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Abstract
Interpretability researchers have attempted to001
understand MLP neurons of language models002
based on both the contexts in which they acti-003
vate and their output weight vectors. They have004
paid little attention to a complementary aspect:005
the interactions between input and output. For006
example, when neurons detect a direction in007
the input, they might add much the same direc-008
tion to the residual stream (“enrichment neu-009
rons”) or reduce its presence (“depletion neu-010
rons”). We address this aspect by examining011
the cosine similarity between input and output012
weights of a neuron. We apply our method to013
12 models and find that enrichment neurons014
dominate in early-middle layers whereas later015
layers tend more towards depletion. To explain016
this finding, we argue that enrichment neurons017
are largely responsible for enriching concept018
representations, one of the first steps of fac-019
tual recall. Our input-output perspective is a020
complement to activation-dependent analyses021
and to approaches that treat input and output022
separately.023

1 Introduction024

Despite recent progress in interpretability, there is025
still much that is unclear about how transformer-based026
(Vaswani et al., 2017) large language models (LLMs)027
achieve their impressive performance. Prior work has028
addressed the interpretation of MLP sublayers, and we029
follow this line of research. Some of this work analyzes030
neurons based only on the contexts in which they acti-031
vate (Voita et al., 2024) or based only on their output032
weights1 (Gurnee et al., 2024). In contrast, we put the033
input-output (IO) functionality of neurons in the center034
of our analysis, and classify neurons according to the in-035
teractions between input and output weights. We focus036
on gated activation functions (Shazeer, 2020), which are037
used in recent LLMs like OLMo, Llama and Gemma.038

Theoretical framework. Following Elhage et al.039
(2021), our view of the Transformer architecture is cen-040
tered on the residual (a.k.a. skip) connections between041
sublayers: they form the residual stream, and the indi-042
vidual units (such as MLP neurons) progressively up-043
date it, until it is multiplied by the unembedding matrix044

1We use “weight” to refer to a weight vector, not a scalar.
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Figure 1: Median of cos(win, wout) by layer (x-axis) for
12 models. For all models, the value is positive in the
beginning and negative in the end, indicating that early-
middle layers “enrich” the residual stream whereas later
layers tend more towards depletion.

WU to produce next-token logits. The information con- 045
tained in the residual stream is represented as a high- 046
dimensional vector (of dimension dmodel). Individual 047
model units read from the residual stream and then up- 048
date it by writing (adding) other vectors to it. In the case 049
of an MLP neuron, it detects certain directions in the 050
residual stream (i.e., whether the current residual stream 051
vector at least approximately points in one of these di- 052
rections in model space), corresponding to its weight 053
vectors on the input side; and then writes to a certain 054
direction, corresponding to its output weight vector. 055

A semantic intepretation is that a neuron detects a 056
concept in the residual stream (for example, an inter- 057
mediate guess about the next token), and in turn also 058
writes a concept. This semantic interpretation is not a 059
necessary assumption for our neuron classification, but 060
is helpful for building intuition and interpreting results. 061

Theoretical contribution. These theoretical reflec- 062
tions naturally lead to our research question: What is 063
the relationship between what a neuron reads and 064
what it writes? We address this question by comput- 065
ing the cosine similarity of input and output weights, 066
focusing on gated activation functions. 067

Specifically, with gated activation functions, each 068
neuron has three weight vectors: the linear input, gate, 069
and output weight vectors. When the output weight 070
is similar enough to (one of) the detected directions, 071
we speak of input manipulation, as opposed to or- 072
thogonal output neurons which write to directions not 073
detected in the input. Intuitively, input manipulator neu- 074
rons manipulate the concept that they detect. As special 075
cases of input manipulation, we define enrichment and 076
depletion neurons – neurons that detect a direction and 077
then add it to / remove it from the residual stream. We 078

1



present a complete taxonomy of neuron IO functionali-079
ties in Section 4. See Figure 2 for a visualization.080

Empirical study. We apply our method to 12 LLMs.081
We find that, for all of these models, a large proportion082
of neurons are input manipulators. In particular, we find083
that enrichment neurons dominate in early-middle layers084
of all models whereas later layers tend more towards085
depletion. See Figure 1.086

We also present examples for the six major IO func-087
tionalities. We find that many neurons have the property088
of double checking: The two reading weight vectors089
(wgate and win) are approximately orthogonal, but still090
intuitively represent the same concept.091

Explaining the results. Our finding of different IO092
functionalities in different layers echoes the “stages of093
inference” framework (Lad et al., 2024). We hypoth-094
esize a correspondence: enrichment neurons may be095
responsible for “feature engineering” and depletion neu-096
rons for “residual sharpening”.097

We also provide a theoretical account of the dou-098
ble checking phenomenon. The usefulness of double099
checking explains the fact that many neurons have ap-100
proximately orthogonal gate and input weights.101

Contributions. (i) We develop a parameter-based102
(and therefore efficient) method to investigate neuron IO103
functionalities for gated activation functions (Section 4).104
(ii) Across 12 models, we find that enrichment neurons105
dominate in early-middle layers of all models whereas106
later layers tend more towards depletion (Figure 1). (iii)107
We define two novel concepts helpful in understanding108
neuron functionality: input manipulation and double109
checking. (iv) We find that many neurons are input ma-110
nipulators (Section 5), which makes our classification111
scheme useful for understanding them. (v) We present112
examples for the six major IO functionalities, showing113
how the IO perspective complements other neuron anal-114
ysis methods (Section 6). (vi) We propose theoretical115
explanations for some of these results (Section 7).116

2 Related Work117

There is a large body of work on interpretability of118
transformer-based LLMs. Elhage et al. (2021) introduce119
the notion of residual stream. nostalgebraist (2020), Bel-120
rose et al. (2023) propose to interpret residual stream121
states as intermediate guesses about the next token;122
Rushing and Nanda (2024) discuss this as the iterative123
inference hypothesis. On a similar note, many works124
hypothesize that directions in model space can corre-125
spond to concepts; Park et al. (2024) discuss this as the126
linear representation hypothesis. Lad et al. (2024) de-127
fine stages of inference. Geva et al. (2023) explain how128
LLMs recall facts; a crucial early step is representation129
enrichment, which may be related to our enrichment130
neurons (see Section 7.4). Similar to our work, Elhelo131
and Geva (2024) investigate input-output functionality132
of heads (instead of neurons).133

Much research has attempted to understand individual134
neurons. Geva et al. (2021) present them as a key-value135

memory. Other neuron analysis work includes (Miller 136
and Neo, 2023; Niu et al., 2024). The focus on individ- 137
ual neurons has been criticized. Morcos et al. (2018) 138
find that in good models, neurons are not monoseman- 139
tic (but for image models, not LLMs). Millidge and 140
Black (2022) compute a singular value decomposition 141
(SVD) of layer weights and often find interpretable di- 142
rections that do not correspond to individual neurons. 143
Elhage et al. (2022) argue that interpretable features are 144
non-orthogonal directions in model space and can be 145
superposed. This corresponds to sparse linear combi- 146
nations of neurons in MLP space. Taking the middle 147
ground, Gurnee et al. (2023) argue that interpretable 148
features correspond to sparse combinations of neurons, 149
but this includes 1-sparse combinations, i.e., individual 150
neurons. 151

Several works classify neurons based on the contexts 152
in which they activate (Voita et al., 2024; Gurnee et al., 153
2024). For example, Voita et al. (2024) find token de- 154
tectors that suppress repetitions. Gurnee et al. (2024) 155
also define functional roles of neurons based on their 156
output weight vector, such as suppression neurons that 157
suppress a specific set of tokens. They note that suppres- 158
sion neurons seem to activate “when it is plausible but 159
not certain that the next token is from the relevant set”. 160
Stolfo et al. (2024) also investigate some output-based 161
neuron classes. 162

Researchers have paid less attention to the input- 163
output perspective. Gurnee et al. (2024) compute cosine 164
similarities between input and output weights for GPT-2 165
(Radford et al., 2019), but do not interpret their results. 166
Elhage et al. (2022) mention the idea of input-output 167
analysis (negative cosines between input and output 168
weights “may also be mechanisms for conditionally 169
deleting information”, footnote 7), but do not follow up 170
on this remark. Note also that input-output analysis for 171
gated activation functions adds complexity because, in 172
addition to input and output weight vectors, the gating 173
mechanism is crucial for IO functionality. 174

3 Gated activation functions 175

In our neuron classification we assume gated activation 176
functions like SwiGLU or GeGLU (Shazeer, 2020). In 177
this section, we describe definition (Section 3.1) and 178
properties (Section 3.2) of these functions. Gated acti- 179
vation functions are used widely, e.g., OLMo (Groen- 180
eveld et al., 2024) and Llama (Touvron et al., 2023) use 181
SwiGLU, and Gemma (Gemma, 2024) uses GeGLU. 182

The following description focuses on SwiGLU. 183
GeGLU replaces Swish with GeLU, but is otherwise 184
identical. For a visualization of a SwiGLU neuron, see 185
Figure 6 in Section E. 186

3.1 Definitions 187

To keep our description simple, we ignore bias terms and 188
layer norm parameters. (Some models, like OLMo, lack 189
these anyway.) We describe single neurons as opposed 190
to whole MLP layers. 191
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Figure 2: We define six input-output functionality
classes or IO classes of gated activation neurons based
on collinearity and orthogonality of their linear input,
gate and output weight vectors. For example, depletion
neurons remove the direction of the gate vector from the
residual stream. Examples shown are prototypical.

