related (even though
the gate vector is actually not very similar to the oth-
ers). The gate vector also reacts to other geographical
names, which may have in common that they are associ-
ated with non-"white” (Black, Asian or Latin) people in
the US sense (Singapore, Malaysian, Nigerian, Seoul,
Pacific, Kerala, Bangkok, but also (Los) Angeles and
Bronx). Activates on Philippines.

24.6771: wgate, —Win, —Wou all correspond to capital-
ized first names. Activates on Muhammad.

25.2723: Some tokens associated with w;, and wqy
are possible completions for th (th-ousand, th-ought,
th-orn. When using Wg, in all three weights there are
a few th tokens, but also with ph and similar. Activates
on Thailand.

25.10496: —wy,, —woy correspond to tokens starting
with v (upper or lower case, with or without preced-
ing space). wgye on the other hand seems to react to
appropriate endings for tokens starting in v: vol-atility,
v-antage, v-intage, vel-ocity, V-ancouver. When using
Wg, we also find all three weight-vectors are very v-
heavy. Activates on Vietnam.

H.2 Depletion neurons

30.9996: Downgrades weird tokens if present / pro-
motes frequent English stopwords if absent. Also an
attention deactivation neuron for 15 heads in layer 31.

H.3 Proportional change neurons

25.7032: Some tokens associated with Wgae and woue
are possible completions for x or ex (X-avier, x-yz, ex-
cel, ex-ercise. When using Wg, both x and box (with
variants) appear in all three weight vectors. Activates
on Xbox.

25.8607: All three vectors correspond to tokens re-
lated to cities. Moreover, —wqy seems to correspond
to non-city places, such as national governments or vil-
lages. wy, is actually not that similar to wgye, Wour (in
terms of cosine similarities), but all three correspond
to city-related tokens. When using Wg, in all three
weights there are a few city-related tokens. Activates on
Paris. We may think of the two input directions as two
largely independent ways of checking that “it’s about a
city” (this is a recurring phenomenon that we describe
in Section 7.2). When the gate activates but the linear
input does not confirm it’s about a city, the output pro-
motes closely related but non-city interpretations (for
example Paris actually refers to the French government
in some contexts).

29.8118: Partition neuron, highest variance of all
proportional change neurons. Also an attention deacti-
vation neuron for 4 heads (0,2,11,15) in layer 30.

31.5490: Activates on Muhammad. wgae reacts to
various Asian names and Asian-sounding subwords, wiy,
to surnames as opposed to other English words starting
with space and uppercase letter.  wqyy corresponds
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to more Asian stuff (mostly subwords) as opposed to
English surnames.

31.6275: Mostly promotes two-letter tokens (no pre-
ceding space, typically uppercase). —wj, typically low-
ercase single letters. —wgye mostly lowercase two-letter
tokens. “If no lowercase two-letter tokens, promote up-
percase two-letter tokens proportionally to absence of
lowercase single letters" ?

31.8342: This is an -ot- neuron: Weye and wey; corTE-
spond to -o(t)- suffixes, —wj, to various -oz- stuff. Judg-
ing by the weight similarities, we expect that wg,, is
typically activated negatively: downgrade -o(1)- suffixes
if present in the residual stream. Activates on Egypt.

H.4 Orthogonal output neurons

0.1758: When using W, all three weight vectors’ top
tokens are famous web sites, including YouTube. Acti-
vates on YouTube.

0.3338: When using W, we find especially wgae and
—wip, but also —w,,, are similar to smartphone-related
tokens. Activates on iPhone.

0.3872: When using Wg, we find especially wgye,
but also —wj, and —wgy correspond to city names. Ac-
tivates on Paris.

0.7829: When using Wg, we find wi,, we, and to a
lesser extent wgye correspond in large part to software
names. Activates on iTunes.

0.7966: When using Wg, the weight vectors mostly
correspond to tokens starting with th. Activates on Thor.

29.2568: w,y Asian (Thai?) sounding syllables vs.
(Asian) geographic names in English and other stuff;
wj, reacts to Thailand and Asian (geography) stuff as
opposed to (mostly) US stuff; wgye pretty much the
same. Activates on Thailand.