We denote by xmid the state of the residual stream192
before the MLP, and by xnorm := LN(xmid) its layer nor-193
malization. We say that a direction v ∈ Rd is present194
(positively) in a vector x ∈ Rd if x · v ≫ 0.195

Traditional activation functions like ReLU take a sin-196
gle scalar as argument: ReLU(xin). In contrast, a gated197
activation function like SwiGLU takes two arguments:198

SwiGLU(xgate, xin) = Swish(xgate) · xin.199

To compute the scalars xgate and xin, each neuron has200
a linear input weight vector win and a gate weight201
vector wgate of dimension dmodel. We refer to these two202
weight vectors as the reading weights. Then xgate is203
defined as wgate · xnorm, and xin as win · xnorm.204

Finally, the product of SwiGLU(xgate, xin) and the205
output weight vector, wout , is added to the residual206
stream.207

3.2 Properties208

There are three properties of gated activation functions209
that are key for understanding IO functionality.210

Positive vs negative activation. Strong activations211
can be either positive or negative. If wgate · xnorm ≫ 0212
and win · xnorm ≫ 0, the activation is strongly positive.213
If wgate · xnorm ≫ 0 and win · xnorm ≪ 0, the activation214
is strongly negative. So, depending on the context, a215
given gated activation neuron can either add the output216
weight vector to the residual stream or subtract it.217

Negative values of Swish. Swish and GeLU are often218
seen as essentially ReLU. However, we found clearly219
different cases (see Section 6). wgate · xnorm can be220
weakly negative, i.e., negative but close to zero. In this221
case its image under Swish is also weakly negative. This222
leads to a negative activation if win is present positively223
and positive otherwise.224

Symmetry. Switching the signs of both win and wout225
preserves IO behavior.226

4 Method227

We now describe how we investigate input-output func-228
tionalities of gated neurons, based on their weights only.229

4.1 Intuition 230

As a running example, we consider what a neuron would 231
do to a residual stream state representing the next-token 232
prediction review. 233

Before we introduce our method, let us consider a 234
simpler case to develop our intuition: non-gated activa- 235
tion functions like ReLU (see also Gurnee et al. (2024)). 236
Here, a neuron detects just one direction, determined 237
by its input weight win (say review). (Given xnorm, the 238
activation depends only on xnorm · win, and is positive 239
whenever this is positive.) Roughly, we can distinguish 240
three cases: the neuron output (determined by wout) can 241
be similar to the input direction (in our case, review: 242
we call this enrichment), different (we call this orthog- 243
onal output), or roughly opposite (in our case, “minus 244
review”: we call this depletion). In terms of weights, 245
these cases correspond to cos(win, wout) being close to 246
1, close to 0, or close to -1. 247

Note that a neuron could also detect “minus review” 248
(i.e., “review is not the next token”), and enrich or de- 249
plete that direction. 250

4.2 Extension to gated activation functions 251

In this paper, we consider gated activation functions. 252
Here, a neuron detects two directions (wgate and win), 253
not one; so there are more cases to consider. Luckily, 254
the symmetry property (see Section 3.2) simplifies the 255
analysis: a neuron’s behavior does not change if we 256
switch the signs of both win and wout. This implies that 257
the sign of cos(wgate, wout) does not matter. 258

Accordingly, we define six IO classes, depending 259
on cos(win, wout) (three rows: positive, negative, or 260
zero) and |cos(wgate, wout)| (two columns: positive or 261
zero). Although there is a third cosine similarity – 262
cos(wgate, win) – this similarity is determined by the 263
two others in prototypical cases. We will consider these 264
prototypical cases first. 265

4.3 Prototypical cases 266

See Table 1 for an overview of all cases and Figure 2 267
for a visualization. We also encourage the use of the 268
interactive visualization in supplementary. 269

For the prototypical cases we assume the cosines are 270
≈ 1, ≈ −1 or ≈ 0. In these cases, knowing two of 271
the cosine similarities implies knowing the third one: If 272
wgate and win are collinear, then wout has the same cosine 273
similarity with both (up to sign). Conversely, if wgate 274
and win are orthogonal, wout cannot be collinear to both, 275
and in fact, cos(wgate, wout)

2+cos(win, wout)
2 ≤ 1, with 276

equality when wout is in the space spanned by wgate and 277
win. 278

We first focus on on textbfenrichment and depletion: 279
cos(win, wout) ≈ ±1. The gate vector can be collinear 280
as well, i.e., cos(wgate, wout) ≈ ±1 (leftmost “typical” 281
column). In this case, all three vectors are approximately 282
in a one-dimensional subspace, so the neuron detects 283
one direction and writes to the same direction, up to sign. 284
The sign is relevant: Assume xnorm represents the token 285
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| cos(wgate, wout)| ≫ 0 cos(wgate, wout) ≈ 0
cos(win, wout)

≫ 0 enrichment conditional enrichment
| cos(wgate, win)| ≫ 0 | cos(wgate, win)| ≈ 0 | cos(wgate, win)| ≈ 0 | cos(wgate, win)| ≫ 0

typical atypical typical atypical
≪ 0 depletion conditional depletion

| cos(wgate, win)| ≫ 0 | cos(wgate, win)| ≈ 0 | cos(wgate, win)| ≈ 0 | cos(wgate, win)| ≫ 0

typical atypical typical atypical
≈ 0 proportional change orthogonal output

| cos(wgate, win)| ≈ 0 | cos(wgate, win)| ≫ 0

typical atypical

Table 1: Our six IO classes, in boldface. Five of them have “atypical” variants. We use a threshold of 0.5 (resp.
-0.5) to distinguish cos() ≈ 0 from | cos()| ≫ 0.

review and wgate detects that direction, so that the neuron286
activates. If cos(win, wout) ≈ 1 (win, wout also lie in the287
review subspace, and both have the same orientation),288
the neuron will again write review. We call this (typical)289
enrichment. On the other hand, if cos(win, wout) ≈ −1290
(they again lie in the review subspace but have different291
orientations), the neuron will write “minus review”. We292
call this (typical) depletion.2 The same neurons can293
also get a weak negative activation if −wgate (“minus294
review”) is weakly present in the residual stream. In this295
case, Swish has a negative value (Section 3.2) and the296
enrichment neuron writes “plus review” to the residual297
stream and the depletion neuron “minus review”.298

Next we consider conditional enrichment and con-299
ditional depletion: win and wout are roughly collinear300
and wgate is orthogonal to them. Consider the exam-301
ple that win, wout correspond to the review direction and302
wgate to “verb expected as next token”. The neuron will303
only activate conditional on wgate being present in the304
residual stream (here: verb expected). If ±win (“plus”305
or “minus” review) is also present in the residual stream,306
then ±wout (“plus” or “minus” review) will be added307
to the residual stream. For this scenario, we define a308
(typical) conditional enrichment neuron as one with309
cos(win, wout) ≈ 1; this neuron will enrich the residual310
stream with win if win is present and with −win if −win311
is present (“plus” review leads to more of “plus” review,312
and “minus” review leads to more of “minus” review).313
Conversely, we define a (typical) conditional deple-314
tion neuron as one that depletes ±win (whichever was315
present) from the residual stream: “plus” review leads316
to “minus” review and vice versa. As before, if −wgate317
is weakly present in the residual stream (there is a weak318
expectation that the next token is not a verb), Swish319
yields a negative value; so in this situation conditional320
enrichment and depletion neurons switch their behav-321
iors; e.g., for a conditional enrichment neuron “plus”322
review will lead to “minus” review.323

Turning to the bottom part of Table 1, we define a324
(typical) proportional change neuron as one whose325

2We prefer these terms to alternatives like increase / reduc-
tion because in practice output directions will not be exactly
the same as the reading directions. See Section 7.4.

wout is in the same one-dimensional subspace as wgate, 326
but is orthogonal to win. (This implies that wgate and 327
win are orthogonal.) Take the case where wgate, wout) 328
are represent review and win “verb expected”. If wgate 329
(review) is present in the residual stream, then the neuron 330
writes a positive or negative multiple of review to the 331
residual stream. This multiple is proportional to the 332
presence of win (“verb expected”) in the residual stream: 333
If a verb is expected, the neuron writes review, if not, it 334
writes “minus review”. 335

All of the above neuron types are input manipula- 336
tors: they write to one of the directions they detect. Our 337
final category is the negation of this: We define an or- 338
thogonal output neuron as one whose output weight 339
vector is orthogonal to both reading weight vectors. If 340
wgate and win are also orthogonal to each other, then 341
such a neuron defines an interaction of three completely 342
different meaning components. 343

4.4 General case: Typical vs atypical functions 344

Many cosines will not be close to 0 or ±1. For example, 345
such a neuron may write a concept different from but 346
semantically related to the one it detects (say, Ireland -> 347
Dublin) and thus be be similar to an enrichment neuron 348
in terms of weight vector geometry. 349

For this general case, this paper explores three options 350
to understand neuron IO functionalities at different lev- 351
els of granularity: (1) Classify neurons according to the 352
closest prototypical case. (2) Plot the marginal distribu- 353
tions of the three cosine similarities. (3) Place neurons 354
in a plot analogous to Figure 2, based on their three 355
weight cosines. 356

For (1), we need two refinements. (i) We need a 357
threshold τ for counting a cosine similarity as clearly 358
different from zero. In this paper, we set τ = 0.5, a 359
relatively permissive cutoff that we believe gives rise to 360
a more informative classification of neurons. 361

(ii) cos(win, wgate) may not always “match” the other 362
two cosine similarities; e.g., the two reading weights 363
may be orthogonal, but wout =

1√
2
wgate +

1√
2
win; then 364

both cosine similarities are 1√
2
> 0.5. We are mainly 365

interested in IO behavior rather than comparing the 366
two reading weights, so we classify such cases based 367
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Figure 3: Distribution of neurons by layer and category.

on cos(win, wout) and cos(wgate, wout). To signal the368
“mismatch” of cos(win, wgate), we prepend atypical to369
the category’s name. In the above example, we will370
speak of an atypical enrichment neuron. In Figure 2, the371
atypical classes share their position with typical classes,372
but differ in color.373

Table 1 shows all atypical (and typical) classes.374

5 IO functionalities by layers375

We conduct our study on 12 models: Gemma-2-2B,376
Gemma-2-9B (Gemma, 2024), Llama-2-7B, Llama-377
3.1-8B, Llama-3.2-1B, Llama-3.2-3B (Touvron et al.,378
2023), OLMo-1B, OLMo-7B-0424 (Groeneveld et al.,379
2024), Mistral-7B (Jiang et al., 2023), Qwen2.5-0.5B,380
Qwen2.5-7B (Yang et al., 2024), Yi-6B (01.AI et al.,381
2025). These models use SwiGLU, except for Gemma,382
which uses GeGLU. For each model, we classify the383
MLP neurons based on the cosine similarities of the384
three weight vectors, as described in Section 4.385

Here we describe the results for Llama-3.2-3B. They386
are representative of the general trends we observe. Sec-387
tion I in the appendix contains the plots for all models.388

We progress from (i) the coarse-grained version of our389
method, with discrete classes, to (ii) the marginal dis-390
tributions of each cosine similarity, to (iii) fine-grained391
scatter plots showing all individual neurons.392

5.1 Discrete classes393

Figure 3 shows IO class distribution across layers.394

We see that a large proportion of neurons are input395
manipulators (i.e., they are not orthogonal output neu-396
rons): in the Llama model, these are 25% of all neurons,397
and as much as 50% in early-middle layers (layers 7–11).398
This highlights an advantage of our parameter-based IO399
classes: It is an exhaustive analysis of all neurons, and400
we can make non-trivial statements about a large subset401
of them. Other methods only assign a subset of neurons402
to classes; e.g., Gurnee et al. (2024)’s classification only403
covers 1-5% of neurons.404

The majority of these input manipulators (more than405
80% in Llama) belong to just one class: conditional406
enrichment. Across all models, conditional enrichment407
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Figure 4: Boxplots for the distribution of weight co-
sine similarities in each layer. For cos(wgate, win) and
cos(wgate, wout) we show the absolute value since their
sign does not carry any information on its own.

dominates early-middle layers. In contrast, the (rela- 408
tively few) input manipulators in late layers are often 409
proportional change neurons or depletion neurons. 410

The dominance of conditional enrichment neurons 411
in early-middle layers echoes Geva et al. (2023)’s and 412
Lad et al. (2024)’s findings that these layers perform 413
enrichment (or feature engineering). We discuss this in 414
Section 7.4. 415

These patterns hold for all models. Some other mod- 416
els display additional patterns, for example a large num- 417
ber of conditional depletion neurons in middle-late lay- 418
ers. See Section I. 419

5.2 Marginal distributions 420

Figure 4 shows the distribution of weight cosine similar- 421
ities in each layer. In Figure 1 we also show the median 422
of cos(win, wout), across all investigated models. 423

We already know that conditional enrichment neu- 424
rons are plentiful in the early-middle layers. Corre- 425
spondingly, the median value of cos(win, wout) peaks 426
in these layers. Later on, it moves below zero, in- 427
dicating that now the majority of neurons have nega- 428
tive cos(win, wout). Figure 1 shows that this generalizes 429
across models. 430

Regarding | cos(wgate, wout)|, the median values are 431
relatively close to zero (corresponding to conditional 432
classes and orthogonal output). But there is a large 433
spread in early-middle layers and in the last few layers. 434
This seems to correspond to the proportional change 435
neurons appearing in all of these layers, as well as de- 436
pletion neurons in the last few layers. 437
| cos(wgate, win)| is mostly concentrated around zero. 438

Thus most neurons operate on two input directions in 439
the residual stream (not a single one), resulting in higher 440
expressivity and more complex semantics. This is likely 441
related to double checking; see Section 7.2. 442

We also notice that there are many outliers for all 443
three cosine similarities, in almost all layers. This sug- 444
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Figure 5: Fine-grained analysis of neuron IO behavior
in three layers based on the configuration of their three
weight vectors in parameter space. Each subplot repre-
sents a layer, each dot a neuron.

gests that a non-negligible number of neurons perform445
special tasks different from the “average” neuron.446

5.3 Fine-grained analysis of IO behavior447

We now investigate weight vector configurations in de-448
tail, as shown in Figure 5 for a few selected layers.449
The distribution of neurons in each layer is plotted by450
displaying each neuron as a point with cos(wgate, wout)451
indicated on the x-axis, cos(win, wout) on the y-axis and452
cos(wgate, win) as its color.453

This visualization reinforces three findings from Sec-454
tions 5.1 and 5.2. (i) We already know that many neu-455
rons are input manipulators. Now we see that, even456
though there are many neurons we classified as orthog-457
onal output, there is no cluster around the origin as we458
might expect. Instead, the orthogonal output neurons459
often belong to clusters that are centered above/below460
the horizontal line. This suggests that even the orthogo-461
nal output neurons perform input manipulation to some462
extent. (ii) We also have already observed a smooth463
transition from enrichment-like functionalities in early-464
middle layers to more depletion-like functionalities in465
the last few layers. We indeed see a large cluster of neu-466
rons, centered clearly above the x-axis in most layers,467
but moving below it in the last few layers. (iii) We also468
observe that the vast majority of neurons is turquoise,469
i.e., cos(wgate, win) ≈ 0, confirming the finding in Sec-470
tion 5.2.471

We also gain four new insights. (i) The first layer472
exhibits quite different patterns from model to model.473
(ii) In middle layers, all models have a big cluster re-474
lated to conditional enrichment neurons, as described475
above. Additionally, many models have outlier “arms”476
from this cluster, towards the plot areas corresponding477
to proportional change and depletion. Other models,478
such as OLMo, additionally have a cluster of neurons479
below the x-axis, corresponding to conditional deple-480
tion neurons. (iii) Neurons with orthogonal wgate and481
win must be within the unit disk. It is striking to see that482
they do not fill out this disk evenly. Instead, as already483
mentioned, there is a big cluster above the x-axis (close484
to conditional enrichment). But this cluster is not right485
at the border of the disk, but more inside (in particular486
cos(win, wout) is still clearly below 1). This echoes and487

extends Gurnee et al. (2024)’s findings that in GPT2 488
the IO cosine similarity is approximately bounded by 489
±0.8. In other words, we almost never get the prototyp- 490
ical cases of conditional enrichment / depletion etc., as 491
defined in Section 4. This helps us refine our notion of 492
“input manipulators”: these neurons do more than just 493
outputting a wout that is already present in the residual 494
stream; instead, they add novel but related information. 495
(iv) In the last few layers (Llama: layers 25-27), some 496
new phenomena occur: apart from the big cluster, there 497
is a new cluster in the bottom corners of the plot (close 498
to depletion). Additionally, in the last layer of some 499
models, there is a cluster of turquoise points around the 500
upper y-axis (close to conditional enrichment). 501

6 Case studies 502

We now demonstrate how the IO perspective can com- 503
plement other methods to help understand individual 504
neurons. To this effect, we present 6 case studies for 505
OLMo-7B, one for each discrete IO class. We re- 506
strict the search space to prediction/suppression neu- 507
rons (two of the output-based functional roles of Gurnee 508
et al., 2024), i.e., each of the six neurons is a predic- 509
tion/suppression neuron as well as exemplifying one of 510
our six classes. For ease of interpretability, we choose 511
that prediction/suppression neuron of a particular IO 512
class with the highest cos(wout,WU ) kurtosis, where 513
WU ∈ Rdmodel×dvocab denotes the unembedding matrix. 514
(For orthogonal output we chose the clearest of all sup- 515
pression neurons.) The 6 neurons are in the last layers of 516
the model because that’s where prediction/suppression 517
neurons tend to appear. 518

See Section F for details on prediction/suppression, 519
Section G for more details on these case studies, and 520
Section H for more case studies. 521

6.1 Methods 522

We combine the IO perspective with two well- 523
established neuron analysis methods. For each neuron, 524
we project its weight vectors to vocabulary space with 525
the unembedding matrix WU and inspect high-scoring 526
tokens. (This is analogous to (nostalgebraist, 2020) and 527
has been done e.g. in (Geva et al., 2022; Gurnee et al., 528
2024; Voita et al., 2024).) Additionally, we examine 529
examples for which the neuron is strongly activated 530
(positive or negative) among a subset of 20M tokens 531
from Dolma (Soldaini et al., 2024), OLMo’s training 532
set. (Activation-based analyses have been done e.g. in 533
Geva et al., 2021; Voita et al., 2024; Gurnee et al., 2024. 534
The size of 20M tokens follows Voita et al., 2024.) 535