29.3327: wgae mostly reacts to city names (Paris
being the most important one), -wj, countries and cities,
especially in continental Europe (France and Paris on
top) as opposed to stuff related to the former British
Empire. Relevant is —w,y, wWhich corresponds to pieces
of geographical names and especially rivers in France
(Se-ine, Rh-one / Rh-ine, Mar-ne, Mos-elle... Norm-
andie, Nancy, commun...). Wgae and -wj, also react to
river(s). Activates on Paris.

29.4101: wgye and wyi, react to YouTube (top token!),
Wy downgrades it (almost bottom token) and promotes
subscrib*, views, channels etc. Activates on YouTube.

29.6417: Downgrades recording and similar. wgye
and wjy, are also similar and involve iTunes. Activates
on iTunes.

29.9734: wgy reacts to the East in a broad sense
as opposed to the West (Iran, Kaz-akhstan, Kash-mir,
Ukraine...), wi, mostly to male first names without pre-
ceding space. woy: seems to produce word pieces that
could begin a foreign name. Activates on Muhammad.

30.2667: w,qe reacts to suffixes (for adjectives de-
rived from place names) like en, ian, ians, basically the
same for wj, and wey. Activates on Muhammad.

30.3143: wgye reacts to words related to entities
that are authoritative for various reasons (officials, au-



thorities, according, researchers, spokesman, investi-
gators...). —wj, reacts to uncertainty (reportedly, ac-
cording... allegedly... accused). —wqy 18 again police,
authorities, officials, court but with no preceding space.
Activates on Philippines. What authorities and uncer-
tainty have to do with the Philippines is unclear.

30.3883:  wgye and —wy, react to Virginia and
Afghanistan, among others (in the case of wgy: as op-
posed to other geographical names with no preceding
space associated with the South and the sea); —wqy is
activated and promotes all variants of af (and ghan) but
downgrades Virginia etc. Activates on Afghanistan.

30.4577: Seems to be related to rugby: wgae and
slightly less obviously wj, react to rugby-related tokens
(midfielder, quarterback...); wqy promotes different to-
kens that upon reflection could be related to rugby as
well. Activates on Ireland.

30.5372: Promotes natural and related, downgrades
inst tokens. wj, reacts to wildlife etc. as opposed to
institute etc, Wgye reacts to institute as opposed to natu-
ral. Activates on Massachusetts (in which situation it
promotes Institute, which makes sense because of MIT).

30.8535: —woy is one in all variants, Wgye 100, Win
splits one, ones and the equivalent Chinese characters,
on the positive side, from One, I, ONE on the negative
side (and many other things on both sides). Activates
on Xbox. Presumably this happens because One is a
possible prediction (Xbox One), and presumably the
output reinforces that.

31.2135: orthogonal output, on the conditional en-
richment side (weak conditional enrichment, one of the
neurons on the vertical axis). wgy reacts to single letters
or symbols as opposed to some English content words
without preceding space; wj, and we, mostly Chinese
or Japanese characters as opposed to some Latin diacrit-
ics and other weird stuff. Language choice? “If it’s not
English and single letters are floating around, make sure
to choose the right language / character set."

31.10424: wgae, —Win, Wout correspond to score in the
top tokens, which is downgraded if present. Activates
on Paris. No idea what’s happening here.

I Results across models

These final figures show our analyses of IO functionali-
ties by layer (Section 5) for all the models we investi-
gated.

We note a few additional patterns that appear only in
some of these models:

* In Yi and the OLMo models, the prevalence of
conditional enrichment neurons starts even earlier,
at the very first layer. A particularly interesting
example is Yi: In layer 0 an enormous 68% of all
neurons are conditional enrichment, then almost
none, then there is a second wave around layers
11-17 (out of 32) which have around 25% of con-
ditional enrichment neurons each.

* In some models, especially the OLMo ones, there
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is a non-negligible number of conditional depletion
neurons. They tend to appear in middle-to-late lay-
ers, shortly after the conditional enrichment wave.
The clearest example is OLMo-1B, with a peak
of 1418 conditional depletion neurons out of 8192
(17%) in layer 9 out of 16.
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Figure 8: Continuation of Figure 7. Including a copy of Figure 3 (Llama-3.2-3B) for convenience.
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Figure 9: Boxplots for the distribution of weight cosine similarities in each layer. For cos(wgae,wis) and
cos(wgm, Woy) We show the absolute value since their sign does not carry any information on its own.
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Figure 10: Continuation of Figure 9. Including a copy of Figure 4 (Llama-3.2-3B) for convenience.
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