6.2 Analysis 536

For many of these neurons, the largest positive activa- 537
tion is much larger than the largest negative one (or 538
vice versa). Often the larger of the two is also more 539
interpretable. In these cases we just describe the larger 540
activation and refer to Table 4 in Section H for more 541
details. 542
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Enrichment neuron 28.4737 predicts review (and543
related tokens) if activated positively, which happens544
if review is already present in the residual stream. The545
maximally positive activations are in standard contexts546
that continue with review or similar, such as the newline547
after the description of an e-book (the next paragraph548
often is the beginning of a review).549

Conditional enrichment neuron 28.9766’s IO func-550
tionality concerns well and similar tokens. 28.9766551
promotes them if activated positively, which happens552
when both wgate and win indicate that well is represented553
in the residual stream. This is a case of double checking.554
The maximally positive activation in our sample occurs555
on Oh, in a context in which Oh, well makes sense (and556
is the actual continuation).557

Depletion neuron 31.9634. −wout of 31.9634 is clos-558
est to forms of again. Judging by the weights, the neu-559
ron activates positively when the residual stream con-560
tains information both for and against predicting again,561
and then depletes the again direction. It activates neg-562
atively when the residual stream contains the “minus563
again” direction, and then depletes that direction. Sur-564
prisingly, despite its strong negative cosine similarity565
(cos(wgate, win) = −0.7164), the neuron often activates566
positively. On the positive side, strong activations are567
often on punctuation, and the actual next token is often568
meanwhile or instead. The neuron may ensure only569
these tokens are predicted, and not the relatively similar570
again. On the negative side, the activations do not have571
any obvious semantic relationship to again. We hypoth-572
esize that sometimes the residual stream ends up near573
“minus again” for semantically unrelated reasons (there574
are many more possible concepts than dimensions, so575
the corresponding directions cannot be fully orthogonal;576
see Elhage et al., 2022); in these cases the neuron would577
reduce the unjustified presence of this “minus again”578
direction. There are also weaker negative activations579
when again is a plausible continuation, e.g., on the token580
once. In these cases, again is already weakly present581
in the residual stream before the last MLP. Accordingly,582
Swish(wgate · xnorm) is weakly negative (but distinct583
from 0), and win · xnorm > 0, which leads to a negative584
activation and thus reinforces again.585

Conditional depletion neuron 29.10900. Gate and586
linear input weight vectors act as two independent ways587
of checking that these is not present in the residual588
stream (i.e., a case of double checking). At the same589
time, they check for predictions like today, nowadays.590
When such predictions are present, the neuron promotes591
these. This is a plausible choice in these cases because592
of the expression these days. An example is social593
media tools change and come and go at the drop of594
a hat. (This sentence talks about a characteristic of595
current times, so these days would indeed be a plausible596
continuation.)597

Proportional change neuron 30.10972 predicts the598
token when if activated negatively. This happens if when599
is absent from the residual stream (gate condition) and600
is proportional to the presence of time-related tokens601

(-win). An example for a large negative activation is 602
puts you on multiple webpages at.3 Conversely, if when 603
is absent, and time-related tokens are absent too, the 604
neuron activates positively and suppresses when further. 605

Orthogonal output neuron 29.4180 predicts there 606
(positive activation) if the residual stream contains a 607
component that we interpret as “complement of place 608
expected” (e.g., here, therein). Both wgate and win check 609
for (different aspects of) this component being present, 610
another case of double checking. The largest positive 611
activation is on here or. 612

Overall, these neurons all promote a specific set of to- 613
kens (we chose them that way), but under very different 614
circumstances. The (conditional) enrichment neurons 615
are the most straightforward to interpret, because their 616
input and output clearly correspond to the same con- 617
cept. In contrast, depletion neurons inherently involve 618
(an apparent) conflict between the intermediate model 619
prediction and what the neuron promotes. 620

7 Discussion 621

7.1 Variation across models 622

Our work on gated activation functions questions the 623
generality of previous findings (Voita et al., 2024; 624
Gurnee et al., 2024) on non-gated activation functions. 625
Specifically, we saw in Section 5 that (conditional) de- 626
pletion neurons appear mostly in later layers. On the 627
other hand, Gurnee et al. (2024) find (for GPT-2 (Rad- 628
ford et al., 2019), with activation GeLU) that what we 629
call depletion neurons mostly appear in earlier layers. 630
Similarly, Voita et al. (2024) find (for OPT (Zhang et al., 631
2022), with activation ReLU) that some neurons in early 632
layers detect specific tokens and then suppress them. 633
(Their analysis is not weight-based, so these may or may 634
not be depletion neurons in our weight-based sense.) 635

This confirms the importance of our work for models 636
with gated activation functions: their internal structure is 637
quite different from older models with GeLU or ReLU. 638

Despite minor differences (especially in the first 639
layer), our results across gated activation models are 640
remarkably consistent. Most importantly, all of them 641
are dominated by conditional enrichment neurons in 642
early-middle layers and all of them tend towards deple- 643
tion in the very last layers. 644

7.2 Double checking 645

Our case studies suggest that conditional enrichment 646
or conditional depletion neurons often behave in a way 647

3The actual sentence ends with as soon as and comes
from a now-dead webpage. We also found one occurrence
of at when in what seems to be a paraphrase of the same
text, on https://www.docdroid.net/RgxdG5s/fantastic-tips-for-
bloggers-of-all-amountsoystcpdf-pdf . We suspect that both
texts are machine-generated paraphrases of an original text
containing at once (when and as soon as can be synonyms of
once in other contexts), and that the model has (also) seen a
paraphrased version with at when. In fact many of the largest
negative activations are on at in contexts calling for at once.
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analogous to their unconditional counterparts. One rea-648
son is that our threshold for distinguishing conditional649
and unconditional classes is somewhat arbitrary.650

These and other neurons (for example, proportional651
change neurons like 25.8607, Section H) display a phe-652
nomenon we called double checking: They use two653
quite different reading weight vectors to check for a654
single concept.655

Double checking is rooted in the following geometric656
fact: Two vectors w1, w2 (wgate and win in our case)657
can be orthogonal to each other but still have a high658
similarity to a third vector u (e.g., a token unembedding).659
Example: w1 = (1, 0), w2 = (0, 1), u = (1, 1). Here,660

w1, w2 are orthogonal, but u has a cosine of
√
2
2 ≈ 0.7661

to both.662

Double checking is useful because it shrinks the re-663
gion in model space that activates the neuron positively.664
If (say) win = wgate = (1, 0), the neuron activates665
whenever the (normalized) residual input x satisfies666
x · (1, 0) > 0; this happens on the whole half-space667
x1 > 0. If however wgate = (1, 0) and win = (0, 1),668
the neuron activates positively only in the first quadrant669
(x1, x2 > 0).670

This behavior thus enables more precise concept de-671
tection. This may explain why conditional neurons are672
more frequent than their unconditional counterparts.673

7.3 Stages of inference674

We saw in Section 5 that different layers are dominated675
by different IO functionalities. This leads to a follow-676
up question: Why does the model use these specific677
IO functionalities in these specific layers? In partic-678
ular: Why are there so many conditional enrichment679
neurons in early-middle layers? And what is the role of680
(conditional) depletion neurons in later layers? We hy-681
pothesize that different IO classes might be responsible682
for different stages of inference (Lad et al., 2024), as de-683
scribed in the following subsections. In future work, we684
plan to test this hypothesis using ablation experiments.685

7.4 Enrichment686

We saw in Section 5 that there often is positive simi-687
larity between reading and writing weights of neurons,688
especially with conditional enrichment neurons in early-689
middle layers.690

These neurons seem a good fit for the feature engi-691
neering stage (Lad et al., 2024), corresponding to en-692
richment as defined by Geva et al. (2023). Indeed, they693
output a direction similar to the one they detect, which694
could correspond to related concepts. Geva et al.’s695
(2023) description of enrichment precisely involves writ-696
ing related concepts to the residual stream.697

In later layers, the (conditional) enrichment neurons698
we investigated in our case studies (Section 6) have an699
output that is semantically identical to the input. Thus700
they seem to reinforce existing predictions.701

In general, we use the term enrichment because the702
output weight is never mathematically identical to one703

of the reading weights. But depending on the analysis 704
of a particular neuron (e.g., by way of a case study), 705
magnification (no change) or enrichment (e.g., change 706
Ireland in the input to Dublin in the output) may be the 707
more intuitive human interpretation. 708

7.5 Depletion 709

We saw in Section 5 that depletion neurons appear 710
mostly in the last few layers, and conditional depletion 711
neurons appear in later-middle layers (if at all). 712

These neurons reduce the presence of the directions 713
they detect. Therefore they seem a good fit for the 714
residual sharpening stage – getting rid of attributes that 715
are not directly needed for next token prediction. 716

We found depletion neurons more difficult to inter- 717
pret than enrichment neurons. Most notably, neuron 718
31.9634 was a complex case in that we found contexts 719
in which a weak positive presence of again led to an 720
enrichment-like functionality (see Section 6.2). This 721
mechanism involves a negative value of Swish. Previ- 722
ous authors (Gurnee et al., 2023) often assumed that 723
GELU (or equivalently, Swish) is “essentially the same 724
activation as a ReLU”, and said they “would be partic- 725
ularly excited to see future work exhibiting [...] case 726
studies” of mechanisms involving negative values of 727
such an activation function. To our knowledge, we show 728
for the first time that negative values of Swish can play 729
a crucial role in how transformers function. 730

Still, all neurons we investigated do deplete input 731
directions from the output even if they do not do so in 732
all contexts. We plan to further elucidate the intuitive 733
role depletion plays in follow-up work. 734

8 Conclusion 735

We explored the IO perspective for investigating gated 736
neurons in LLMs. Our method complements prior inter- 737
pretability approaches and provides new insights into 738
the inner workings of LLMs. 739

We observed that a large share of neurons exhibit non- 740
trivial IO interactions. The concrete IO functionalities 741
differ from layer to layer, which is probably related 742
to different stages of inference. In particular, early- 743
middle layers are dominated by conditional enrichment 744
neurons, which may be responsible for representation 745
enrichment. 746

We plan to further develop this new perspective in 747
future work. In particular, we will do ablation experi- 748
ments to conclusively show if, as we hypothesized, the 749
conditional enrichment neurons in early-middle layers 750
are responsible for representation enrichment and the 751
depletion neurons in the last few layers contribute to 752
residual sharpening. We also plan to investigate the 753
evolution of IO functionalities during model training. 754
Finally, we would like to go beyond the analysis of sin- 755
gle neurons and address the question of how neurons 756
work together within and across IO classes. 757
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Limitations758

This paper focuses on a parameter-based interpretation759
of single neurons. This has the advantage of being sim-760
ple and efficient, but is also inherently limited in scope.761
Accordingly, our method is not designed to replace other762
neuron analysis methods, but to complement them.763

The mathematical similarities of weights are insight-764
ful, but they should not be taken as one-to-one represen-765
tations of semantic similarity: We find cases in which766
close-to-orthogonal vectors represent very similar con-767
cepts (Section 7.2), and cases in which mathematically768
similar vectors represent related but non-identical con-769
cepts (Section 7.3).770

Our case studies of individual neurons can be accused771
of cherry-picking: we picked neurons that we expected772
to be interpretable, all of which occur on the last few773
layers. Therefore our interpretations may not carry over774
to less interpretable (e.g. polysemantic) neurons, or to775
neurons in earlier layers.776

Finally, we provide only possible interpretations of777
the phenomena we observe, and do not claim them to778
be definitive explanations.779

References780

01.AI, :, Alex Young, Bei Chen, Chao Li, Chengen781
Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang,782
Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang,783
Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Sen-784
bin Yang, Shiming Yang, Wen Xie, Wenhao Huang,785
Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng786
Nie, Yanpeng Li, Yuchi Xu, Yudong Liu, Yue Wang,787
Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and Zonghong788
Dai. 2025. Yi: Open foundation models by 01.ai.789
Preprint, arXiv:2403.04652.790

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-791
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-792
man, and Jacob Steinhardt. 2023. Eliciting latent793
predictions from transformers with the tuned lens.794

Nelson Elhage, Tristan Hume, Catherine Olsson,795
Nicholas Schiefer, Tom Henighan, Shauna Kravec,796
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,797
Carol Chen, Roger Grosse, Sam McCandlish, Jared798
Kaplan, Dario Amodei, Martin Wattenberg, and799
Christopher Olah. 2022. Toy models of superposi-800
tion.801

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom802
Henighan, Nicholas Joseph, Ben Mann, Amanda803
Askell, Yuntao Bai, Anna Chen, Tom Conerly,804
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac805
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jack-806
son Kernion, Liane Lovitt, Kamal Ndousse, Dario807
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam808
McCandlish, and Chris Olah. 2021. A mathematical809
framework for transformer circuits.810

Amit Elhelo and Mor Geva. 2024. Inferring functional-811
ity of attention heads from their parameters. Preprint,812
arXiv:2412.11965.813

Team Gemma. 2024. Gemma. 814

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir 815
Globerson. 2023. Dissecting recall of factual associa- 816
tions in auto-regressive language models. In Proceed- 817
ings of the 2023 Conference on Empirical Methods in 818
Natural Language Processing, pages 12216–12235, 819
Singapore. Association for Computational Linguis- 820
tics. 821

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold- 822
berg. 2022. Transformer feed-forward layers build 823
predictions by promoting concepts in the vocabulary 824
space. In Proceedings of the 2022 Conference on 825
Empirical Methods in Natural Language Processing, 826
pages 30–45, Abu Dhabi, United Arab Emirates. As- 827
sociation for Computational Linguistics. 828

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 829
Levy. 2021. Transformer feed-forward layers are key- 830
value memories. In Proceedings of the 2021 Confer- 831
ence on Empirical Methods in Natural Language Pro- 832
cessing, pages 5484–5495, Online and Punta Cana, 833
Dominican Republic. Association for Computational 834
Linguistics. 835

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita 836
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya 837
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, 838
Shane Arora, David Atkinson, Russell Authur, 839
Khyathi Chandu, Arman Cohan, Jennifer Dumas, 840
Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, 841
William Merrill, Jacob Morrison, Niklas Muen- 842
nighoff, Aakanksha Naik, Crystal Nam, Matthew 843
Peters, Valentina Pyatkin, Abhilasha Ravichander, 844
Dustin Schwenk, Saurabh Shah, William Smith, 845
Emma Strubell, Nishant Subramani, Mitchell Worts- 846
man, Pradeep Dasigi, Nathan Lambert, Kyle Richard- 847
son, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca 848
Soldaini, Noah Smith, and Hannaneh Hajishirzi. 849
2024. OLMo: Accelerating the science of language 850
models. In Proceedings of the 62nd Annual Meeting 851
of the Association for Computational Linguistics (Vol- 852
ume 1: Long Papers), pages 15789–15809, Bangkok, 853
Thailand. Association for Computational Linguistics. 854

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei 855
Kheirkhah, Qinyi Sun, Will Hathaway, Neel Nanda, 856
and Dimitris Bertsimas. 2024. Universal neurons in 857
gpt2 language models. 858

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine 859
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas. 860
2023. Finding neurons in a haystack: Case studies 861
with sparse probing. 862

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 863
sch, Chris Bamford, Devendra Singh Chaplot, Diego 864
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 865
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 866
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 867
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 868
and William El Sayed. 2023. Mistral 7b. Preprint, 869
arXiv:2310.06825. 870

9

https://arxiv.org/abs/2403.04652
https://arxiv.org/pdf/2303.08112
https://arxiv.org/pdf/2303.08112
https://arxiv.org/pdf/2303.08112
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/2412.11965
https://arxiv.org/abs/2412.11965
https://arxiv.org/abs/2412.11965
https://doi.org/10.34740/KAGGLE/M/3301
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://arxiv.org/pdf/2401.12181
https://arxiv.org/pdf/2401.12181
https://arxiv.org/pdf/2401.12181
https://arxiv.org/pdf/2305.01610
https://arxiv.org/pdf/2305.01610
https://arxiv.org/pdf/2305.01610
https://arxiv.org/abs/2310.06825


Vedang Lad, Wes Gurnee, and Max Tegmark. 2024. The871
remarkable robustness of llms: Stages of inference?872
Preprint, arXiv:2406.19384.873

Joseph Miller and Clement Neo. 2023. We found an874
neuron in gpt-2.875

Beren Millidge and Sid Black. 2022. The singular value876
decompositions of transformer weight matrices are877
highly interpretable.878

Ari S. Morcos, David G.T. Barrett, Neil C. Rabinowitz,879
and Matthew Botvinick. 2018. On the importance of880
single directions for generalization.881

Neel Nanda and Joseph Bloom. 2022. Transformerlens.882
https://github.com/TransformerLensOrg/883
TransformerLens.884

Jingcheng Niu, Andrew Liu, Zining Zu, and Gerald885
Penn. 2024. What does the knowledge neuron thesis886
have to do with knowledge?887

nostalgebraist. 2020. Interpreting gpt: The logit lens.888

Kiho Park, Yo Joong Choe, and Victor Veitch. 2024.889
The linear representation hypothesis and the geometry890
of large language models. In Proceedings of the891
41st International Conference on Machine Learning,892
volume 235 of Proceedings of Machine Learning893
Research, pages 39643–39666. PMLR.894

Alec Radford, Jeff Wu, Rewon Child, David Luan,895
Dario Amodei, and Ilya Sutskever. 2019. Language896
models are unsupervised multitask learners.897

Cody Rushing and Neel Nanda. 2024. Explorations of898
self-repair in language models. In Proceedings of the899
41st International Conference on Machine Learning,900
volume 235 of Proceedings of Machine Learning901
Research, pages 42836–42855. PMLR.902

Noam Shazeer. 2020. Glu variants improve transformer.903

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin904
Schwenk, David Atkinson, Russell Authur, Ben905
Bogin, Khyathi Chandu, Jennifer Dumas, Yanai906
Elazar, Valentin Hofmann, Ananya Jha, Sachin Ku-907
mar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian908
Magnusson, Jacob Morrison, Niklas Muennighoff,909
Aakanksha Naik, Crystal Nam, Matthew Peters, Ab-910
hilasha Ravichander, Kyle Richardson, Zejiang Shen,911
Emma Strubell, Nishant Subramani, Oyvind Tafjord,912
Evan Walsh, Luke Zettlemoyer, Noah Smith, Han-913
naneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse914
Dodge, and Kyle Lo. 2024. Dolma: an open corpus915
of three trillion tokens for language model pretraining916
research. In Proceedings of the 62nd Annual Meeting917
of the Association for Computational Linguistics (Vol-918
ume 1: Long Papers), pages 15725–15788, Bangkok,919
Thailand. Association for Computational Linguistics.920

Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Be-921
linkov, Xingyi Song, Mrinmaya Sachan, and Neel922
Nanda. 2024. Confidence regulation neurons in lan-923
guage models.924

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 925
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 926
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 927
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 928
Grave, and Guillaume Lample. 2023. Llama: Open 929
and efficient foundation language models. ArXiv, 930
abs/2302.13971. 931

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 932
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 933
Kaiser, and Illia Polosukhin. 2017. Attention is all 934
you need. In Neural Information Processing Systems. 935

Elena Voita, Javier Ferrando, and Christoforos Nalmpan- 936
tis. 2024. Neurons in large language models: Dead, 937
n-gram, positional. In Findings of the Association for 938
Computational Linguistics: ACL 2024, pages 1288– 939
1301, Bangkok, Thailand. Association for Computa- 940
tional Linguistics. 941

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 942
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 943
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 944
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 945
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin 946
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang 947
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, 948
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng 949
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 950
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, 951
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, 952
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin 953
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang 954
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, 955
Zhenru Zhang, and Zhihao Fan. 2024. Qwen2 techni- 956
cal report. arXiv preprint arXiv:2407.10671. 957

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 958
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 959
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi- 960
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel 961
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu 962
Wang, and Luke Zettlemoyer. 2022. Opt: Open 963
pre-trained transformer language models. Preprint, 964
arXiv:2205.01068. 965

A Overview of the appendix 966

Section B: Software and data. 967
Section C: Impact statement. 968
Section D: “Responsible NLP” statements. 969
Section E: Visualization of a SwiGLU neuron (Sec- 970

tion 3). 971
Section F: IO classes vs. Gurnee et al.’s (2024) func- 972

tional roles. Used in Section 6. 973
Section G: Details on case studies (Section 6). 974
Section H: More case studies (complementing Sec- 975

tion 6). 976
Section I: Results across models (complementing Sec- 977

tion 5). 978
We chose to put the last section at the end because it 979

is very long and would otherwise disrupt reading of the 980
other sections. 981

10

https://arxiv.org/abs/2406.19384
https://arxiv.org/abs/2406.19384
https://arxiv.org/abs/2406.19384
https://www.lesswrong.com/posts/cgqh99SHsCv3jJYDS/we-found-an-neuron-in-gpt-2
https://www.lesswrong.com/posts/cgqh99SHsCv3jJYDS/we-found-an-neuron-in-gpt-2
https://www.lesswrong.com/posts/cgqh99SHsCv3jJYDS/we-found-an-neuron-in-gpt-2
https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://arxiv.org/pdf/1803.06959.pdf
https://arxiv.org/pdf/1803.06959.pdf
https://arxiv.org/pdf/1803.06959.pdf
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://arxiv.org/pdf/2405.02421
https://arxiv.org/pdf/2405.02421
https://arxiv.org/pdf/2405.02421
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://proceedings.mlr.press/v235/park24c.html
https://proceedings.mlr.press/v235/park24c.html
https://proceedings.mlr.press/v235/park24c.html
https://proceedings.mlr.press/v235/rushing24a.html
https://proceedings.mlr.press/v235/rushing24a.html
https://proceedings.mlr.press/v235/rushing24a.html
https://arxiv.org/pdf/2002.05202
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://arxiv.org/abs/2406.16254
https://arxiv.org/abs/2406.16254
https://arxiv.org/abs/2406.16254
https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2302.13971
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://doi.org/10.18653/v1/2024.findings-acl.75
https://doi.org/10.18653/v1/2024.findings-acl.75
https://doi.org/10.18653/v1/2024.findings-acl.75
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068


B Software and data982

This review version is accompanied by zip archives con-983
taining software and data, respectively. See the readme984
file for detailed documentation.985

We plan to release the software under a permissive986
license such as Apache 2.0.987

The data archive currently contains only the visualiza-988
tions of max/min activations for the neuron case studies989
in Section 6. Everything else can be quickly reproduced,990
and the plots are included in this paper. We plan to re-991
lease these visualizations under the Apache 2.0 license992
(they contain text from Dolma, which is under the same993
license).994

C Impact statement995

This paper presents work whose goal is to advance the996
field of machine learning interpretability. The underly-997
ing assumption of the field is that models have under-998
lying structure (are not just an inscrutable mess) and999
that discovering this structure will have several benefits.1000
First, ideally, any scientific field should have a deep1001
understanding of the models it uses; results that are ob-1002
tained using blackbox models are hard to understand,1003
replicate and generalize. Second, once we understand1004
our models better, we will be better able to address1005
failure modes. For example, once we understand how1006
unaligned behavior like bias and hallucinations comes1007
about, it will be easier to address them, e.g., by chang-1008
ing the model architecture. Third, interpretability can1009
support explainability. If we understand how a recom-1010
mendation or answer came about, we can better assess1011
its validity.1012

D “Responsible NLP” statements1013

D.1 Models and data1014

Gemma. To download the model one needs to explicitly1015
accept the terms of use. NLP research is explicitly1016
listed as an intended usage. Primarily English and code1017
(Gemma, 2024).1018

Llama. Inference code and weights under an ad hoc1019
license. There is also an “Acceptable Use Policy”. Our1020
work is well within those terms. Languages mostly1021
include English and programming languages, but also1022
Wikipedia dumps from “bg, ca, cs, da, de, en, es, fr, hr,1023
hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk” (Touvron et al.,1024
2023).1025

OLMo and Dolma. Training and inference code,1026
weights (OLMo), and data (Dolma) under Apache 2.01027
license. “The Science of Language Models” is explicitly1028
mentioned as an intended use case. Dolma is quality-1029
filtered and designed to contain only English and pro-1030
gramming languages (though we came across some1031
French sentences as well, see Table 4) (Groeneveld et al.,1032
2024; Soldaini et al., 2024).1033

Mistral. Inference code and weights are released1034
under the Apache 2.0 license, but accessing them re-1035
quires accepting the terms. Languages are not explicitly1036

mentioned in the paper, but clearly include English and 1037
code (Jiang et al., 2023). 1038

Qwen. Inference code and weights under Apache 1039
2.0 license. Supports “over 29 languages, including 1040
Chinese, English, French, Spanish, Portuguese, German, 1041
Italian, Russian, Japanese, Korean, Vietnamese, Thai, 1042
Arabic, and more” (Yang et al., 2024). 1043

Yi. Inference code and weights under Apache 2.0 1044
license. Trained on English and Chinese (01.AI et al., 1045
2025). 1046

D.2 Computational experiments 1047

All our experiments can be run on a single NVIDIA 1048
RTX A6000 (48GB). The main analysis, computing the 1049
weight cosines, needs less than a minute per model. The 1050
most expensive part was the activation-based analysis 1051
in Section 6: We needed a single run of ≈ 25 h to store 1052
the max/min activating examples for all neurons, and 1053
then ≈ 45 s per neuron (≈ 5 min) to recompute its 1054
activations on the relevant texts and visualize them. 1055

We use TransformerLens (Nanda and Bloom, 2022). 1056
A colleague kindly provided us with a version that also 1057
supports OLMo. 1058

E More on SwiGLU 1059

Figure 6 visualizes a SwiGLU neuron (described in 1060
Section 3). 1061

F IO classes vs. functional roles 1062

We compare our results with those of another classifica- 1063
tion scheme we mentioned in Section 2: the functional 1064
roles defined by Gurnee et al. (2024). See Section F.3 1065
for the results. 1066

F.1 Definition of functional roles 1067

The definition of functional roles is based exclusively 1068
on the neuron’s output weight wout. Most of the 1069
roles are defined by their output token distribution, 1070
i.e., properties of the distribution cos(wout,WU ) = 1071(

wout·WU [:,1]
∥wout∥∥WU [:,1]∥ , ...,

wout·WU [:,dvocab]
∥wout∥∥WU [:,dvocab]∥

)
∈ [−1, 1]dvocab , 1072

the cosine of the product of output weight vector and 1073
unembedding matrix. 1074

Functional roles are defined as follows. Prediction 1075
and suppression neurons have a cos(wout,WU ) with 1076
high kurtosis (meaning there are many outliers) and a 1077
high skew in absolute value (meaning the outliers tend to 1078
be only on one side). Positive skew corresponds to pre- 1079
dicting a subset of tokens, negative skew to suppressing 1080
it. Partition neurons have a distribution cos(wout,WU ) 1081
with high variance. This often corresponds to two sets 1082
of output tokens, one that is promoted and one that is 1083
suppressed. In entropy neurons (examined in more de- 1084
tail by Stolfo et al. (2024), wout lies in a direction that 1085
does not correspond to any output tokens. Mathemati- 1086
cally, a high proportion of the norm of wout is in WU ’s 1087
effective null space, i.e., it corresponds to singular vec- 1088
tors of WU whose corresponding singular values are 1089
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Figure 6: Visualization of the SwiGLU activation function for a single neuron. Boxes represent vectors, ellipses
represent scalars.

close to zero. Entropy neurons increase or decrease the1090
presence of such directions. This changes the norm of1091
the residual stream, but leaves the token ranking more or1092
less untouched. Because a final LayerNorm is applied1093
before WU , this indirectly affects the logits of all tokens:1094
the output token probabilities become more evenly dis-1095
tributed (higher entropy), or less so (lower entropy). At-1096
tention (de)activation neurons (de)activate an attention1097
head by having it put less (or more) of its attention on the1098
BOS token. (The effect of a head attending only to BOS1099
is negligible.) Consider an attention head with query1100
matrix WQ ∈ Rdmodel×dhead = R4096×128 and BOS key1101
vector kBOS ∈ Rdhead . Attention (de)activation neu-1102
rons for this head are those with a high positive or nega-1103
tive score woutWQkBOS .1104

All of these definitions require a threshold and/or1105
some adaptation to gated activation functions. We de-1106
scribe our approach in Section F.2.1107

F.2 Adapting the definitions1108

The functional role definitions require a threshold and/or1109
some adaptation to gated activation functions. We pro-1110
ceed as follows:1111

• We set the number of partition neurons to be 1000,1112
which gives a variance of 0.0007 as a threshold.1113

• Preliminary experiments show that (absolute) skew1114
and kurtosis are highly correlated in practice, so1115
we decide to focus on kurtosis to find prediction1116
/ suppression neurons. We then choose a kurtosis1117
threshold for prediction/suppression, such that the1118
prediction/suppression class is disjoint from par-1119
tition. This gives a (very high) excess kurtosis of1120
230.9736.1121

• Entropy: Following Stolfo et al. (2024), we focus1122
on the last layer, and we define the null space of1123
WU as the subspace of model space spanned by its1124
last 40 singular vectors. We find that two neurons1125
have a particularly high proportion of their norm in1126
this null space, and define these as entropy neurons.1127

• Attention (de)activation: To ensure comparability1128
across heads, we normalize wout and WQkBOS .1129
Thus the scores can be intuitively understood as1130
cosine similarities between these two vectors. We1131

choose ±
√
2
2 as a cutoff. We keep only those neu- 1132

rons that we did not already classify as partition or 1133
prediction/suppression. 1134

• In our case the neuron can be activated positively 1135
or negatively, so we cannot distinguish predic- 1136
tion from suppression a priori. Instead, we au- 1137
tomatically distinguish prediction and suppression 1138
from each other by the sign of cos(win, wgate) · 1139
skew(cos(wout,WU )) (as opposed to just the sign 1140
of the skew). The quantity cos(win, wgate) indicates 1141
the typical sign of the activation a priori. Even 1142
though this is not very trustworthy it gives some 1143
interesting results. 1144

• The same problem occurs for the distinction of 1145
attention activation and deactivation. As before, 1146
we multiply the original quantity woutWQkBOS 1147
by cos(win, wgate) and only then look at the sign. 1148
Note that here a positive sign means high attention 1149
on BOS, hence attention deactivation. It turns out 1150
that all relevant neurons are attention deactivation 1151
according to this metric. 1152

F.3 Results 1153

The contingency matrix in Table 2 is a systematic com- 1154
parison of our IO classes with Gurnee et al. (2024)’s 1155
functional roles. 1156

We first see again that Gurnee et al. (2024) assign 1157
a functional role to only a small proportion of all neu- 1158
rons. 349,521 of 352,256 neurons remain unclassified. 1159
In contrast, our IO classes are exhaustive and robustly 1160
identify functionalities like conditional depletion and 1161
enrichment that are explanatory for how transformers 1162
process language. 1163

We find that prediction neurons, suppression neurons 1164
and (less consistently) partition neurons mostly occur 1165
in the final layers, replicating Gurnee et al. (2024)’s 1166
findings. 1167

Most of these neurons are orthogonal output or pro- 1168
portional change. This is not unexpected, as these are 1169
some of the largest classes. Conversely, however, a 1170
majority of the (relatively few) depletion neurons have 1171
prediction or partition as functional role. 1172

The only two entropy neurons in OLMo-7B-0424 1173
occur in the last layer and are conditional depletion 1174
neurons. 1175
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attention
prediction suppression partition entropy deactivation other total

depletion 73 0 51 0 2 14 117 243
at. depletion 114 0 61 0 0 3 429 604
c. depletion 68 1 24 2 0 12,344 12,439
at. c. depletion 19 0 13 0 0 12 44
orthogonal output 826 203 516 0 0 190,832 192,377
proportional change 111 206 139 0 0 1 23,358 23,814
at. proportional change 25 0 16 0 2 85 128
c. enrichment 48 0 179 0 0 1 121,446 121,673
at. c. enrichment 14 0 0 0 0 660 674
enrichment 6 0 0 0 0 18 24
at. enrichment 15 0 1 0 0 220 236
total 1,319 410 1,000 2 4 21 349,521 352,256

Table 2: Contingency table of IO classes (rows) vs Gurnee et al. (2024)’s functional roles (columns) for OLMo-7B-
0424. c = conditional. at = atypical. Cutoffs for prediction/suppression and partition were chosen as described in
Section F.2. Many neurons with high attention deactivation score are also partition neurons; the left column unter
“attention deactivation” counts only those that are not. OLMo-7B-0424 has no attention activation neurons with high
enough score.

Neuron IO category cos(wgate, win) cos(wgate, wout) cos(win, wout)
28.4737 enrichment 0.5290 0.5048 0.7060
28.9766 conditional enrichment 0.4764 0.4119 0.5982
31.9634 depletion -0.7164 0.7218 -0.8542
29.10900 conditional depletion 0.4988 -0.4992 -0.5775
30.10972 proportional change -0.4543 0.5814 -0.4182
29.4180 orthogonal output -0.0272 -0.4057 0.0669

Table 3: Overview of prediction/suppression neurons chosen for case studies in Section 6

G Details on case studies1176

See Tables 3 and 4 for more details on the case studies1177
of Section 6.1178

H More case studies1179

These are various neurons that popped out to us as pos-1180
sibly interesting, for not very systematic reasons, for1181
example because they strongly activated on a specific1182
named entity. All of them are in OLMo-7B. We present1183
them by IO class. For most of these case studies we did1184
only a quick and dirty weight-based analysis. In some1185
cases we also tried WE (input embeddings) instead of1186
WU (unembeddings) for the logit-lens style analysis.1187

H.1 Conditional enrichment neurons1188

0.1480: wgate,−win,−wout all have tokens similar to1189
box (when using WE). Activates on Xbox.1190

4.1940: country appears in win among many other1191
things. When using WE , Philippines and Manila appear1192
in wout. Activates on Philippines.1193

4.3720: gate seems country/government related.1194
When using WE , we find wout, wgate contain some coun-1195
try names. Activates on Denmark.1196

4.4801: Muhammad appears in the gate vector. Acti-1197
vates on Muhammad.1198

4.5772: predicts ian as in Egyptian. When using WE ,1199
all three weight vectors contain Egypt. Activates on1200
Egypt.1201

4.6517 has a very Ireland (or Celtic nations) related 1202
gate vector. The interpretations of the other two weights 1203
are less obvious, but Irish and Dublin appear in win 1204
among many other things, and UK and London appear 1205
in −wout (Ireland is emphatically not in the UK!) When 1206
using WE , Ireland appears among the top tokens of all 1207
three weight vectors. Activates on Ireland. 1208

4.6799: When using WE , Vietnam is among the to- 1209
kens corresponding to −wout. Activates on Vietnam 1210

4.7667: all three weights related to consoles in differ- 1211
ent ways. Activates on Xbox 1212

4.9983: wout is related to electronic devices, win either 1213
electronic devices or sports (surfing may belong to both), 1214
wgate is also mostly related to electronic devices. When 1215
using WE , we find wout contains iPhone as a top token. 1216
Activates on iPhone. 1217

4.10859: When using WE , we find wgate, wout include 1218
Thailand as a top token, wout additionally Buddha, Bud- 1219
dhist. Activates on Thailand. 1220

4.10882: When using WE , we find −wout contains 1221
Italy, −win, wgate additionally contain Rome. Activates 1222
on Italy. 1223

4.10995: Boston appears in gate and Massachusetts 1224
in −win. When using WE , we find −wout, wgate con- 1225
tain Massachusetts and Boston, −win contains Boston. 1226
Activates on Massachusetts. 1227

22.2589: wgate and −win recognize tokens like Islam, 1228
Muhammad and others related to the Arabo-Islamic 1229
world. The same goes for −wout (as it is similar to win). 1230

13



Neuron,
IO class

wgate win wout Top activations

28.4737
enrichment

≈ wout ≈ wout pos:
review
Review

pos (13.75): Download EBOOK [...]
Description of the book [...] \n -> Re-
views
neg (-2.25): The answer’s at the bot-
tom of this -> post

28.9766
conditional
enrichment

pos:
well

well

neg:
far
high

≈ wout pos:
well

well

pos (18.63): Could have saved myself
some time. Oh -> , well
neg (-3.66): Seek to understand them
more -> fully

31.9634
depletion

≈ wout ≈ −wout neg:
again
Again

pos (5.12): jumping off the roof of his
Los Angeles apartment building. ->
Meanwhile
neg (-3.48): the areas of the doorjamb
where the door -> often

29.10900
conditional
depletion

pos:
today
nowa-

days

neg:
these

these

≈ −wout pos:
these
These

pos (12.79): social media tools change
and come and go at the drop of a hat
-> .
neg (-2.18): la couleur de sa robe et
-> le

30.10972
proportional
change

≈ wout pos:
when

when

neg:
timing
dates

neg:
when

when

pos (2.67): Take pleasure in the rest of
the new year. -> You
neg (-6.14): puts you on multiple web-
pages at -> as soon as

29.4180
orthogonal
output

pos:
here
therein

neg:
there
we

pos:
here
in

neg: ? pos:
there

there

pos (14.41): here or -> there
neg (-2.31): without any consideration
being issued or paid there -> for

Table 4: Description of the weight vectors of the selected neurons, by top tokens or similarity to wout. The question
mark, ?, signals unknown unicode characters. The last column presents the (shortened) text samples on which the
respective neuron activates most strongly (positively or negatively).
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Activates on Muhammad.1231

24.4880: For all three weight vectors the first four to-1232
kens (but not more) are Philippine-related (even though1233
the gate vector is actually not very similar to the oth-1234
ers). The gate vector also reacts to other geographical1235
names, which may have in common that they are associ-1236
ated with non-”white” (Black, Asian or Latin) people in1237
the US sense (Singapore, Malaysian, Nigerian, Seoul,1238
Pacific, Kerala, Bangkok, but also (Los) Angeles and1239
Bronx). Activates on Philippines.1240

24.6771: wgate,−win,−wout all correspond to capital-1241
ized first names. Activates on Muhammad.1242

25.2723: Some tokens associated with win and wout1243
are possible completions for th (th-ousand, th-ought,1244
th-orn. When using WE , in all three weights there are1245
a few th tokens, but also with ph and similar. Activates1246
on Thailand.1247

25.10496: −win,−wout correspond to tokens starting1248
with v (upper or lower case, with or without preced-1249
ing space). wgate on the other hand seems to react to1250
appropriate endings for tokens starting in v: vol-atility,1251
v-antage, v-intage, vel-ocity, V-ancouver. When using1252
WE , we also find all three weight-vectors are very v-1253
heavy. Activates on Vietnam.1254

H.2 Depletion neurons1255

30.9996: Downgrades weird tokens if present / pro-1256
motes frequent English stopwords if absent. Also an1257
attention deactivation neuron for 15 heads in layer 31.1258

H.3 Proportional change neurons1259

25.7032: Some tokens associated with wgate and wout1260
are possible completions for x or ex (X-avier, x-yz, ex-1261
cel, ex-ercise. When using WE , both x and box (with1262
variants) appear in all three weight vectors. Activates1263
on Xbox.1264

25.8607: All three vectors correspond to tokens re-1265
lated to cities. Moreover, −wout seems to correspond1266
to non-city places, such as national governments or vil-1267
lages. win is actually not that similar to wgate, wout (in1268
terms of cosine similarities), but all three correspond1269
to city-related tokens. When using WE , in all three1270
weights there are a few city-related tokens. Activates on1271
Paris. We may think of the two input directions as two1272
largely independent ways of checking that “it’s about a1273
city” (this is a recurring phenomenon that we describe1274
in Section 7.2). When the gate activates but the linear1275
input does not confirm it’s about a city, the output pro-1276
motes closely related but non-city interpretations (for1277
example Paris actually refers to the French government1278
in some contexts).1279

29.8118: Partition neuron, highest variance of all1280
proportional change neurons. Also an attention deacti-1281
vation neuron for 4 heads (0,2,11,15) in layer 30.1282

31.5490: Activates on Muhammad. wgate reacts to1283
various Asian names and Asian-sounding subwords, win1284
to surnames as opposed to other English words starting1285
with space and uppercase letter. wout corresponds1286

to more Asian stuff (mostly subwords) as opposed to 1287
English surnames. 1288

31.6275: Mostly promotes two-letter tokens (no pre- 1289
ceding space, typically uppercase). −win typically low- 1290
ercase single letters. −wgate mostly lowercase two-letter 1291
tokens. “If no lowercase two-letter tokens, promote up- 1292
percase two-letter tokens proportionally to absence of 1293
lowercase single letters" ? 1294

31.8342: This is an -ot- neuron: wgate and wout corre- 1295
spond to -o(t)- suffixes, −win to various -ot- stuff. Judg- 1296
ing by the weight similarities, we expect that wout is 1297
typically activated negatively: downgrade -o(t)- suffixes 1298
if present in the residual stream. Activates on Egypt. 1299

H.4 Orthogonal output neurons 1300

0.1758: When using WE , all three weight vectors’ top 1301
tokens are famous web sites, including YouTube. Acti- 1302
vates on YouTube. 1303

0.3338: When using WE , we find especially wgate and 1304
−win, but also −wout are similar to smartphone-related 1305
tokens. Activates on iPhone. 1306

0.3872: When using WE , we find especially wgate, 1307
but also −win and −wout correspond to city names. Ac- 1308
tivates on Paris. 1309

0.7829: When using WE , we find win, wout and to a 1310
lesser extent wgate correspond in large part to software 1311
names. Activates on iTunes. 1312

0.7966: When using WE , the weight vectors mostly 1313
correspond to tokens starting with th. Activates on Thor. 1314

29.2568: wout Asian (Thai?) sounding syllables vs. 1315
(Asian) geographic names in English and other stuff; 1316
win reacts to Thailand and Asian (geography) stuff as 1317
opposed to (mostly) US stuff; wgate pretty much the 1318
same. Activates on Thailand. 1319

29.3327: wgate mostly reacts to city names (Paris 1320
being the most important one), -win countries and cities, 1321
especially in continental Europe (France and Paris on 1322
top) as opposed to stuff related to the former British 1323
Empire. Relevant is −wout which corresponds to pieces 1324
of geographical names and especially rivers in France 1325
(Se-ine, Rh-one / Rh-ine, Mar-ne, Mos-elle... Norm- 1326
andie, Nancy, commun...). wgate and -win also react to 1327
river(s). Activates on Paris. 1328

29.4101: wgate and win react to YouTube (top token!), 1329
wout downgrades it (almost bottom token) and promotes 1330
subscrib*, views, channels etc. Activates on YouTube. 1331

29.6417: Downgrades recording and similar. wgate 1332
and win are also similar and involve iTunes. Activates 1333
on iTunes. 1334

29.9734: wgate reacts to the East in a broad sense 1335
as opposed to the West (Iran, Kaz-akhstan, Kash-mir, 1336
Ukraine...), win mostly to male first names without pre- 1337
ceding space. wout seems to produce word pieces that 1338
could begin a foreign name. Activates on Muhammad. 1339

30.2667: wgate reacts to suffixes (for adjectives de- 1340
rived from place names) like en, ian, ians, basically the 1341
same for win and wout. Activates on Muhammad. 1342

30.3143: wgate reacts to words related to entities 1343
that are authoritative for various reasons (officials, au- 1344
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thorities, according, researchers, spokesman, investi-1345
gators...). −win reacts to uncertainty (reportedly, ac-1346
cording... allegedly... accused). −wout is again police,1347
authorities, officials, court but with no preceding space.1348
Activates on Philippines. What authorities and uncer-1349
tainty have to do with the Philippines is unclear.1350

30.3883: wgate and −win react to Virginia and1351
Afghanistan, among others (in the case of wgate: as op-1352
posed to other geographical names with no preceding1353
space associated with the South and the sea); −wout is1354
activated and promotes all variants of af (and ghan) but1355
downgrades Virginia etc. Activates on Afghanistan.1356

30.4577: Seems to be related to rugby: wgate and1357
slightly less obviously win react to rugby-related tokens1358
(midfielder, quarterback...); wout promotes different to-1359
kens that upon reflection could be related to rugby as1360
well. Activates on Ireland.1361

30.5372: Promotes natural and related, downgrades1362
inst tokens. win reacts to wildlife etc. as opposed to1363
institute etc, wgate reacts to institute as opposed to natu-1364
ral. Activates on Massachusetts (in which situation it1365
promotes Institute, which makes sense because of MIT).1366

30.8535: −wout is one in all variants, wgate too, win1367
splits one, ones and the equivalent Chinese characters,1368
on the positive side, from One, 1, ONE on the negative1369
side (and many other things on both sides). Activates1370
on Xbox. Presumably this happens because One is a1371
possible prediction (Xbox One), and presumably the1372
output reinforces that.1373

31.2135: orthogonal output, on the conditional en-1374
richment side (weak conditional enrichment, one of the1375
neurons on the vertical axis). wgate reacts to single letters1376
or symbols as opposed to some English content words1377
without preceding space; win and wout mostly Chinese1378
or Japanese characters as opposed to some Latin diacrit-1379
ics and other weird stuff. Language choice? “If it’s not1380
English and single letters are floating around, make sure1381
to choose the right language / character set."1382

31.10424: wgate,−win, wout correspond to score in the1383
top tokens, which is downgraded if present. Activates1384
on Paris. No idea what’s happening here.1385

I Results across models1386

These final figures show our analyses of IO functionali-1387
ties by layer (Section 5) for all the models we investi-1388
gated.1389

We note a few additional patterns that appear only in1390
some of these models:1391

• In Yi and the OLMo models, the prevalence of1392
conditional enrichment neurons starts even earlier,1393
at the very first layer. A particularly interesting1394
example is Yi: In layer 0 an enormous 68% of all1395
neurons are conditional enrichment, then almost1396
none, then there is a second wave around layers1397
11-17 (out of 32) which have around 25% of con-1398
ditional enrichment neurons each.1399

• In some models, especially the OLMo ones, there1400

is a non-negligible number of conditional depletion 1401
neurons. They tend to appear in middle-to-late lay- 1402
ers, shortly after the conditional enrichment wave. 1403
The clearest example is OLMo-1B, with a peak 1404
of 1418 conditional depletion neurons out of 8192 1405
(17%) in layer 9 out of 16. 1406
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Figure 7: Distribution of neurons by layer and category for a range of models
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Figure 8: Continuation of Figure 7. Including a copy of Figure 3 (Llama-3.2-3B) for convenience.
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Figure 9: Boxplots for the distribution of weight cosine similarities in each layer. For cos(wgate, win) and
cos(wgate, wout) we show the absolute value since their sign does not carry any information on its own.
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Figure 10: Continuation of Figure 9. Including a copy of Figure 4 (Llama-3.2-3B) for convenience.
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